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Most public key cryptosystems rely on the hardness of number theoretic problems:
© prime factorization,
© discrete logarithm.
Peter Shor showed that quantum algorithms can solve these problems in polynomial time [1].

In 2016, NIST initiated a process for cryptography standards that are quantum resistant [2].

One of the four finalists of Round 3 in the Key Encapsulation Mechanism category (announced
July 22, 2020) is Classic McEliece [3], based on error-correcting codes.

[1] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer”. In: SIAMJournal on Computing (1997).

[2] https://csrc.nist.gov/Projects/post-quantum-cryptography/

[3] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, |. von Maurich, R. Misoczki,
R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and

W. Wang. Classic McEliece. Tech. rep. National Institute of Standards and Technology, 2020.
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Code-based cryptography




Niederreiter cryptosystem

Classic McEliece is based on the Niederreiter cryptosystem [4]:

© KeyGen(n, k, t) = (pk, sk)
H : parity-check matrix of C [5]
S : random invertible matrix of size n — k
P : random permutation matrix of size n
Compute Hpyp = SHP
pk = (Hpup, t) /* public key */
sk=(S,H,P) /* secret key */

© Encrypt(m, pk) =s
Encode m into a constant-weight vector e of Hamming weight t
Compute the syndrome s = H, e

[4] H. Niederreiter. “Knapsack-type cryptosystems and algebraic coding theory”. In: Problems of Control and
Information Theory (1986).

[5] Cis an [n, k] linear code that admits an efficient decoding algorithm that can correct up to t errors.
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Security

The security of the Niederreiter cryptosystem is based on the syndrome decoding problem.

Syndrome decoding problem

Input: a binary matrix H € Mp_ n(F2)
a binary vector s € F7 %
ascalart € N*

Output: a binary vector x in ) with a Hamming weight HW(x) < t such that : Hx=s

Known to be an NP-hard problem [6].

[6] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. “On the inherent intractability of certain coding problems

(Corresp.)". In: IEEE Transactions on Information Theory (1978).
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Classic McEliece parameters

n k t  Equivalent bit-level security
< L - 3488 2720 64 128
| € 4608 3360 96 196
0k Hou lsl| 6688 5024 128 256
6960 5413 19 256
8192 6528 128 256

The public key (Hpyp, t) is very large!
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Hardware implementations

Implementations on embedded systems are possible : [7] [8] [9]
Reference hardware target : ARM® Cortex®-M4

Several strategies to store the (very large) keys :
© Streaming,
© Use a structured code,
© Use a very large microcontroller.

New threats

That makes these implementations vulnerable to physical attacks

[7] S. Heyse. “Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers”. In: International
Workshop on Post-Quantum Cryptography. 2010.

[8] ). Roth, E. G. Karatsiolis, and J. Kramer. “Classic McEliece Implementation with Low Memory Footprint”. In:
CARDIS. 2020.

[9] M.-S. Chen and T. Chou. “Classic McEliece on the ARM Cortex-M4”. In: IACR TCHES (2021).
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Attacker model




Laser fault injection attacks

Physical attack : an attacker has a physical access to the device.

© ChipWhisperer platform [10],

© Custom board with an opening,
© Decapsulated chip
© access to the backside of the die

[10] C. O’Flynn and Z. Chen. “ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research”.

In: COSADE. 2014
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Laser fault injection attacks

Physical attack : an attacker has a physical access to the device.

© ChipWhisperer platform [10],

© Custom board with an opening,
© Decapsulated chip
© access to the backside of the die

Many thanks to Jean-Max Dutertre!
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[10] C. O’Flynn and Z. Chen. “ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research”.

In: COSADE. 2014
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Laser fault injection setup

Setup presented two weeks ago at CARDIS [11]

individual laser
control signals

Four-spot laser | parameters
fault injection setup |

YYVYY

serial
comm.

trigger Control

PC

Function
generator

[11] B. Colombier, J. Vernay, P. Grandamme, E. Chavanat, L. Bossuet, L. de Laulanié, and B. Chassagne. “Multi-spot

Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks”. In: CARDIS. 2021
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Laser fault injection setup

Setup presented two weeks ago at CARDIS [11]

camera <«—980nm
individual laser N () zL
control signals L Pc[é
~| Four-spot laser parameters
>| fault injection setup | | PC
. ’ N _
DM
oL
<—1064nm
serial T
Function | trigger comm. | Control
generator PC DM: dichroic mirror

PC: polarization beam splitter cube

[11] B. Colombier, J. Vernay, P. Grandamme, E. Chavanat, L. Bossuet, L. de Laulanié, and B. Chassagne. “Multi-spot

Laser Fault Injection Setup: New Possibilities for Fault Injection Attacks”. In: CARDIS. 2021
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Capabilities

Laser fault injection is possible in SRAM cells [12] [13] or on flip-flops [14]: bit set/reset/flip.
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[12] C. Roscian, A. Sarafianos, J.-M. Dutertre, and A. Tria. “Fault Model Analysis of Laser-Induced Faults in SRAM

Memory Cells”. In: FDTC. 2013.

