Physical Security of Code-based Cryptosystems based on the Syndrome Decoding Problem
 IAA/IMATH Seminar

Brice Colombier, Pierre-Louis Cayrel, Vlad-Florin Drăgoi, Vincent Grosso

Context

2016: NIST called for proposals for post-quantum cryptography algorithms

Digital signature

O Key encapsulation mechanisms

Four rounds:

2017 Round 1
2019 Round 2

2020 Round 3: CRYSTALS-Kyber (lattices)
2022 Round 4: 3 candidates left
(7) BIKE
() HQC
() ClassicMcEliece [1]
[1] M. R. Albrecht et al. Classic McEliece: conservative code-based cryptography: cryptosystem specification. Tech. rep. National Institute of Standards and Technology, 2022
\qquad

Research challenges

(7) "More hardware implementations"
(7) "Side-channel attacks / resistant implem."

Dustin Moody (NIST), PKC 2022

Classic McEliece

Classic McEliece

Classic McEliece is a Key Encapsulation Mechanism, based on the Niederreiter cryptosystem [2].
(7) KeyGen() -> ($\mathrm{H}_{\text {pub }}, \mathrm{K}_{\text {priv }}$)
() Encap $\left(\mathbf{H}_{\text {pub }}\right)$-> ($\left.\mathbf{s}, \mathrm{k}_{\text {session }}\right)$
(7) Decap $\left(\mathbf{s}, \mathrm{k}_{\text {priv }}\right) \rightarrow\left(\mathrm{k}_{\text {session }}\right)$

The Encapsulation procedure establishes a shared secret.
(7) Encap $\left(\mathbf{H}_{\text {pub }}\right)$) ${ }^{\left(s, k_{\text {session }}\right)}$

Generate a random vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$ of Hamming weight t
Compute s= $\mathrm{H}_{\text {pub }} \mathbf{e}$
Compute the hash: $\mathrm{k}_{\text {session }}=\mathrm{H}(1, \mathbf{e}, \mathbf{s})$

[^0]
Security

The security of the Niederreiter cryptosystem relies on the syndrome decoding problem.

Syndrome decoding problem

Input: a binary matrix $\mathrm{H} \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{Hx}=\mathbf{s}$

Known to be an NP-hard problem [3].
[3] E. R. Berlekamp et al. "On the inherent intractability of certain coding problems (Corresp.)". In: IEEE Transactions on Information Theory (1978).

Classic McEliece parameters

The public key $\mathbf{H}_{\text {pub }}$ is very large!

Hardware implementations

Implementations on embedded systems are now feasible : [4] [5] [6]
Reference hardware target : ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4
Several strategies to store the (very large) keys :
() Streaming,
() Use a structured code,
() Use a very large microcontroller.

New threats

That makes them vulnerable to physical attacks (fault injection \& side-channel analysis)

[^1]"Modified" syndrome decoding problem

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathrm{s}$

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N}-SDP)

Input: a binary matrix $H \in\{0,1\}^{(n-k) \times n}$
a binary vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in\{0,1\}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{Hx}=\mathbf{s}$

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N}-SDP)

Input: a binary matrix $\mathbf{H} \in\{0,1\}^{(n-k) \times n}$
a binary vector $s \in \mathbb{N}^{n-k} \leftarrow$ How do we get this integer syndrome?
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in\{0,1\}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{Hx}=\mathbf{s}$

Physical attack \#1: Fault injection

Laser fault injection attack

Physical attack : an attacker has a physical access to the device.
(1) ChipWhisperer platform [7],
() Custom board with an opening,
(1) Decapsulated chip
() access to the backside of the die

[^2]
Laser fault injection setup

4-spot laser fault injection setup [8]

[^3]

