Physical Security of Code-based Cryptosystems based on the Syndrome Decoding Problem IAA/IMATH Seminar

Brice Colombier, Pierre-Louis Cayrel, Vlad-Florin Drăgoi, Vincent Grosso

November 16th 2023

Context

2016: NIST called for proposals for **post-guantum cryptography** algorithms

- Digital signature
- Key encapsulation mechanisms

Four rounds:

- 2017 Round 1
- 2019 Round 2
- 2020 Round 3: CRYSTALS-Kyber (lattices)
- 2022 Round 4: 3 candidates left
 - BIKE
 - HOC
 - ClassicMcEliece [1]

Research challenges

- More hardware implementations"
 - "Side-channel attacks / resistant implem."

Dustin Moody (NIST), PKC 2022

^[1] M. R. Albrecht et al. Classic McEliece: conservative code-based cryptography: cryptosystem specification. Tech. rep. National Institute of Standards and Technology, 2022

Classic McEliece

Classic McEliece is a Key Encapsulation Mechanism, based on the Niederreiter cryptosystem [2].

- \triangleright Encap(H_{pub}) -> (s, $k_{session}$)
- \triangleright Decap(s, k_{priv}) -> (k_{session})

The Encapsulation procedure establishes a shared secret.

```
\begin{array}{l} \displaystyle \fbox{l} Encap(H_{pub}) \rightarrow (\textbf{s}, k_{session})\\ & \text{Generate a random vector } \textbf{e} \in \mathbb{F}_2^n \text{ of Hamming weight } t\\ & \text{Compute } \textbf{s} = \textbf{H}_{pub}\textbf{e}\\ & \text{Compute the hash: } k_{session} = H(1, \textbf{e}, \textbf{s}) \end{array}
```

^[2] H. Niederreiter. "Knapsack-Type Cryptosystems and Algebraic Coding Theory". In: **Problems of Control and Information Theory** (1986).

The security of the Niederreiter cryptosystem relies on the syndrome decoding problem.

Syndrome decoding problem

```
Input: a binary matrix \mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}
a binary vector \mathbf{s} \in \mathbb{F}_2^{n-k}
a scalar t \in \mathbb{N}^+
```

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

Known to be an **NP-hard** problem [3].

^[3] E. R. Berlekamp et al. "On the inherent intractability of certain coding problems (Corresp.)". In: **IEEE Transactions on Information Theory** (1978).

Classic McEliece parameters

The public key **H**_{pub} is **very large**!

Hardware implementations

Implementations on embedded systems are now feasible : [4] [5] [6] Reference hardware target : $ARM^{\textcircled{R}}$ CortexR-M4

Several strategies to store the (very large) keys :

- Streaming,
- Use a structured code,
- Use a very large microcontroller.

New threats

That makes them vulnerable to physical attacks (fault injection & side-channel analysis)

^[4] S. Heyse. "Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers". In: International Workshop on Post-Quantum Cryptography. 2010.

^[5] J. Roth et al. "Classic McEliece Implementation with Low Memory Footprint". In: CARDIS. 2020.

^[6] M. Chen et al. "Classic McEliece on the ARM Cortex-M4". In: IACR Transactions on Cryptographic Hardware and Embedded Systems (2021).

"Modified" syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{F}_2^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{F}_2^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N} -SDP)

Input: a binary matrix $\mathbf{H} \in \{0, 1\}^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{N}^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \{0,1\}^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{F}_2^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N} -SDP)

Input: a binary matrix $H \in \{0,1\}^{(n-k) \times n}$ a binary vector $s \in \mathbb{N}^{n-k}$ \leftarrow How do we get this integer syndrome? a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \{0,1\}^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that : H $\mathbf{x} = \mathbf{s}$

Physical attack #1: Fault injection

Physical attack : an attacker has a **physical access** to the device.

- OhipWhisperer platform [7],
- Custom board with an opening,
- Decapsulated chip
 - access to the backside of the die

^[7] C. O'Flynn et al. "ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research". In: COSADE. 2014

Laser fault injection setup

4-spot laser fault injection setup [8]

^[8] B. Colombier et al. "Multi-spot Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks". In: CARDIS. 2021.

