
Physical Security of Code-based Cryptosystems
based on the Syndrome Decoding Problem

IAA/IMATH Seminar

Brice Colombier, Pierre-Louis Cayrel, Vlad-Florin Drăgoi, Vincent Grosso

November 16th 2023

1 / 28



Context

2016: NIST called for proposals for post-quantum cryptography algorithms
S Digital signature
� Key encapsulation mechanisms

Four rounds:
2017 Round 1
2019 Round 2
2020 Round 3: CRYSTALS-Kyber (lattices)
2022 Round 4: 3 candidates left

³ BIKE
³ HQC
³ ClassicMcEliece [1]

Research challenges

³ “More hardware implementations”
³ “Side-channel attacks / resistant implem.”

Dustin Moody (NIST), PKC 2022

[1] M. R. Albrecht et al. Classic McEliece: conservative code-based cryptography: cryptosystem specification. Tech. rep. National
Institute of Standards and Technology, 2022

2 / 28



Classic McEliece



Classic McEliece

Classic McEliece is a Key Encapsulation Mechanism, based on the Niederreiter cryptosystem [2].
³ KeyGen() -> (Hpub, kpriv)
³ Encap(Hpub) -> (s, ksession)
³ Decap(s, kpriv) -> (ksession)

The Encapsulation procedure establishes a shared secret.
³ Encap(Hpub) -> (s, ksession)

Generate a random vector e ∈ Fn
2 of Hamming weight t

Compute s = Hpube
Compute the hash: ksession = H(1, e, s)

[2] H. Niederreiter. “Knapsack-Type Cryptosystems and Algebraic Coding Theory”. In: Problems of Control and Information Theory
(1986).

3 / 28



Security

The security of the Niederreiter cryptosystem relies on the syndrome decoding problem.

Syndrome decoding problem

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

Known to be an NP-hard problem [3].

[3] E. R. Berlekamp et al. “On the inherent intractability of certain coding problems (Corresp.)”. In: IEEE Transactions on Information
Theory (1978).

4 / 28



Classic McEliece parameters

Hpub

e

= s

n

n− k n− k

n k t Equivalent bit-level security

3488 2720 64 128

4608 3360 96 196

6688 5024 128 256

6960 5413 119 256

8192 6528 128 256

The public key Hpub is very large!

5 / 28



Hardware implementations

Implementations on embedded systems are now feasible : [4] [5] [6]
Reference hardware target : ARM® Cortex®-M4

Several strategies to store the (very large) keys :
³ Streaming,
³ Use a structured code,
³ Use a very large microcontroller.

New threats
That makes them vulnerable to physical attacks (fault injection & side-channel analysis)

[4] S. Heyse. “Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers”. In: International Workshop on
Post-Quantum Cryptography. 2010.

[5] J. Roth et al. “Classic McEliece Implementation with Low Memory Footprint”. In: CARDIS. 2020.
[6] M. Chen et al. “Classic McEliece on the ARM Cortex-M4”. In: IACR Transactions on Cryptographic Hardware and Embedded

Systems (2021).
6 / 28



“Modified” syndrome decoding problem



Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

N syndrome decoding problem (N-SDP)

Input: a binary matrix H ∈ {0, 1}(n−k)×n

a����binary vector s ∈ Nn−k

a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x)≤ t such that : Hx = s

7 / 28



Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

N syndrome decoding problem (N-SDP)

Input: a binary matrix H ∈ {0, 1}(n−k)×n

a����binary vector s ∈ Nn−k

a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x)≤ t such that : Hx = s

7 / 28



Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

N syndrome decoding problem (N-SDP)

Input: a binary matrix H ∈ {0, 1}(n−k)×n

a����binary vector s ∈ Nn−k # How do we get this integer syndrome?
a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x)≤ t such that : Hx = s

7 / 28



Physical attack #1: Fault injection



Laser fault injection attack

Physical attack : an attacker has a physical access to the device.