[13] J.-M. Dutertre, V. Beroulle, P. Candelier, S. D. Castro, L.-B. Faber, M.-L. Flottes, P. Gendrier, D. Hély, R. Leveugle,
P. Maistri, G. D. Natale, A. Papadimitriou, and B. Rouzeyre. “Laser Fault Injection at the CMOS 28 nm Technology Node:

an Analysis of the Fault Model”. In: FDTC. 2018.

[14] C. Champeix, N. Borrel, J.-M. Dutertre, B. Robisson, M. Lisart, and A. Sarafianos. “SEU sensitivity and modeling
using pico-second pulsed laser stimulation of a D Flip-Flop in 40 nm CMOS technology”. In: International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems. 2015.
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Capabilities

Recent line of work on laser fault injection in Flash memory [15] [16] [17] [18].

[15] D. S. V. Kumar, A. Beckers, J. Balasch, B. Gierlichs, and I. Verbauwhede. “An In-Depth and Black-Box
Characterization of the Effects of Laser Pulses on ATmega328P”. In: CARDIS. 2018.

[16] B. Colombier, A. Menu, J.-M. Dutertre, P.-A. Moéllic, J.-B. Rigaud, and J.-L. Danger. “Laser-induced Single-bit Faults
in Flash Memory: Instructions Corruption on a 32-bit Microcontroller”. In: HOST. 2019.

[17] A. Menu, J.-M. Dutertre, J.-B. Rigaud, B. Colombier, P.-A. Moéllic, and J.-L. Danger. “Single-bit Laser Fault Model in
NOR Flash Memories: Analysis and Exploitation”. In: FDTC. 2020.

[18] K. Garb and J. Obermaier. “Temporary Laser Fault Injection into Flash Memory: Calibration, Enhanced Attacks, and

Countermeasures”. In: IOLTS. 2020.
12/32



Flash memory normal operation

Reading word O (value="01")

435‘7 i
ﬂg'? 4%'7

Charged floating gate (logic '0")
Reverse-biased PN junction

BL,

D

BL,
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Flash memory normal operation

Reading word O (value="01")
© Precharge the bitlines,

WL, WL,
vdd
BL,
Tl T
S
BL, vdd

-

e Charged floating gate (logic '0")

Reverse-biased PN junction

13/32



Flash memory normal operation

Reading word O (value="01")
© Precharge the bitlines,
© Set the corresponding wordline WLg and detect current with a sense-amplifier.
WL, WL,

BL, no current : 0

D

BT T
T

Charged floating gate (logic '0")
Reverse-biased PN junction

BL,
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Laser fault injection in Flash memory

Reading word 1 (value="10") with laser ON
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Charged floating gate (logic '0")
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Laser fault injection in Flash memory
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Laser fault injection in Flash memory

Reading word 1 (value="10") with laser ON

© Precharge the bitlines,

© Set the corresponding wordline WL and detect current with a sense-amplifier.
WL, WL,

BL,

BL,

current : 1

%%vmd

il
S
current : 1

4%

4&%

Charged floating gate (logic '0")
Reverse-biased PN junction
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Fault model

@ We can force a transistor to conduct
© There is a current even if there are charges on the floating gate.
© Alogic ’0’ can be turned into a logic >1°.

© We cannot prevent a transistor from conducting
© Alogic ’1’ cannot be turned into a logic >0°.

Asymmetric fault model

Single-bit bit-set fault model on data (and instructions) read from Flash memory.

Fault on the readout process

The data stored in the Flash memory is not altered.

15/32



Parameters: x position, y position and delay

I 31
H 2 2 = . 30
200 ~L ; - 20
| 27
™ | 26
400 4 J 28
o ‘ 23
| | NN 2 —
600 11, 20 How to target a specific bit?
. 19
- = B ¢ : l %8 E
g - d i 16 2 © Only the y position matters,
2 800 ; it 13 = .
> ciens I 14 L‘:" the x position does not.
P | 12 e .
1000 1 - 1 © The y-step between bits is
cent 2 quite large since the 32
J 4 . 7 e
1200 HH 6 sense-amplifiers are shared
“eae g l %
1400 - . o 2
T ! T T 0
200 300 400 500 1650 1750 1850
X (um) Delay [ns]