In [9] we target the syndrome computation: $\mathbf{s} = \mathbf{H}_{pub}\mathbf{e}$

Matrix-vector multiplication performed over \mathbb{F}_2

Algorithm Schoolbook matrix-vector multiplication over \mathbb{F}_2

- 1: function MAT_VEC_MULT_SCHOOLBOOK(matrix, vector)
- 2: **for** row \leftarrow 0 to n k 1 **do**
- 3: syndrome[row] = 0
- 4: **for** row $\leftarrow 0$ to n k 1 **do**
- 5: **for** $col \leftarrow 0$ to n 1 **do**
 - $sr col \leftarrow 0$ to n 1 do svndrome[row] ^= matrix[row][col] & vector[col] \triangleright Multiplication and addition
- 7: **return** syndrome

6:

Initialisation

^[9] P.-L. Cayrel et al. "Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem". In: EUROCRYPT. 2021.

Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\texttt{EORS: Rd} \texttt{ = } \texttt{Rm} \oplus \texttt{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 = R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : mono-bit, bit-set fault model [10].

^[10] B. Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019.

Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\texttt{EORS: Rd} \texttt{ = } \texttt{Rm} \oplus \texttt{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 = R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : **mono-bit**, **bit-set fault model** [10].

ADCS:
$$R1 = RO + R1$$
 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1

^[10] B. Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019.

Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\texttt{EORS: Rd} \texttt{ = } \texttt{Rm} \oplus \texttt{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 = R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in Flash memory : **mono-bit**, **bit-set fault model** [10].

ADCS:
$$R1 = R0 + R1$$
 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1

Outcome: switching from \mathbb{F}_2 to \mathbb{N}

The exclusive-OR (addition over \mathbb{F}_2) is turned into an **addition with carry** (addition over \mathbb{N})

^[10] B. Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019.

Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:

- t_{initial} : initial delay before the multiplication starts
- t_{inner} : delay in the **inner** for loop
- t_{outer} : delay in the **outer** for loop

Outcome

After n.(n-k) faults, we get a **faulty syndrome s** $\in \mathbb{N}^{n-k}$

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

^[11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
[12]

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf [13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403

The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

Answer: No

It happens for other instructions sets too:

PIC XORWF \rightarrow ADDWF with one bit-set [11] RISC-V C.XOR \rightarrow C.ADDW with one bit-set [12] ARMv7 EORS.W \rightarrow QADD with six (1-4-1) bit-sets [13]

Other instruction corruptions could be equivalent to addition over $\mathbb N$ (shifts, rotations, etc)

^[11] https://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
[12]

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf [13] ARMv7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403

Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is **highly inefficient**! Each machine word stores only one bit: a lot of memory is wasted.

Algorithm Packed matrix-vector multiplication

13:

1: **function** Mat_vec_mult_packed(mat, vector) for row $\leftarrow 0$ to ((n-k)/8 - 1) do 2: syn[row] = 0 \triangleright Initialisation 3: for row \leftarrow 0 to (n - k - 1) do 4: b = 05: for col \leftarrow 0 to (n/8 - 1) do 6: b ^= mat[row][col] & vector[col] 7: 8: $b^{=} b >> 4$ $b^{=} b >> 2$ ▷ Exclusive-OR folding 9: $h^{=} h >> 1$ 10. b &= 1 ▷ LSB extraction 11: $syn[row/8] = b \ll (row\%8) \triangleright Packing$ 12: return syn

Objection: the schoolbook matrix-vector multiplication algorithm is **highly inefficient**! Each **machine word** stores only **one bit**: a **lot** of memory is wasted.

Algorithm Packed matrix-vector multiplication

1: function Mat_vec_mult_packed(mat, vector)

2: for row
$$\leftarrow$$
 0 to $((n-k)/8 - 1)$ do

3: syn[row] = 0 \triangleright Initialisation

4: for row
$$\leftarrow$$
 0 to $(n - k - 1)$ do

6: for
$$col \leftarrow 0$$
 to $(n/8 - 1)$ do

- 8: *b* ^= *b* >> 4
- 9: b = b > 2 \triangleright Exclusive-OR folding
- 10: *b* ^= *b* >> 1
- 11: b &= 1 \triangleright LSB extraction

12:
$$syn[row/8] \models b \ll (row\%8) \triangleright Packing$$

13: **return** syn

Attack not directly applicable here

We suggested the following strategy (admittedly not feasible):

- Prematurely exit the inner for loop to keep only one byte
- Solution Reverse the exclusive-OR folding permutation over \mathbb{F}_2^8
- Mask with 0xFF instead of 1
- For bit packing:
 - Turn shift into CMP
 - Prematurely exit the outer for loop to keep only one byte

Physical attack #2: Side-channel analysis

Side-channel analysis setup

ChipWhisperer platform (again) [14]

^[14] C. O'Flynn et al. "ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research". In: COSADE. 2014.