Syndrome computation : $\mathrm{Hx}=\mathrm{s}$

In [9] we target the syndrome computation: $\mathbf{s}=\mathbf{H}_{\text {pub }} \mathbf{e}$
Matrix-vector multiplication performed over \mathbb{F}_{2}

```
Algorithm Schoolbook matrix-vector multiplication over \(\mathbb{F}_{2}\)
    function Mat_vec_Mult_schoolbook(matrix, vector)
        for row \(\leftarrow 0\) to \(n-k-1\) do
            syndrome[row] = 0 \(\quad \triangleright\) Initialisation
        for row \(\leftarrow 0\) to \(n-k-1\) do
            for \(\mathrm{col} \leftarrow 0\) to \(n-1\) do
            syndrome [row] ^= matrix[row] [col] \& vector [col] \(\triangleright\) Multiplication and addition
        return syndrome
```

[^4]
Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1	Rm			Rdn		
EORS: R1 $=$ R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1	Rm			Rdn		
EORS: R1 $=$ R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

ADCS: $\mathrm{R} 1=\mathrm{R} 0+\mathrm{R} 1$| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[10] B. Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019.

Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 $=$ R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

ADCS: $\mathrm{R} 1=\mathrm{R} 0+\mathrm{R} 1$| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Outcome: switching from \mathbb{F}_{2} to \mathbb{N}

The exclusive-OR (addition over \mathbb{F}_{2}) is turned into an addition with carry (addition over \mathbb{N})
[10] B. Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019.

Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:
$t_{\text {initial }}$: initial delay before the multiplication starts
$t_{\text {inner }}$: delay in the inner for loop
$t_{\text {outer }}$: delay in the outer for loop

Outcome

After $n .(n-k)$ faults, we get a faulty syndrome $s \in \mathbb{N}^{n-k}$

A single bit-set?

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?
[11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf [12]
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf [13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403

A single bit-set?

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

Answer: No

It happens for other instructions sets too:
PIC XORWF \rightarrow ADDWF with one bit-set [11]
RISC-V C.XOR \rightarrow C.ADDW with one bit-set [12]
ARMv7 EORS.W \rightarrow QADD with six (1-4-1) bit-sets [13]

Other instruction corruptions could be equivalent to addition over \mathbb{N} (shifts, rotations, etc)

[^5]
Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient! Each machine word stores only one bit: a lot of memory is wasted.

```
Algorithm Packed matrix-vector multiplication
    function Mat_vec_mult_packed(mat, vector)
        for row \leftarrow }\leftarrow0\mathrm{ to ((n-k)/8-1) do
            syn[row] = 0 DInitialisation
        for row }\leftarrow0\mathrm{ to (n-k-1) do
            b=0
            for col }\leftarrow0\mathrm{ to (n/8-1) do
            b ^= mat[row] [col] & vector[col]
            b^=b>>4
            b^=b>>2 
            b^= b>>1
            b&=1
                            LSB extraction
            syn[row/8] |= b << (row%8) \triangleright Packing
        return syn
```


Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient! Each machine word stores only one bit: a lot of memory is wasted.

Algorithm Packed matrix-vector multiplication	
	function Mat_vec_mult_packed(mat, vector)
2:	for row $\leftarrow 0$ to $((n-k) / 8-1)$ do
3:	$\operatorname{syn}[\mathrm{row}]=0 \quad \triangleright$ Initialisation
4:	for row $\leftarrow 0$ to ($n-k-1$) do
5:	$b=0$
6:	for col $\leftarrow 0$ to ($n / 8-1$) do
7:	b ^= mat[row] [col] \& vector [col]
$8:$	$b^{\wedge}=b \gg 4$
$9:$	
10:	$b^{\wedge}=b \gg 1$
11:	b \& $=1 \quad \triangleright$ LSB extraction
12:	syn[row/8] $\mid=b$ << (row\%8) \triangleright Packing
	return syn