³ ChipWhisperer platform [7],

³ Custom board with an opening,

³ Decapsulated chip
³ access to the backside of the die

[7] C. O’Flynn et al. “ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research”. In: COSADE. 2014
8 / 28



Laser fault injection setup

4-spot laser fault injection setup [8]

Control
PC

Function
generator

Four-spot laser
fault injection setup

serial link

parameters

trigger

individual laser
control signals

[8] B. Colombier et al. “Multi-spot Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks”. In: CARDIS. 2021.
9 / 28





Syndrome computation : Hx = s

In [9] we target the syndrome computation: s = Hpube

Matrix-vector multiplication performed over F2

Algorithm Schoolbook matrix-vector multiplication over F2

1: function Mat vec mult schoolbook(matrix, vector)
2: for row← 0 to n− k− 1 do
3: syndrome[row] = 0 ▷ Initialisation
4: for row← 0 to n− k− 1 do
5: for col← 0 to n− 1 do
6: syndrome[row] ^= matrix[row][col] & vector[col] ▷ Multiplication and addition
7: return syndrome

[9] P.-L. Cayrel et al. “Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem”. In: EUROCRYPT. 2021.
11 / 28



Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EORS: Rd = Rm⊕ Rn 0 1 0 0 0 0 0 0 0 1 Rm Rdn

EORS: R1 = R0⊕ R1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

ADCS: R1 = R0+ R1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

Outcome: switching from F2 to N

The exclusive-OR (addition over F2) is turned into an addition with carry (addition over N)

[10] B. Colombier et al. “Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller”. In:
IEEE HOST. 2019.

12 / 28



Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EORS: Rd = Rm⊕ Rn 0 1 0 0 0 0 0 0 0 1 Rm Rdn

EORS: R1 = R0⊕ R1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

ADCS: R1 = R0+ R1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

Outcome: switching from F2 to N

The exclusive-OR (addition over F2) is turned into an addition with carry (addition over N)

[10] B. Colombier et al. “Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller”. In:
IEEE HOST. 2019.

12 / 28



Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EORS: Rd = Rm⊕ Rn 0 1 0 0 0 0 0 0 0 1 Rm Rdn

EORS: R1 = R0⊕ R1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

ADCS: R1 = R0+ R1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

Outcome: switching from F2 to N

The exclusive-OR (addition over F2) is turned into an addition with carry (addition over N)

[10] B. Colombier et al. “Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller”. In:
IEEE HOST. 2019.

12 / 28



Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:
tinitial : initial delay before the multiplication starts
tinner : delay in the inner for loop
touter : delay in the outer for loop

execution
starts X

O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

tinitial tinner touter

time

Outcome
After n.(n− k) faults, we get a faulty syndrome s ∈ Nn−k

13 / 28



A single bit-set ?

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

Answer: No

It happens for other instructions sets too:
PIC XORWF $ ADDWF with one bit-set [11]

RISC-V C.XOR $ C.ADDW with one bit-set [12]
ARMv7 EORS.W $ QADD with six (1-4-1) bit-sets [13]

Other instruction corruptions could be equivalent to addition over N (shifts, rotations, etc)

[11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
[12]
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

[13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403
14 / 28

https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://developer.arm.com/documentation/ddi0403


A single bit-set ?

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

Answer: No

It happens for other instructions sets too:
PIC XORWF $ ADDWF with one bit-set [11]

RISC-V C.XOR $ C.ADDW with one bit-set [12]
ARMv7 EORS.W $ QADD with six (1-4-1) bit-sets [13]

Other instruction corruptions could be equivalent to addition over N (shifts, rotations, etc)

[11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
[12]
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

[13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403
14 / 28

https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://developer.arm.com/documentation/ddi0403


Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient!
Each machine word stores only one bit: a lot of memory is wasted.

Algorithm Packed matrix-vector multiplication
1: function Mat vec mult packed(mat, vector)
2: for row← 0 to ((n− k)/8− 1) do
3: syn[row] = 0 ▷ Initialisation
4: for row← 0 to (n− k− 1) do
5: b = 0
6: for col← 0 to (n/8− 1) do
7: b ^= mat[row][col] & vector[col]

8: b ^= b >> 4
9: b ^= b >> 2 ▷ Exclusive-OR folding

10: b ^= b >> 1
11: b &= 1 ▷ LSB extraction
12: syn[row/8] |= b << (row%8) ▷ Packing
13: return syn

Hpub

e

= s

n
8

n− k n−k
8

15 / 28



Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient!
Each machine word stores only one bit: a lot of memory is wasted.