Algorithm Packed matrix-vector multiplication

```
1: ...
2: for col ← 0 to (n/8 - 1) do
3: b ^= mat[row][col] & vector[col]
4: ...
```

Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication

```
    ...
    for col ← 0 to (n/8 - 1) do
    b ^= mat[row] [col] & vector[col]
    4: ...
```

$$HD = 0 \begin{pmatrix} b = 00000000 & HW=0 \\ HD = 1 & b = 00000000 & HW=0 \\ HD = 0 & b = 00001000 & HW=1 \\ HD = 1 & b = 00001000 & HW=1 \\ HD = 1 & b = 00001010 & HW=2 \end{pmatrix}$$

Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication 1: ... 2: for col \leftarrow 0 to (n/8 - 1) do 3: b ^= mat[row][col] & vector[col] 4: ...

$$HD = 0$$

$$HD = 1$$

$$HD = 1$$

$$HD = 0$$

$$HD = 1$$

$$HD = 0$$

$$HD = 0$$

$$HD = 0$$

$$HD = 1$$

$$HD = 0$$

$$HD = 1$$

Integer syndrome from Hamming distances or Hamming weights

$$egin{aligned} s_{j} &= \sum_{i=1}^{rac{n}{8}-1} \ \mathsf{HD}(\mathbf{b}_{j,i},\mathbf{b}_{j,i-1}) \ &= \sum_{i=1}^{rac{n}{8}-1} \ ig| \ \mathsf{HW}(\mathbf{b}_{j,i}) - \mathsf{HW}(\mathbf{b}_{j,i-1}) ig| \ ext{if } \mathsf{HD}(\mathbf{b}_{j,i},\mathbf{b}_{j,i-1}) \leq 1 \end{aligned}$$

Side-channel analysis to obtain the integer syndrome

Alg	ori	rithm Packed matrix-vector multiplication											
1: 2: 3:	 fc	or b	col ^=	\leftarrow C mat	to (1 [row	n/8 7] [c	– 1) 01]	do &	ve	ect	or	co	1]

$$HD = 0 \begin{pmatrix} b = 00000000 & HW=0 \\ b = 00000000 & HW=0 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001000 & HW=1 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001010 & HW=2 \end{pmatrix}$$

Integer syndrome from Hamming distances or Hamming weights

$$s_{j} = \sum_{i=1}^{\frac{n}{8}-1} HD(\mathbf{b}_{j,i}, \mathbf{b}_{j,i-1}) \qquad HD = 2 \begin{pmatrix} b = 00001000 & HW = 0 \\ b = 00000100 & HW = 0 \\ b = 00000100 & HW = 0 \\ B = 00000100 & HW = 0 \\ Happens if: HW(mat[r][c] \& e_vec[c]) > 1 \\ HW(mat[r][c] \& e_vec[c]) > 1 \\ Unlikely, since HW(\mathbf{e}) = t is low. \end{cases}$$

HW=1

HW=1

b
$$\hat{} = \mathbf{H}_{pub_{[j,i]}} \mathbf{e}_i$$

Trace(s) reshaping process

Training phase

- Linear Discriminant Analysis (LDA) for dimensionality reduction,
- Solution From a single trace, we get $(n k) \times \frac{n}{8}$ training samples $n = 8192 \Rightarrow$ more than 1.7×10^6
- Fed to a single Random Forest classifier (sklearn.ensemble.RandomForestClassifier)

Random Forest classifier training:

• Hamming weight:

 \diamond > 99.5 % test accuracy,

> Hamming distance:

 ${\color{black} \boldsymbol{\delta}} \approx 80\,\%$ test accuracy.

Random Forest classifier

Random Forest classifier training:

- Hamming weight:
 > 99.5 % test accuracy,
- Hamming distance:
 - m igodold R pprox 80 % test accuracy.

Outcome

- S We can recover the **Hamming weight** very accurately,
- but not the Hamming distance...
- S We can compute a *slightly innacurate* integer syndrome.

Option 1: Consider $H_{pub}e = s$ as an **optimization problem** and solve it.

 \mathbb{N} syndrome decoding problem (\mathbb{N} -SDP)

Input: a matrix $H_{pub} \in \mathcal{M}_{n-k,n}(\mathbb{N})$ with $h_{i,j} \in \{0,1\}$ for all i, ja vector $\mathbf{s} \in \mathbb{N}^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a vector \mathbf{e} in \mathbb{N}^n with $x_i \in \{0, 1\}$ for all iand with a Hamming weight $HW(\mathbf{x}) \leq t$ such that : $H_{pub}\mathbf{e} = \mathbf{s}$

ILP problem

Let $\mathbf{b} \in \mathbb{N}^n$, $\mathbf{c} \in \mathbb{N}^m$ and $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{N})$ We have the following optimization problem:

 $\min\{\mathbf{b}^{\mathsf{T}}\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \ge \mathbf{0}\}\$

Option 1: Consider $H_{pub}e = s$ as an **optimization problem** and solve it.