Algorithm Packed matrix-vector multiplication
function Mat_vec_mult_packed(mat, vector)
for row $\leftarrow 0$ to $((n-k) / 8-1)$ do
$\operatorname{syn}[\mathrm{row}]=0 \quad \triangleright$ Initialisation
for row $\leftarrow 0$ to $(n-k-1)$ do
for $\mathrm{col} \leftarrow 0$ to $(n / 8-1)$ do
$b^{\wedge}=\operatorname{mat}[\mathrm{row}][\mathrm{col}] \&$ vector [col]
$b^{\wedge}=b \gg 4$
$b^{\wedge}=b \gg 2 \quad \triangleright$ Exclusive-OR folding
$b^{\wedge}=b \gg 1$
$b \&=1$
\triangleright LSB extraction
return syn

Attack not directly applicable here

We suggested the following strategy (admittedly not feasible):
(7) Prematurely exit the inner for loop to keep only one byte
(7) Reverse the exclusive-OR folding permutation over \mathbb{F}_{2}^{8}
(7) Mask with 0xFF instead of 1
(7) For bit packing:
(7) Turn shift into CMP
(7) Prematurely exit the outer for loop to keep only one byte

Physical attack \#2: Side-channel analysis

Side-channel analysis setup

ChipWhisperer platform (again) [14]

[^6]
Side-channel analysis to obtain the integer syndrome

```
Algorithm Packed matrix-vector multiplication
    1: ...
for \(\mathrm{col} \leftarrow 0\) to \((n / 8-1)\) do
    \(\mathrm{b}^{\wedge}=\) mat [row] [col] \& vector [col]
    4: ...
```


Side-channel analysis to obtain the integer syndrome

```
Algorithm Packed matrix-vector multiplication
    ...
    for \(\mathrm{col} \leftarrow 0\) to \((n / 8-1)\) do
    \(b^{\wedge}=\operatorname{mat}[\mathrm{row}][\mathrm{col}]\) \& vector [col]
```

\(\left.\left.$$
\begin{array}{r}H D=0 \\
H D=1\end{array}
$$\right\} \begin{array}{ll}b=00000000 \& H W=0

b=00000000 \& H W=0

H D=0\end{array}\right\}\)| $b=00001000$ | $H W=1$ |
| :--- | :--- |
| $b=00001000$ | $H W=1$ |
| $b=00001010$ | $H W=2$ |

Side-channel analysis to obtain the integer syndrome

$$
\left.\begin{array}{l}
H D=0 \\
H D=1 \\
H D=0 \\
H D=1
\end{array}\right\} \begin{array}{ll}
b=00000000 & H W=0 \\
b=00000000 & H W=0 \\
b=00001000 & H W=1 \\
b=00001000 & H W=1 \\
b & H W=2
\end{array}
$$

Integer syndrome from Hamming distances or Hamming weights

$$
\begin{aligned}
s_{j} & =\sum_{i=1}^{\frac{n}{8}-1} \mathrm{HD}\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) \\
& =\sum_{i=1}^{\frac{n}{8}-1}\left|\mathrm{HW}\left(\mathbf{b}_{j, i}\right)-H W\left(\mathbf{b}_{j, i-1}\right)\right| \text { if } \mathrm{HD}\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) \leq 1
\end{aligned}
$$

Side-channel analysis to obtain the integer syndrome

Integer syndrome from Hamming distances or Hamming weights

$$
\begin{aligned}
& s_{j}=\sum_{i=1}^{\frac{n}{8}-1} \mathrm{HD}\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) \\
& =\sum_{i=1}^{\frac{n}{8}-1}\left|H W\left(\mathbf{b}_{j, i}\right)-H W\left(\mathbf{b}_{j, i-1}\right)\right| \text { if } H D\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) \leq 1 \\
& H D=2\left(\begin{array}{ll}
b=00001000 & H W=1 \\
b=00000100 & H W=1
\end{array}\right. \\
& \text { Happens if: } \\
& \mathrm{HW}(\operatorname{mat}[r][c] \text { \& e_vec[c]) }>1 \\
& \text { Unlikely, since HW }(\mathbf{e})=t \text { is low. }
\end{aligned}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}=\mathbf{H}_{p u b} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}=\mathbf{H}_{\text {pub }} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}_{j}=\mathbf{H}_{p u b_{[j,]}} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}_{j}=\mathbf{H}_{p u b_{[j,]}} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathrm{b}^{\wedge}=\mathbf{H}_{\text {pub }_{[j, j]}} \mathbf{e}_{\boldsymbol{i}}
$$

