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Context

2016 NIST called for proposals for post-quantum cryptography algorithms
2017 Round 1: 69 candidates,
2019 Round 2: 26 candidates,
2020 Round 3: 7 finalists (+8 alternate).
2022 Round 4

³ Selected: CRYSTALS-KYBER
³ Candidates: BIKE, Classic McEliece [1], HQC and��XXSIKE.

Research challenges

³ “More hardware implementations”
³ “Side-channel attacks”
³ “Side-channel resistant implementations”

Dustin Moody (NIST), PKC 2022
[1] M. R. Albrecht, D. J. Bernstein, T. Chou, et al. Classic McEliece: conservative code-based cryptography: cryptosystem

specification. Tech. rep. National Institute of Standards and Technology, 2022.
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Classic McEliece



Classic McEliece

Classic McEliece is a Key Encapsulation Mechanism, based on the Niederreiter cryptosystem [2].
³ KeyGen() -> (Hpub, kpriv)
³ Encap(Hpub) -> (s, ksession)
³ Decap(s, kpriv) -> (ksession)

The Encapsulation procedure establishes a shared secret.
³ Encap(Hpub) -> (s, ksession)

Generate a random vector e ∈ Fn
2 of Hamming weight t

Compute s = Hpube
Compute the hash: ksession = H(1, e, s)

[2] H. Niederreiter. “Knapsack-Type Cryptosystems and Algebraic Coding Theory”. In: Problems of Control and Information Theory
15.2 (1986), pp. 159–166.
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Security

The security of the Niederreiter cryptosystem relies on the syndrome decoding problem.

Syndrome decoding problem

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

Known to be a hard problem [3].

[3] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. “On the inherent intractability of certain coding problems (Corresp.)”. In:
IEEE Transactions on Information Theory 24.3 (1978), pp. 384–386.
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Classic McEliece parameters

Hpub

e

= s

n

n− k n− k

n k (n− k) t

3488 2720 768 64

4608 3360 1248 96

6688 5024 1664 128

6960 5413 1547 119

8192 6528 1664 128

The public key Hpub is huge! Up to 1.7 MB.
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Hardware implementations

Implementations on embedded systems are now feasible : [4] [5] [6]
Reference hardware target : Arm® Cortex®-M4

Several strategies to store the (very large) keys :
³ Streaming the public key from somewhere else,
³ Use a structured code,
³ Use a very large microcontroller.

New threats
That makes them vulnerable to physical attacks (fault injection & side-channel analysis)

[4] S. Heyse. “Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers”. In: International Workshop on
Post-Quantum Cryptography. Vol. 6061. Darmstadt, Germany: Springer, May 2010, pp. 165–181.

[5] J. Roth, E. G. Karatsiolis, and J. Krämer. “Classic McEliece Implementation with Low Memory Footprint”. In: CARDIS. vol. 12609.
Virtual Event: Springer, Nov. 2020, pp. 34–49.

[6] M. Chen and T. Chou. “Classic McEliece on the ARM Cortex-M4”. In: IACR TCHES 2021.3 (2021), pp. 125–148.
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A “modified” syndrome decoding problem



Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x)≤ t such that : Hx = s

N syndrome decoding problem (N-SDP)

Input: a binary matrix H ∈ {0, 1}(n−k)×n

a����binary vector s ∈ Nn−k

a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x)≤ t such that : Hx = s
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N syndrome decoding problem (N-SDP)

Input: a binary matrix H ∈ {0, 1}(n−k)×n

a����binary vector s ∈ Nn−k # How do we get this integer syndrome?
a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x)≤ t such that : Hx = s
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Physical attack #1: Fault injection



Syndrome computation

We target the syndrome computation: s = Hpube

Matrix-vector multiplication performed over F2

Algorithm Schoolbook matrix-vector multiplication over F2

1: function Mat vec mult schoolbook(matrix, vector)
2: for row← 0 to n− k− 1 do
3: syndrome[row] = 0 ▷ Initialisation
4: for row← 0 to n− k− 1 do
5: for col← 0 to n− 1 do
6: syndrome[row] ^= matrix[row][col] & vector[col] ▷ Multiplication and addition
7: return syndrome
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Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EORS: Rd = Rm⊕ Rn 0 1 0 0 0 0 0 0 0 1 Rm Rdn

EORS: R1 = R0⊕ R1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Laser fault injection in flash memory : mono-bit, bit-set fault model [7].

ADCS: R1 = R0+ R1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

Outcome: switching from F2 to N

The exclusive-OR (addition over F2) is turned into an addition with carry (addition over N)

[7] A. Menu, J.-M. Dutertre, J.-B. Rigaud, et al. “Single-bit Laser Fault Model in NOR Flash Memories: Analysis and Exploitation”. In:
FDTC. Milan, Italy: IEEE, Sept. 2020, pp. 41–48.
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Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:
tinitial : initial delay before the multiplication starts
tinner : delay in the inner for loop
touter : delay in the outer for loop

execution
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Outcome
After n.(n− k) faults, we get a faulty syndrome s ∈ Nn−k [8]

[8] P.-L. Cayrel, B. Colombier, V. Dragoi, et al. “Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem”.
In: EUROCRYPT. vol. 12697. Zagreb, Croatia: Springer, Oct. 2021, pp. 438–467
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Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient!
Each machine word stores only one bit: a lot of memory is wasted.