 \mathbb{N} syndrome decoding problem (\mathbb{N} -SDP)

Input: a matrix $H_{pub} \in \mathcal{M}_{n-k,n}(\mathbb{N})$ with $h_{i,j} \in \{0,1\}$ for all i, ja vector $\mathbf{s} \in \mathbb{N}^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a vector \mathbf{e} in \mathbb{N}^n with $x_i \in \{0, 1\}$ for all iand with a Hamming weight $HW(\mathbf{x}) \leq t$ such that : $H_{pub}\mathbf{e} = \mathbf{s}$

ILP problem

Let $\mathbf{b} \in \mathbb{N}^n$, $\mathbf{c} \in \mathbb{N}^m$ and $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{N})$ We have the following optimization problem:

 $\min\{\mathbf{b}^{\mathsf{T}}\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \ge \mathbf{0}\}$

Can be solved by integer linear programming.

Solver used: Scipy.optimize.linprog.

Cannot deal with errors in the recovered syndrome.

Experimental results

For Classic McEliece : 3488 < n < 8192

Required fraction of faulty syndrome entries

For Classic McEliece, less than 40% faulty syndrome entries is enough.

Experimental results

Empirically, when considering the **optimal fraction**, time complexity drops from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.

Option 2 (*Quantitative Group Testing* [15]): which columns of H_{pub} "contributed" to the syndrome.

^[15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074.

Option 2 (*Quantitative Group Testing* [15]): which columns of H_{pub} "contributed" to the syndrome.

(0)

Example: HW(e) = t = 2

$$\mathbf{H}_{pub}\mathbf{e} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \mathbf{e} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathbf{s} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

(1)

1

^[15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074.

Option 2 (*Quantitative Group Testing* [15]): which columns of H_{pub} "contributed" to the syndrome.

Example: HW(e) = t = 2

$$\mathbf{H}_{pub}\mathbf{e} = egin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix} . \mathbf{e} = egin{pmatrix} 1 \ 2 \end{pmatrix}$$

Score function

The dot product can be used to compute a "score" for every column:

$$\psi(i) = \mathbf{H}_{pub[,i]} \cdot \mathbf{s} + \bar{\mathbf{H}}_{pub[,i]} \cdot \bar{\mathbf{s}} \qquad \text{with } \bar{\mathbf{H}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \text{and } \bar{\mathbf{s}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\psi(0) = 1 \times 0 + 2 \times 1 + 1 \times 1 + 0 \times 0 = 3 \qquad \textcircled{0} \quad \psi(1) = 1 \qquad \textcircled{0} \quad \psi(2) = 3$$

^[15] U. Feige et al. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074.

Score function : advantages

The score of the columns of H_{pub} provides us with a ranking.

This defines a **permutation** over **e** too, the **most likely** to bring *t* ones in the first positions.

Bringing t ones in the first (n - k) positions is sufficient.

Information-set decoding methods can then be used to recover the error vector.

Computational complexity

Computing the dot product of two vectors is **very fast**,

Solution Overall cost for all columns of \mathbf{H}_{pub} : $\mathcal{O}((n-k) \times n) = \mathcal{O}(n^2)$

> $n = 8192 : \approx 0.2 s$

Conclusion

Conclusion

The results of the NIST PQC standardisation process are (almost) known. With implementations comes the **threat of physical attacks**. This threat must be considered and properly evaluated.

Considered approach: use known cryptanalysis tools "augmented" with additional information.

- Additional information realistically obtained by physical attacks:
 - Fault injection attacks,
 - Side-channel attacks.
- Integer syndrome decoding problem,
 - S Challenge: recover the **integer syndrome** as **accurately** as possible.

Information-set decoding methods starting with a plausible permutation.

Future works:

- S Improve the **recovery** of the integer syndrome,
- Improve the efficiency of the message-recovery step,
- > Try to apply similar ideas to attack the long-term secret key,
- Apply the idea to **other problems** (and NIST PQC candidates).

Future works:

- Improve the **recovery** of the integer syndrome,
- S Improve the efficiency of the message-recovery step,
- > Try to apply similar ideas to attack the long-term secret key,
- Apply the idea to **other problems** (and NIST PQC candidates).

- Questions ? -