Algorithm Packed matrix-vector multiplication
1: function Mat vec mult packed(mat, vector)
2: for row← 0 to ((n− k)/8− 1) do
3: syn[row] = 0 ▷ Initialisation
4: for row← 0 to (n− k− 1) do
5: b = 0
6: for col← 0 to (n/8− 1) do
7: b ^= mat[row][col] & vector[col]

8: b ^= b >> 4
9: b ^= b >> 2 ▷ Exclusive-OR folding

10: b ^= b >> 1
11: b &= 1 ▷ LSB extraction
12: syn[row/8] |= b << (row%8) ▷ Packing
13: return syn

Attack not directly applicable here

We suggested the following strategy
(admittedly not feasible):
³ Prematurely exit the inner for

loop to keep only one byte
³ Reverse the exclusive-OR folding

permutation over F8
2

³ Mask with 0xFF instead of 1
³ For bit packing:

³ Turn shift into CMP

³ Prematurely exit the outer for
loop to keep only one byte

15 / 28



Physical attack #2: Side-channel analysis



Side-channel analysis setup

ChipWhisperer platform (again) [14]

[14] C. O’Flynn et al. “ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research”. In: COSADE. 2014.
16 / 28



Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication
1: ...
2: for col← 0 to (n/8− 1) do
3: b ^= mat[row][col] & vector[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8−1∑
i=1

HD(bj,i, bj,i−1)

=

n
8−1∑
i=1

∣∣ HW(bj,i)− HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1
Happens if:
HW(mat[r][c] & e vec[c]) > 1
Unlikely, since HW(e) = t is low.

17 / 28



Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication
1: ...
2: for col← 0 to (n/8− 1) do
3: b ^= mat[row][col] & vector[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8−1∑
i=1

HD(bj,i, bj,i−1)

=

n
8−1∑
i=1

∣∣ HW(bj,i)− HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1
Happens if:
HW(mat[r][c] & e vec[c]) > 1
Unlikely, since HW(e) = t is low.

17 / 28



Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication
1: ...
2: for col← 0 to (n/8− 1) do
3: b ^= mat[row][col] & vector[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8−1∑
i=1

HD(bj,i, bj,i−1)

=

n
8−1∑
i=1

∣∣ HW(bj,i)− HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1
Happens if:
HW(mat[r][c] & e vec[c]) > 1
Unlikely, since HW(e) = t is low.

17 / 28



Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication
1: ...
2: for col← 0 to (n/8− 1) do
3: b ^= mat[row][col] & vector[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8−1∑
i=1

HD(bj,i, bj,i−1)

=

n
8−1∑
i=1

∣∣ HW(bj,i)− HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1
Happens if:
HW(mat[r][c] & e vec[c]) > 1
Unlikely, since HW(e) = t is low.

17 / 28



Side-channel analysis for Hamming weight recovery

s = Hpube Hpub

e

= s

18 / 28



Side-channel analysis for Hamming weight recovery

s = Hpube Hpub

e

= s

18 / 28



Side-channel analysis for Hamming weight recovery

sj = Hpub[j,]e Hpub

e

= s

18 / 28



Side-channel analysis for Hamming weight recovery

sj = Hpub[j,]e Hpub

e

= s

18 / 28



Side-channel analysis for Hamming weight recovery

b ^= Hpub[j,i]ei Hpub

e

= s

18 / 28



Trace(s) reshaping process

traw

nsamples

Trow-wise

≃ nsamples
n−k

(n
−
k)

Telement

≃ nsamples
n
8 .(n−k)

(n
−
k)
.n 8

TLDA

nclasses − 1

(n
−
k)
.n 8

Training phase

³ Linear Discriminant Analysis (LDA) for dimensionality reduction,
³ From a single trace, we get (n− k)× n

8 training samples n = 8192 $ more than 1.7× 106

³ Fed to a single Random Forest classifier (sklearn.ensemble.RandomForestClassifier)

19 / 28



Random Forest classifier

Random Forest classifier training:
³ Hamming weight:

³ > 99.5% test accuracy,
³ Hamming distance:

³ ≈ 80% test accuracy.