Algorithm Packed matrix-vector multiplication
1: function Mat vec mult packed(matrix, vector)
2: for row← 0 to ((n− k)/8− 1) do
3: syndrome[row] = 0 ▷ Initialisation
4: for row← 0 to (n− k− 1) do
5: b = 0
6: for col← 0 to (n/8− 1) do
7: b ^= matrix[row][col] & vector[col]

8: b ^= b >> 4
9: b ^= b >> 2 ▷ Exclusive-OR folding

10: b ^= b >> 1
11: b &= 1 ▷ LSB extraction
12: syndrome[row/8] |= b << (row % 8) ▷ Packing
13: return syn

Hpub

e

= s

n
8

n− k n−k
8
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Physical attack #2: Side-channel analysis



Side-channel analysis to obtain the integer syndrome

Algorithm Packed matrix-vector multiplication
1: ...
2: for col← 0 to (n/8− 1) do
3: b ^= matrix[row][col] & vector[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8−1∑
i=1

HD(bj,i, bj,i−1)

=

n
8−1∑
i=1

∣∣ HW(bj,i)− HW(bj,i−1)
∣∣ if HD(bj,i, bj,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1
Happens if:
HW(mat[r][c] & vec[c]) > 1
Unlikely, since HW(e) = t is low.
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Side-channel analysis for Hamming weight recovery

s = Hpube Hpub

e

= s
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Side-channel analysis for Hamming weight recovery

b ^= Hpub[j,i]ei Hpub

e

= s
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Trace(s) reshaping process

traw

nsamples

Trow-wise

≃ nsamples
n−k

(n
−
k)

Telement

≃ nsamples
n
8 .(n−k)

(n
−
k)
.n 8

TLDA

nclasses − 1

(n
−
k)
.n 8

Training phase

³ Linear Discriminant Analysis (LDA) for dimensionality reduction,
³ From a single trace, we get (n− k)× n

8 training samples n = 8192 $ more than 1.7× 106

³ Fed to a single Random Forest classifier (sklearn.ensemble.RandomForestClassifier)
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Random Forest classifier

Random Forest classifier training:
³ Hamming weight:

³ > 99.5% test accuracy,
³ Hamming distance:

³ ≈ 80% test accuracy.
0 5 10 15 20 25 30

Samples

F
st

a
ti

st
ic

54xHW

HD

Outcome

³ We can recover the Hamming weight very accurately,
³ but not the Hamming distance...
³ We can compute a slightly innacurate integer syndrome. [9]

[9] B. Colombier, V. Dragoi, P. Cayrel, et al. “Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding
Problem”. In: IEEE TIFS 17 (2022), pp. 3407–3420
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Exploiting the integer syndrome



Exploiting the integer syndrome

Option 1: Consider Hpube = s as an optimization problem and solve it.

N syndrome decoding problem (N-SDP)

Input: a matrix Hpub ∈Mn−k,n(N) with hi,j ∈ {0, 1} for all i, j
a vector s ∈ Nn−k

a scalar t ∈ N+

Output: a vector e in Nn with xi ∈ {0, 1} for all i
and with a Hamming weight HW(x)≤ t such that : Hpube = s

ILP problem

Let b ∈ Nn, c ∈ Nm and A ∈Mm,n(N)
We have the following optimization problem:

min{bTx | Ax = c, x ∈ Nn, x ≥ 0}

Can be solved by integer linear programming.
With Scipy.optimize.linprog:
³ n = 8192 : ≈ 5 min...

Does not handle errors in s well...
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Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [10]): which columns of Hpub “contributed” to the syndrome.

Example: t = 2 = HW(e)

Hpube =

(
0 1 1
1 0 1

)
.e =

(
1
2

)
s =

(
1
2

)
(

0
1

)
(

1
0

)
(

1
1

)

Score function
The dot product can be used to compute a “score” for every column:

ψ(i) = Hpub[,i] · s+ H̄pub[,i] · s̄ with H̄ =

(
1 0 0
0 1 0

)
and s̄ =

(
1
0

)
³ ψ(0) = 1× 0 + 2× 1 + 1× 1 + 0× 0 = 3 ³ ψ(1) = 1 ³ ψ(2) = 3

[10] U. Feige and A. Lellouche. “Quantitative Group Testing and the rank of random matrices”. In: CoRR abs/2006.09074 (2020).
arXiv: 2006.09074.
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Score function : advantages

The score of the columns of Hpub identifies which columns were involved in the computation.

From that we can derive the support of the secret vector e.

Computational complexity

³ Computing the dot product of two vectors is very fast,
³ Overall cost for all columns of Hpub : O((n− k)× n) = O(n2)

³ n = 8192 : ≈ 0.2 s
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Conclusion

Evaluation of post-quantum cryptography algorithms is a long process.

Work is needed in the following areas:
³ Efficient implementations,
³ Physical security of implementations,
³ Protected implementations.

Bring together mathematicians, computer scientists, electrical engineers: SESAM team at LabHC.
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