Physical Security of Code-based Cryptosystems based on the Syndrome Decoding Problem

 Séminaire Creach Labs "Sécurité des composants" 2023Brice Colombier

joint work with: Pierre-Louis Cayrel, Vlad Drăgoi, Vincent Grosso

June $29^{\text {th }} 2023$

Context

2016 NIST called for proposals for post-quantum cryptography algorithms
2017 Round 1: 69 candidates,
2019 Round 2: 26 candidates,
2020 Round 3: 7 finalists (+8 alternate).
2022 Round 4
(7) Selected: CRYSTALS-KYBER
(1) Candidates: BIKE, Classic McEliece [1], HQC and SHEE

Research challenges

(7) "More hardware implementations"
() "Side-channel attacks"
() "Side-channel resistant implementations"

$$
\text { Dustin Moody (NIST), PKC } 2022
$$

[1] M. R. Albrecht, D. J. Bernstein, T. Chou, et al. Classic McEliece: conservative code-based cryptography: cryptosystem specification. Tech. rep. National Institute of Standards and Technology, 2022.

Classic McEliece

Classic McEliece

Classic McEliece is a Key Encapsulation Mechanism, based on the Niederreiter cryptosystem [2].
(7) KeyGen() -> ($\mathrm{H}_{\text {pub }}, \mathrm{K}_{\text {priv }}$)
() Encap $\left(\mathbf{H}_{\text {pub }}\right)$-> ($\left.\mathbf{s}, \mathrm{k}_{\text {session }}\right)$
(7) Decap $\left(\mathbf{s}, \mathrm{k}_{\text {priv }}\right) \rightarrow\left(\mathrm{k}_{\text {session }}\right)$

The Encapsulation procedure establishes a shared secret.
(7) Encap $\left(\mathbf{H}_{\text {pub }}\right)$) ${ }^{\left(s, k_{\text {session }}\right)}$

Generate a random vector $\mathbf{e} \in \mathbb{F}_{2}^{n}$ of Hamming weight t
Compute $\mathbf{s}=\mathbf{H}_{\text {pub }} \mathbf{e}$
Compute the hash: $\mathrm{k}_{\text {session }}=\mathrm{H}(1, \mathbf{e}, \mathbf{s})$

[^0]
Security

The security of the Niederreiter cryptosystem relies on the syndrome decoding problem.

Syndrome decoding problem

Input: a binary matrix $\mathrm{H} \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{Hx}=\mathbf{s}$

Known to be a hard problem [3].
[3] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. "On the inherent intractability of certain coding problems (Corresp.)". In: IEEE Transactions on Information Theory 24.3 (1978), pp. 384-386.

Classic McEliece parameters

n	k	$(n-k)$	t
3488	2720	768	64
4608	3360	1248	96
6688	5024	1664	128
6960	5413	1547	119
8192	6528	1664	128

The public key $\mathbf{H}_{\text {pub }}$ is huge! Up to 1.7 MB .

Hardware implementations

Implementations on embedded systems are now feasible : [4] [5] [6]
Reference hardware target : Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4
Several strategies to store the (very large) keys :
(7) Streaming the public key from somewhere else,
(7) Use a structured code,
() Use a very large microcontroller.

New threats

That makes them vulnerable to physical attacks (fault injection \& side-channel analysis)
[4] S. Heyse. "Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers". In: International Workshop on Post-Quantum Cryptography. Vol. 6061. Darmstadt, Germany: Springer, May 2010, pp. 165-181.
[5] J. Roth, E. G. Karatsiolis, and J. Krämer. "Classic McEliece Implementation with Low Memory Footprint". In: CARDIS. vol. 12609. Virtual Event: Springer, Nov. 2020, pp. 34-49.
[6] M. Chen and T. Chou. "Classic McEliece on the ARM Cortex-M4". In: IACR TCHES 2021.3 (2021), pp. 125-148.

A "modified" syndrome decoding problem

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathrm{s}$

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N}-SDP)

Input: a binary matrix $H \in\{0,1\}^{(n-k) \times n}$
a binary vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in\{0,1\}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathbf{s}$

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$
a binary vector $s \in \mathbb{F}_{2}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{Hx}=\mathbf{s}$

\mathbb{N} syndrome decoding problem (\mathbb{N}-SDP)

Input: a binary matrix $H \in\{0,1\}^{(n-k) \times n}$
a binary vector $s \in \mathbb{N}^{n-k} \leftarrow$ How do we get this integer syndrome?
a scalar $t \in \mathbb{N}^{+}$
Output: a binary vector $\mathbf{x} \in\{0,1\}^{n}$ with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{Hx}=\mathbf{s}$