0 5 10 15 20 25 30

Samples

F
st

a
ti

st
ic

54xHW

HD

Outcome

³ We can recover the Hamming weight very accurately,
³ but not the Hamming distance...
³ We can compute a slightly innacurate integer syndrome.

20 / 28



Random Forest classifier

Random Forest classifier training:
³ Hamming weight:

³ > 99.5% test accuracy,
³ Hamming distance:

³ ≈ 80% test accuracy.
0 5 10 15 20 25 30

Samples

F
st

a
ti

st
ic

54xHW

HD

Outcome

³ We can recover the Hamming weight very accurately,
³ but not the Hamming distance...
³ We can compute a slightly innacurate integer syndrome.

20 / 28



Exploiting the integer syndrome



Exploiting the integer syndrome

Option 1: Consider Hpube = s as an optimization problem and solve it.

N syndrome decoding problem (N-SDP)

Input: a matrix Hpub ∈Mn−k,n(N) with hi,j ∈ {0, 1} for all i, j
a vector s ∈ Nn−k

a scalar t ∈ N+

Output: a vector e in Nn with xi ∈ {0, 1} for all i
and with a Hamming weight HW(x)≤ t such that : Hpube = s

ILP problem

Let b ∈ Nn, c ∈ Nm and A ∈Mm,n(N)
We have the following optimization problem:

min{bTx | Ax = c, x ∈ Nn, x ≥ 0}

Can be solved by integer linear programming.

Solver used: Scipy.optimize.linprog.

Cannot deal with errors in the recovered syndrome.

21 / 28



Exploiting the integer syndrome

Option 1: Consider Hpube = s as an optimization problem and solve it.

N syndrome decoding problem (N-SDP)

Input: a matrix Hpub ∈Mn−k,n(N) with hi,j ∈ {0, 1} for all i, j
a vector s ∈ Nn−k

a scalar t ∈ N+

Output: a vector e in Nn with xi ∈ {0, 1} for all i
and with a Hamming weight HW(x)≤ t such that : Hpube = s

ILP problem

Let b ∈ Nn, c ∈ Nm and A ∈Mm,n(N)
We have the following optimization problem:

min{bTx | Ax = c, x ∈ Nn, x ≥ 0}

Can be solved by integer linear programming.

Solver used: Scipy.optimize.linprog.

Cannot deal with errors in the recovered syndrome.
21 / 28



Experimental results

103 104

n

0.1

1

10

E
xe

cu
tio

n 
tim

e 
[s

]

Full, t = n

Full, t = n. log(n)

1s

1min

O(n3 )

For Classic McEliece : 3488 < n < 8192
22 / 28



Required fraction of faulty syndrome entries

Only a fraction of the faulty syndrome entries is enough to solve the problem.
t =
√
n

103 104

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

pe
rc

en
ta

ge
 o

f s
yn

dr
om

e
en

tr
ie

s 
co

ns
id

er
ed

t =
√
n log n

103 104

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

Classic McEliece parameters

34
88

46
08

66
88

69
60

81
92

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

For Classic McEliece, less than 40% faulty syndrome entries is enough.
23 / 28



Experimental results

103 104

n

0.1

1

10

E
xe

cu
tio

n 
tim

e 
[s

]

Full, t = n

Full, t = n. log(n)
Optimal, t = n

Optimal, t = n. log(n)
Classic McEliece

1s

1min

O(n3 )

O(n2)

Empirically, when considering the optimal fraction, time complexity drops fromO(n3) toO(n2).
24 / 28



Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of Hpub “contributed” to the syndrome.