Trace(s) reshaping process

Training phase

(7) Linear Discriminant Analysis (LDA) for dimensionality reduction,
() From a single trace, we get $(n-k) \times \frac{n}{8}$ training samples $n=8192 \rightarrow$ more than 1.7×10^{6}
() Fed to a single Random Forest classifier (sklearn.ensemble.RandomForestClassifier)

Random Forest classifier

Random Forest classifier training:
(7) Hamming weight:
() $>99.5 \%$ test accuracy,
(7) Hamming distance:
(7) $\approx 80 \%$ test accuracy.

Random Forest classifier

Random Forest classifier training:
(7) Hamming weight:
() >99.5 \% test accuracy,
(7) Hamming distance:
() $\approx 80 \%$ test accuracy.

Outcome

(7) We can recover the Hamming weight very accurately,
() but not the Hamming distance...
() We can compute a slightly innacurate integer syndrome.

Exploiting the integer syndrome

Exploiting the integer syndrome

Option 1: Consider $\mathbf{H}_{\text {pub }} \mathbf{e}=\mathbf{s}$ as an optimization problem and solve it.

\mathbb{N} syndrome decoding problem (N-SDP)

Input: a matrix $H_{\text {pub }} \in \mathcal{M}_{n-k, n}(\mathbb{N})$ with $h_{i, j} \in\{0,1\}$ for all i, j a vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a vector \mathbf{e} in \mathbb{N}^{n} with $x_{i} \in\{0,1\}$ for all i and with a Hamming weight $H W(x) \leq t$ such that: $H_{\text {pub }} \mathbf{e}=s$

ILP problem

Let $\mathrm{b} \in \mathbb{N}^{n}, \mathrm{c} \in \mathbb{N}^{m}$ and $\mathrm{A} \in \mathcal{M}_{m, n}(\mathbb{N})$
We have the following optimization problem:

$$
\min \left\{b^{\top} \mathbf{x} \mid A \mathbf{x}=c, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\right\}
$$

Exploiting the integer syndrome

Option 1: Consider $\mathbf{H}_{\text {pub }} \mathbf{e}=\mathbf{s}$ as an optimization problem and solve it.

\mathbb{N} syndrome decoding problem (N-SDP)

Input: a matrix $H_{\text {pub }} \in \mathcal{M}_{n-k, n}(\mathbb{N})$ with $h_{i, j} \in\{0,1\}$ for all i, j
a vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a vector \mathbf{e} in \mathbb{N}^{n} with $x_{i} \in\{0,1\}$ for all i and with a Hamming weight $H W(x) \leq t$ such that: $H_{\text {pub }} \mathbf{e}=s$

ILP problem

Let $\mathrm{b} \in \mathbb{N}^{n}, \mathrm{c} \in \mathbb{N}^{m}$ and $\mathrm{A} \in \mathcal{M}_{m, n}(\mathbb{N})$
We have the following optimization problem: Solver used: Scipy.optimize.linprog.

$$
\min \left\{b^{\top} \mathbf{x} \mid A \mathbf{x}=c, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\right\}
$$

Can be solved by integer linear programming.

Cannot deal with errors in the recovered syndrome.

Experimental results

For Classic McEliece : $3488<n<8192$

Required fraction of faulty syndrome entries

Only a fraction of the faulty syndrome entries is enough to solve the problem.

Classic McEliece parameters

For Classic McEliece, less than 40 \% faulty syndrome entries is enough.

Experimental results

Empirically, when considering the optimal fraction, time complexity drops from $\mathcal{O}\left(n^{3}\right)$ to $\mathcal{O}\left(n^{2}\right)$.

Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome.

[^7]
Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome. Example: $\mathrm{HW}(\mathrm{e})=t=2$

$$
\mathbf{H}_{\text {pub }} \mathbf{e}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \cdot \mathbf{e}=\binom{1}{2}
$$

$\boldsymbol{p}=\binom{1}{2}$

[^8]
Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [15]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome.
Example: $\mathrm{HW}(\mathrm{e})=t=2$

$$
\mathbf{H}_{\text {pub }} \mathbf{e}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \cdot \mathbf{e}=\binom{1}{2}
$$

Score function

The dot product can be used to compute a "score" for every column:

$$
\psi(i)=\mathbf{H}_{\text {pub }[, i]} \cdot \mathbf{s}+\overline{\mathbf{H}}_{\text {pub }[, i]} \cdot \overline{\mathbf{s}} \quad \text { with } \overline{\mathbf{H}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \overline{\mathbf{s}}=\binom{1}{0}
$$

() $\psi(0)=1 \times 0+2 \times 1+1 \times 1+0 \times 0=3$
() $\psi(1)=1$
() $\psi(2)=3$
[15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074.

Score function : advantages

The score of the columns of $\mathbf{H}_{\text {pub }}$ provides us with a ranking.
This defines a permutation over e too, the most likely to bring t ones in the first positions.

Scores: [3, 1, 3]
Permutation : $[0,2,1]$

Bringing t ones in the first $(n-k)$ positions is sufficient.
Information-set decoding methods can then be used to recover the error vector.

Computational complexity

(7) Computing the dot product of two vectors is very fast,
(7) Overall cost for all columns of $\mathrm{H}_{\text {pub }}: \mathcal{O}((n-k) \times n)=\mathcal{O}\left(n^{2}\right)$
(7) $n=8192: \approx 0.2 \mathrm{~s}$

Conclusion

Conclusion

The results of the NIST PQC standardisation process are (almost) known. With implementations comes the threat of physical attacks. This threat must be considered and properly evaluated.

Considered approach: use known cryptanalysis tools "augmented" with additional information.
(1) Additional information realistically obtained by physical attacks:
(7) Fault injection attacks,
() Side-channel attacks.
(7) Integer syndrome decoding problem,
(1) Challenge: recover the integer syndrome as accurately as possible.
(7) Information-set decoding methods starting with a plausible permutation.

Future works

Future works:
(7) Improve the recovery of the integer syndrome,
(7) Improve the efficiency of the message-recovery step,
(2) Try to apply similar ideas to attack the long-term secret key,
(7) Apply the idea to other problems (and NIST PQC candidates).

Future works

Future works:
(7) Improve the recovery of the integer syndrome,
(7) Improve the efficiency of the message-recovery step,
(5) Try to apply similar ideas to attack the long-term secret key,
(7) Apply the idea to other problems (and NIST PQC candidates).

—Questions ? -

[^0]: [2] H. Niederreiter. "Knapsack-Type Cryptosystems and Algebraic Coding Theory". In: Problems of Control and Information Theory (1986).

[^1]: [4] S. Heyse. "Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers". In: International Workshop on Post-Quantum Cryptography. 2010.
 [5] J. Roth et al. "Classic McEliece Implementation with Low Memory Footprint". In: CARDIS. 2020.
 [6] M. Chen et al. "Classic McEliece on the ARM Cortex-M4". In: IACR Transactions on Cryptographic Hardware and Embedded Systems (2021).

[^2]: [7] C. O’Flynn et al. "ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research". In: COSADE. 2014

[^3]: [8] B. Colombier et al. "Multi-spot Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks". In: CARDIS. 2021.

[^4]: [9] P.-L. Cayrel et al. "Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem". In: EUROCRYPT. 2021.

[^5]: [11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
 [12]
 https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
 [13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403

[^6]: [14] C. O’Flynn et al. "ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research". In: COSADE. 2014.

[^7]: [15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074.

[^8]: [15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006. 09074.