Physical attack \#1: Fault injection

Syndrome computation

We target the syndrome computation: $\mathbf{s}=\mathbf{H}_{\text {pub }} \mathbf{e}$
Matrix-vector multiplication performed over \mathbb{F}_{2}

```
Algorithm Schoolbook matrix-vector multiplication over \(\mathbb{F}_{2}\)
    1: function Mat_Vec_MUlt_Schoolbook(matrix, vector)
        for row \(\leftarrow 0\) to \(n-k-1\) do
        syndrome[row] = 0 \(\quad \triangleright\) Initialisation
        for row \(\leftarrow 0\) to \(n-k-1\) do
            for \(\mathrm{col} \leftarrow 0\) to \(n-1\) do
            syndrome[row] ^= matrix[row] [col] \& vector[col] \(\triangleright\) Multiplication and addition
        return syndrome
```


Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1	Rm			Rdn		
EORS: R1 $=$ R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in flash memory : mono-bit, bit-set fault model [7].

[^1]
Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1	Rm			Rdn		
EORS: $\mathrm{R} 1=\mathrm{R} 0 \oplus \mathrm{R} 1$	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in flash memory : mono-bit, bit-set fault model [7].

ADCS: $\mathrm{R} 1=\mathrm{R} 0+\mathrm{R} 1$| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^2]
Laser fault injection attack on the schoolbook matrix-vector multiplication

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: $\mathrm{Rd}=\mathrm{Rm} \oplus \mathrm{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 = R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in flash memory : mono-bit, bit-set fault model [7].

ADCS: $\mathrm{R} 1=\mathrm{R} 0+\mathrm{R} 1$| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Outcome: switching from \mathbb{F}_{2} to \mathbb{N}

The exclusive-OR (addition over \mathbb{F}_{2}) is turned into an addition with carry (addition over \mathbb{N})

[^3] FDTC. Milan, Italy: IEEE, Sept. 2020, pp. 41-48.

Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:
$t_{\text {initial }}$: initial delay before the multiplication starts
$t_{\text {inner }}$: delay in the inner for loop
$t_{\text {outer }}$: delay in the outer for loop

Outcome

After $n .(n-k)$ faults, we get a faulty syndrome $\mathbf{s} \in \mathbb{N}^{n-k} \quad$ [8]
[8] P.-L. Cayrel, B. Colombier, V. Dragoi, et al. "Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem". In: EUROCRYPT. vol. 12697. Zagreb, Croatia: Springer, Oct. 2021, pp. 438-467

Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient! Each machine word stores only one bit: a lot of memory is wasted.

```
Algorithm Packed matrix-vector multiplication
    function Mat_vec_mult_packed(matrix, vector)
        for row \(\leftarrow 0\) to \(((n-k) / 8-1)\) do
            syndrome [row] \(=0 \quad \triangleright\) Initialisation
        for row \(\leftarrow 0\) to ( \(n-k-1\) ) do
            \(b=0\)
            for col \(\leftarrow 0\) to \((n / 8-1)\) do
            \(\mathrm{b}^{\wedge}=\) matrix[row] [col] \& vector[col]
            \(b^{\wedge}=b \gg 4\)
            \(b^{\wedge}=b \gg 2 \quad \triangleright\) Exclusive-OR folding
            \(b^{\wedge}=b \gg 1\)
            \(b\) \& \(=1\)
                    \(\triangleright\) LSB extraction
            syndrome[row/8] \(\mid=b \ll\) (row \% 8) \(\triangleright\) Packing
```


return syn

Physical attack \#2: Side-channel analysis

Side-channel analysis to obtain the integer syndrome

$$
\begin{aligned}
& b=00000000 \\
& b=00000000 \\
& b=00001000 \\
& b=00001000 \\
& b=00001010
\end{aligned}
$$

Algorithm Packed matrix-vector multiplication
1: ...
for col $\leftarrow 0$ to ($n / 8-1$) do
$b^{\wedge}=$ matrix[row] [col] \& vector [col]

Side-channel analysis to obtain the integer syndrome

$$
\left.\begin{array}{r}
\mathrm{HD}=0 \\
\mathrm{HD}=1 \\
\mathrm{HD}=0
\end{array}\right\} \begin{array}{ll}
\mathrm{b}=00000000 & \mathrm{HW}=0 \\
\mathrm{~b}=00000000 & \mathrm{HW}=0 \\
\mathrm{HD}=1
\end{array}\left(\begin{array}{ll}
\mathrm{b}=00001000 & \mathrm{HW}=1 \\
\mathrm{~b}=00001000 & \mathrm{HW}=1 \\
\mathrm{HW}=0001010 & \mathrm{HW}=2
\end{array}\right.
$$