Example: HW(e) = t = 2

Hpube =

(
0 1 1
1 0 1

)
.e =

(
1
2

)
s =

(
1
2

)
(

0
1

)
(

1
0

)
(

1
1

)

Score function
The dot product can be used to compute a “score” for every column:

ψ(i) = Hpub[,i] · s+ H̄pub[,i] · s̄ with H̄ =

(
1 0 0
0 1 0

)
and s̄ =

(
1
0

)
³ ψ(0) = 1× 0 + 2× 1 + 1× 1 + 0× 0 = 3 ³ ψ(1) = 1 ³ ψ(2) = 3

[15] U. Feige et al. “Quantitative Group Testing and the rank of random matrices”. In: CoRR (2020). arXiv: 2006.09074.
25 / 28

https://arxiv.org/abs/2006.09074


Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of Hpub “contributed” to the syndrome.

Example: HW(e) = t = 2

Hpube =

(
0 1 1
1 0 1

)
.e =

(
1
2

)
s =

(
1
2

)
(

0
1

)
(

1
0

)
(

1
1

)

Score function
The dot product can be used to compute a “score” for every column:

ψ(i) = Hpub[,i] · s+ H̄pub[,i] · s̄ with H̄ =

(
1 0 0
0 1 0

)
and s̄ =

(
1
0

)
³ ψ(0) = 1× 0 + 2× 1 + 1× 1 + 0× 0 = 3 ³ ψ(1) = 1 ³ ψ(2) = 3

[15] U. Feige et al. “Quantitative Group Testing and the rank of random matrices”. In: CoRR (2020). arXiv: 2006.09074.
25 / 28

https://arxiv.org/abs/2006.09074


Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of Hpub “contributed” to the syndrome.

Example: HW(e) = t = 2

Hpube =

(
0 1 1
1 0 1

)
.e =

(
1
2

)
s =

(
1
2

)
(

0
1

)
(

1
0

)
(

1
1

)

Score function
The dot product can be used to compute a “score” for every column:

ψ(i) = Hpub[,i] · s+ H̄pub[,i] · s̄ with H̄ =

(
1 0 0
0 1 0

)
and s̄ =

(
1
0

)
³ ψ(0) = 1× 0 + 2× 1 + 1× 1 + 0× 0 = 3 ³ ψ(1) = 1 ³ ψ(2) = 3

[15] U. Feige et al. “Quantitative Group Testing and the rank of random matrices”. In: CoRR (2020). arXiv: 2006.09074.
25 / 28

https://arxiv.org/abs/2006.09074


Score function : advantages

The score of the columns of Hpub provides us with a ranking.
This defines a permutation over e too, the most likely to bring t ones in the first positions.

Scores : [3, 1, 3]

Permutation : [0, 2, 1]

1 0 1

1 1 0

Bringing t ones in the first (n− k) positions is sufficient.

Information-set decoding methods can then be used
to recover the error vector.

Computational complexity

³ Computing the dot product of two vectors is very fast,
³ Overall cost for all columns of Hpub : O((n− k)× n) = O(n2)

³ n = 8192 : ≈ 0.2 s

26 / 28



Conclusion



Conclusion

The results of the NIST PQC standardisation process are (almost) known.
With implementations comes the threat of physical attacks.
This threat must be considered and properly evaluated.

Considered approach: use known cryptanalysis tools “augmented” with additional information.

³ Additional information realistically obtained by physical attacks:
³ Fault injection attacks,
³ Side-channel attacks.

³ Integer syndrome decoding problem,
³ Challenge: recover the integer syndrome as accurately as possible.

³ Information-set decoding methods starting with a plausible permutation.

27 / 28



Future works

Future works:

³ Improve the recovery of the integer syndrome,

³ Improve the efficiency of the message-recovery step,

³ Try to apply similar ideas to attack the long-term secret key,

³ Apply the idea to other problems (and NIST PQC candidates).

— Questions ? —

28 / 28



Future works

Future works:

³ Improve the recovery of the integer syndrome,

³ Improve the efficiency of the message-recovery step,

³ Try to apply similar ideas to attack the long-term secret key,

³ Apply the idea to other problems (and NIST PQC candidates).

— Questions ? —
28 / 28


	Classic McEliece
	``Modified'' syndrome decoding problem
	Physical attack #1: Fault injection
	Physical attack #2: Side-channel analysis
	Exploiting the integer syndrome
	Conclusion