16 /32



VIDEO TIME

also available at:
https://www.youtube.com/watch?v=QY2N2B1fR3Q


https://www.youtube.com/watch?v=QY2N2B1fR3Q

Proposed attack




Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary matrix H € Mp_ n(F2)
a binary vector s € F7 %
ascalart € Nt

Output: a binary vector x in ) with a Hamming weight HW(x) < t such that : Hx=s
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N-SDP and integer linear programming

N syndrome decoding problem (N-SDP)

Input: a matrix H € M,_y o(N) with h;; € {0, 1} forall i, j
avector s € Nn—k
ascalart € Nt

Output: a vector x in N" with x; € {0, 1} for all i
and with a Hamming weight HW(x) < t such that : Hx=s

ILP problem

Letb € N",c e N" and A € Mp, n(N)
We aim at solving the following optimization problem:

min{b'x | Ax = ¢,x € N"x > 0}

19/32



N-SDP and integer linear programming

© The N syndrome decoding and the integer linear programming problems are equivalent,
© Integer linear programming solvers are very efficient,

© The N syndrome decoding problem can be solved very efficiently.

20/32



N-SDP and integer linear programming

© The N syndrome decoding and the integer linear programming problems are equivalent,
© Integer linear programming solvers are very efficient,

© The N syndrome decoding problem can be solved very efficiently.

N-SDP framework

To be in the N-SDP framework, we must obtain a faulty syndrome.
Instead of s € F) ¥, we need s € N" K,

20/32



Target: syndrome computation

We target the syndrome computation: s = Hppe

Matrix-vector multiplication performed over [,

Algorithm 1 Schoolbook matrix-vector multiplication
1: function MAT_VEC_MULT_SCHOOLBOOK(matrix, error_vector)

2: forr<Oton—k—1do

3 syndrome[r] = 0 > Initialisation
4. forr<Oton—k—1do

5 forc<Oton—1do

6 syndrome [r] “= matrix[r][c] & error_vector[c] > Multiplication and addition
7:  return syndrome

21/32



Exclusive-OR operation

We consider the Thumb instruction set.

EORS: Rd
EORS: R1

bits
Rm @ Rn
RO @© R1

15 14 13 12|11 10 9 8 6 5 43 1 0
01 0 0[O0 0 0 O 1] Bm Rdn
01 0 0[0 0 0 O 1 0 ofo 0o 1
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Exclusive-OR operation

We consider the Thumb instruction set.

bits | 15 14 13 12|11 10 9 8 | 7

6 5 4]3 2 1 0
FORS:Rd =Rm@Rn |0 1 0 00 0 0 0[O0 1] ©Rm | Rdn
EORS:R1 =ROGR1 [0 1 0 0[O0 0 0 0[O0 1 0 OO 0 0 1
1 4
ADCS:R1 =RO+R1[0 1 0 oJo o offflfo 1 0o oo 0o 0 1]

The exclusive-OR (addition over [F5) is turned into an addition with carry (over N)

22/32



Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:
tinitial : initial delay before the multiplication starts
tinner : delay in the inner for loop
touter : delay in the outer for loop

execution e oo -
starts alie alialalle
|| L]

Y

~
o
<
I
1

-T— XOR
-T— XOR
-T— XOR
-+— XOR

— XOR

T
1
—— > —

tinitial tinner touter

After n.(n — k) faults, we get a faulty syndrome s € N"—*

time
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ILP problem solving

Having the faulty syndrome s € N and the public key Hyub We solve:
min{b’e | Hoype = s,e € N". e > 0}. (1)

to recover the error-vector e of Hamming weight t.

We used scipy.optimize.linprog from the Scipy Python package [19].

[19] https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
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Discussion about attack feasibility




Observation 1

Observation 1:
The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

[20]https://wwl.microchip.com/downloads/en/devicedoc/31029a.pdf
[21] https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf

[22] ARMV7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403
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Observation 1

Observation 1:
The ADCS instruction was just one bit-set away from the EORS instruction. Did we just get lucky?

Answer: No

It happens for other instructions sets too:
PIC XORWF =» ADDWF with one bit-set [20]
RISC-V C.XOR =¥ C.ADDW with one bit-set [21]
ARMvV7 EORS.W =» QADD with six (1-4-1) bit-sets [22]

Other instruction corruptions could be equivalent to addition over N (shifts, rotations, etc)

[20]https://wwl.microchip.com/downloads/en/devicedoc/31029a.pdf
[21] https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf

[22] ARMV7-M Architecture Reference Manual https://developer.arm.com/documentation/ddi0403
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Observation 2

Observation 2:
The schoolbook matrix-vector multiplication algorithm is highly inefficient!