Side-channel analysis to obtain the integer syndrome

```
Algorithm Packed matrix-vector multiplication
    1: ...
    2: for \(\mathrm{col} \leftarrow 0\) to \((n / 8-1)\) do
    3: b ^= matrix[row] [col] \& vector [col]
    4: ...
```

$$
\left.\begin{array}{l}
\mathrm{HD}=0 \\
\mathrm{HD}=1
\end{array}\right\} \begin{array}{ll}
\mathrm{b}=00000000 & \mathrm{HW}=0 \\
\mathrm{~b}=00000000 & \mathrm{HW}=0 \\
\mathrm{HD}=0
\end{array} \begin{cases}\mathrm{~b}=00001000 & \mathrm{HW}=1 \\
\mathrm{~b}=00001000 & \mathrm{HW}=1 \\
\mathrm{~b}=00001010 & \mathrm{HW}=2\end{cases}
$$

Integer syndrome from Hamming distances or Hamming weights

$$
\begin{array}{rlrl}
s_{j} & =\sum_{i=1}^{\frac{n}{8}-1} \mathrm{HD}\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) & H D=2\left(\begin{array}{l}
b=00001000 \\
b=00000100 \quad H W=1
\end{array}\right. \\
& =\sum_{i=1}^{\frac{n}{8}-1}\left|H W\left(\mathbf{b}_{j, i}\right)-H W\left(\mathbf{b}_{j, i-1}\right)\right| \text { if } \operatorname{HD}\left(\mathbf{b}_{j, i}, \mathbf{b}_{j, i-1}\right) \leq 1
\end{array} \quad \begin{aligned}
& \text { Happens if: } \\
& H W(\text { mat }[r][c] \& v e c[c])>1 \\
& \text { Unlikely, since } H W(\mathbf{e})=t \text { is low. }
\end{aligned}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}=\mathbf{H}_{\mathrm{pub}} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}=\mathbf{H}_{\mathrm{pub}} \mathbf{e}
$$

$$
\begin{array}{|c|}
\hline \mathbf{e} \\
\hline \mathbf{H}_{\text {pub }}
\end{array}=\begin{aligned}
& \mathbf{s} \\
& \hline
\end{aligned}
$$

(

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}_{j}=\mathbf{H}_{p u b_{[j,]}} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathbf{s}_{j}=\mathbf{H}_{p u b_{[j,]}} \mathbf{e}
$$

Side-channel analysis for Hamming weight recovery

$$
\mathrm{b}^{\wedge}=\mathbf{H}_{\text {pub }_{[j, j]}} \mathbf{e}_{\boldsymbol{i}}
$$

Trace(s) reshaping process

Training phase

(7) Linear Discriminant Analysis (LDA) for dimensionality reduction,
() From a single trace, we get $(n-k) \times \frac{n}{8}$ training samples $n=8192 \rightarrow$ more than 1.7×10^{6}
() Fed to a single Random Forest classifier (sklearn.ensemble.RandomForestClassifier)

Random Forest classifier

Random Forest classifier training:
(7) Hamming weight:
() >99.5 \% test accuracy,
(7) Hamming distance:
() $\approx 80 \%$ test accuracy.

Outcome

(7) We can recover the Hamming weight very accurately,
() but not the Hamming distance...
() We can compute a slightly innacurate integer syndrome. [9]
[9] B. Colombier, V. Dragoi, P. Cayrel, et al. "Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem". In: IEEE TIFS 17 (2022), pp. 3407-3420

Exploiting the integer syndrome

Exploiting the integer syndrome

Option 1: Consider $\mathbf{H}_{\text {pub }} \mathbf{e}=\mathbf{s}$ as an optimization problem and solve it.

\mathbb{N} syndrome decoding problem (N-SDP)

Input: a matrix $H_{\text {pub }} \in \mathcal{M}_{n-k, n}(\mathbb{N})$ with $h_{i, j} \in\{0,1\}$ for all i, j
a vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a vector \mathbf{e} in \mathbb{N}^{n} with $x_{i} \in\{0,1\}$ for all i and with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that: $\mathrm{H}_{\text {pub }} \mathbf{e}=\mathrm{s}$

ILP problem

Let $\mathrm{b} \in \mathbb{N}^{n}, \mathrm{c} \in \mathbb{N}^{m}$ and $\mathrm{A} \in \mathcal{M}_{m, n}(\mathbb{N})$
We have the following optimization problem:

$$
\min \left\{b^{\top} \mathbf{x} \mid A \mathbf{x}=c, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\right\}
$$

Exploiting the integer syndrome

Option 1: Consider $\mathbf{H}_{\text {pub }} \mathbf{e}=\mathbf{s}$ as an optimization problem and solve it.