Algorithm 2 Schoolbook matrix-vector multiplication
1: function MAT_VEC_MULT_SCHOOLBOOK(matrix, error_vector)
2. forr<Oton—k—1do
syndrome[r] = 0 > Initialisation

3

4. forr<Oton—k—1do

5 forc<-Oton—1do

6 syndrome [r] ~= matrix[r][c] & error_vector[c] > Multiplication and addition
7

return syndrome

Bits are stored independently: a lot of memory is wasted.
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Packed matrix-vector multiplication

Algorithm 3 Packed matrix-vector multiplication
1: function Mat_vec_mult_packed(mat, error_vector)
forr< Oto ((n—k)/8 —1) do
synlr] = 0 > Initialisation n
forr<Oto(n—k—1)do —°
b=0 [Tel Tl

3
4
5
6:  forc<«Oto(n/8 —1)do
7
8
9

»

b "= mat[r] [c] & error_vector[c] _ n—k
b =b>>4 n—ki| Houb _BIT
: b~=b>>2 > Exclusive-OR folding
10: b~=b>>1
1: b &=1 > LSB extraction
12: synl[r/8] |= b << (ri8) > Bit packing

13:  return syn
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Packed matrix-vector multiplication

Algorithm 4 Packed matrix-vector multiplication Attack not directly applicable here.
1: function Mat_vec_mult_packed(mat, error_vector)
2. forr«<Oto((n—k)/8—1)do We suggested the following strategy
3 synlr] = 0 > Initialisation (admittedly not feasible):
4. forr«Oto(n—k—1)do © Prematurely exit the inner for
5 b=0 loop to keep only one byte
6:  forc«0to(n/8—1)do © Reverse the exclusive-OR folding
7 b "= mat[r] [c] & error_vector[c] permutation over IF%
8 b=b>>4 . . © Mask with OXFF instead of 1
9: b~=b>>2 > Exclusive-OR folding . .
o b b o> 1 © For bit packing:
o bt slsBeraction @ PIIRINOC  ertor
122 syn[r/8] |= b << (r}8) > Bit packing 4

loop to keep only one byte
13:  return syn

27/32
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Experimental results

- 1min

Full, t=vn

1| V=== Full, t=1/n.log(n)
10 o

Execution time [s]
[
"]

0.1 o

103 104
n

For Classic McEliece : 3488 < n < 8192

28/32



Required fraction of faulty syndrome entries

We observed that only a fraction of the faulty syndrome entries is enough to solve the problem.

t=+/n t=+/nlogn OCICISSIC McEliece parameters
80% 80% 80% 1.0
QE) 70% 70% 70%
kel . 0.8
g % 60% 60% 60% .
g ]
5’3 50% 50% 50% 06 ®
: w0
E § 40% 40% 40% 2
(&}
E.é’ 30% 30% 30% 0.45
g = 20%
o= 20% 20% b 02
o .
o 0 N
2 10% 10% 10%
0% 0% 0% 0.0
103 104 103 104 P & L LS
N R Cb\’
n n n

For Classic McEliece, less than 40 % faulty syndrome entries is enough.
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Experimental results

- 1min
] Full, t=vn
1| Y=Y Full, t =/n.log(n)
10 3 Optimal, t=v7
V- =¥ = =¥ Optimal, t=1/n.log(n)
] w Classic McEliece

- 1s

Execution time [s]

T T T T r r T T T T
103 10*
n

Empirically, when considering the optimal fraction, time complexity drops from O(n®) to O(n?).
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Conclusion and future work




Conclusion

New laser fault injection attack on the Classic McEliece cryptosystem [23]

Attack steps:
1. Laser fault injection: instruction corruption turning EORS into ADCS
2. Get a faulty syndrome in N instead of [F,
3. Equivalence between the N-SDP and integer linear programming problem
4

. Use of efficient ILP solvers (O(nz) empirical time complexity) with only a fraction of faulty
syndrome entries

[23] P.-L. Cayrel, B. Colombier, V.-F. Dragoi, A. Menu, and L. Bossuet. “Message-Recovery Laser Fault Injection Attack on

the Classic McEliece Cryptosystem”. In: EUROCRYPT. 2021.
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On this attack:
© Improve the practicality of the attack (less faults)
© Attack state-of-the-art hardware implementations and extend to FPGA,

© Study the complexity drop from O(n®) to O(n?) when considering the optimal fraction of
faulty syndrom entries,

© Develop countermeasures.
Extending the idea:
© Target other operations to recover the key instead,

© Apply to other cryptosystems.

32/32



On this attack:
© Improve the practicality of the attack (less faults)
© Attack state-of-the-art hardware implementations and extend to FPGA,

© Study the complexity drop from O(n®) to O(n?) when considering the optimal fraction of
faulty syndrom entries,

© Develop countermeasures.

Extending the idea:
© Target other operations to recover the key instead,

© Apply to other cryptosystems.

— Questions? —
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