\mathbb{N} syndrome decoding problem (N-SDP)

Input: a matrix $H_{\text {pub }} \in \mathcal{M}_{n-k, n}(\mathbb{N})$ with $h_{i, j} \in\{0,1\}$ for all i, j
a vector $s \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^{+}$
Output: a vector \mathbf{e} in \mathbb{N}^{n} with $x_{i} \in\{0,1\}$ for all i and with a Hamming weight $\mathrm{HW}(\mathbf{x}) \leq t$ such that : $\mathrm{H}_{\text {pub }} \mathbf{e}=\mathrm{s}$

ILP problem

Let $\mathrm{b} \in \mathbb{N}^{n}, \mathrm{c} \in \mathbb{N}^{m}$ and $\mathrm{A} \in \mathcal{M}_{m, n}(\mathbb{N})$
We have the following optimization problem:

$$
\min \left\{b^{\top} \mathbf{x} \mid A \mathbf{x}=c, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\right\}
$$

Can be solved by integer linear programming. With Scipy.optimize.linprog:
(7) $n=8192: \approx 5 \mathrm{~min}$...

Does not handle errors in \mathbf{s} well...

Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [10]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome.

[^4] arXiv: 2006.09074.

Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [10]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome.
Example: $t=2=\mathrm{HW}(\mathbf{e})$

$$
\mathbf{H}_{\mathrm{pub}} \mathbf{e}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \cdot \mathbf{e}=\binom{1}{2}
$$

$\boldsymbol{p}=\binom{1}{2}$

[^5] arXiv: 2006.09074.

Exploiting the integer syndrome

Option 2 (Quantitative Group Testing [10]): which columns of $\mathbf{H}_{\text {pub }}$ "contributed" to the syndrome.
Example: $t=2=\mathrm{HW}(\mathrm{e})$

$$
\mathbf{H}_{\mathrm{pub}} \mathbf{e}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \cdot \mathbf{e}=\binom{1}{2}
$$

Score function

The dot product can be used to compute a "score" for every column:

$$
\psi(i)=\mathbf{H}_{\text {pub }[,]]} \cdot \mathbf{s}+\overline{\mathbf{H}}_{\text {pub }[, i]} \cdot \overline{\mathbf{s}} \quad \text { with } \overline{\mathbf{H}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \overline{\mathbf{s}}=\binom{1}{0}
$$

() $\psi(0)=1 \times 0+2 \times 1+1 \times 1+0 \times 0=3$
(7) $\psi(1)=1$
() $\psi(2)=3$
[10] U. Feige and A. Lellouche. "Quantitative Group Testing and the rank of random matrices". In: CoRR abs/2006.09074 (2020). arXiv: 2006.09074.

Score function : advantages

The score of the columns of $\mathbf{H}_{\text {pub }}$ identifies which columns were involved in the computation.

From that we can derive the support of the secret vector \mathbf{e}.

Computational complexity

(7) Computing the dot product of two vectors is very fast,
(7) Overall cost for all columns of $\mathrm{H}_{\text {pub }}: \mathcal{O}((n-k) \times n)=\mathcal{O}\left(n^{2}\right)$
(7) $\mathrm{n}=8192: \approx 0.2 \mathrm{~s}$

Conclusion

Conclusion

Evaluation of post-quantum cryptography algorithms is a long process.

Work is needed in the following areas:
(7) Efficient implementations,
() Physical security of implementations,
() Protected implementations.

Bring together mathematicians, computer scientists, electrical engineers: SESAM team at LabHC.

[^0]: [2] H. Niederreiter. "Knapsack-Type Cryptosystems and Algebraic Coding Theory". In: Problems of Control and Information Theory 15.2 (1986), pp. 159-166.

[^1]: [7] A. Menu, J.-M. Dutertre, J.-B. Rigaud, et al. "Single-bit Laser Fault Model in NOR Flash Memories: Analysis and Exploitation". In: FDTC. Milan, Italy: IEEE, Sept. 2020, pp. 41-48.

[^2]: [7] A. Menu, J.-M. Dutertre, J.-B. Rigaud, et al. "Single-bit Laser Fault Model in NOR Flash Memories: Analysis and Exploitation". In: FDTC. Milan, Italy: IEEE, Sept. 2020, pp. 41-48.

[^3]: [7] A. Menu, J.-M. Dutertre, J.-B. Rigaud, et al. "Single-bit Laser Fault Model in NOR Flash Memories: Analysis and Exploitation". In:

[^4]: [10] U. Feige and A. Lellouche. "Quantitative Group Testing and the rank of random matrices". In: CoRR abs/2006.09074 (2020).

[^5]: [10] U. Feige and A. Lellouche. "Quantitative Group Testing and the rank of random matrices". In: CoRR abs/2006.09074 (2020).

