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Cryptography aims at delivering several properties, such as:
# integrity,
# authenticity,
# confidentiality

Confidentiality:
Parties A and B can communicate without party C understanding.
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Symmetric cryptography 4/27

The message is encrypted by A and decrypted by B.

The same key is used for encryption and decryption.

By obtaining the key, we break the confidentiality.
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AES: Advanced Encryption Standard 5/27

The Rjindael block cipher [1] was standardized by NIST in 2001.
It is now referred to as AES (Advanced Encryption Standard).

A block cipher operates on blocks of data.

AES-128 [2] operates with:
# a 128-bit key,
# on 128-bit blocks.

[1] J. Daemen and V. Rijmen. “Rijndael for AES”. The Third Advanced Encryption Standard
Candidate Conference. New York, USA: National Institute of Standards and Technology, Apr.
2000, pp. 343–348.
[2] AES-192 and AES-256 exist too but are not covered here
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AES first transformations 7/27

Plaintext: P

⊕Key: K

SBox

...

P⊕ K

SBox[P⊕ K]

SBox is an {0, 1}8 → {0, 1}8 substitution
table.

https://en.wikipedia.org/wiki/
Rijndael_S-box
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Target 8/27

Plaintext: P

⊕Key: K

SBox

...

P⊕ K

SBox[P⊕ K]

SBox mapping is known and reversible.
We assume the plaintext is known too.

We want the key!



Intermediate value computation 9/27

AES is byte-oriented: the state is a 4× 4 matrix of bytes.

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

Our target intermediate value is in fact split into 16 bytes

SBox[p0 ⊕ k0] SBox[p4 ⊕ k4] SBox[p8 ⊕ k8] SBox[p12 ⊕ k12]

SBox[p1 ⊕ k1] SBox[p5 ⊕ k5] SBox[p9 ⊕ k9] SBox[p13 ⊕ k13]

SBox[p2 ⊕ k2] SBox[p6 ⊕ k6] SBox[p10 ⊕ k10] SBox[p14 ⊕ k14]

SBox[p3 ⊕ k3] SBox[p7 ⊕ k7] SBox[p11 ⊕ k11] SBox[p15 ⊕ k15]

We will divide and conquer and recover the 128-bit key byte by byte.
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Side-channel attacks 10/27

Side-channel attacks principle

Physical quantities measured on the device
depend on the data the device handles.

Examples of physical quantities:
J power consumption,
O electromagnetic radiations,
É sound,
­ photonic emissions.



Actual setup 11/27

A microcontroller runs multiple
AES encryptions.

We put an electromagnetic probe
above it and record the
electromagnetic field.
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First, one measurement
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Examples of measurements 12/27

Averaging 50 identical measurements (denoising)
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Examples of measurements 12/27

AES rounds are visible
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Examples of measurements 12/27

AES transformations are visible within rounds
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Theory of template attacks
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Template attacks were introduced in 2002 [3].

The information leakage can be modeled as a Gaussian distribution.
This is fully described by the following parameters:

# the mean: µ
# the variance: σ2

A template is the (µ, σ2) pair.

A template attack follows a two-step process:
# profiling phase,
# matching phase.

[3] S. Chari, J. R. Rao, and P. Rohatgi. “Template Attacks”. CHES. 2002, pp. 13–28.



Profiling phase 14/27

Aim:
build a template (µ, σ2) for every intermediate value ∈ {0, ..., 255}.

We do this on an open device:
# we control the inputs: key K and plaintext P.
# we know the intermediate value of interest: SBox[pi ⊕ ki]
# we can perform side-channel measurements on it.



Profiling phase 15/27

Intermediate value SBox[pi ⊕ ki] =
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We build 256 sets of traces, according to the intermediate value.

Ti is the set for which the intermediate value is equal to i.
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Profiling phase 17/27

First, we find a point of interest :
# we compute the average signal for each set,
# we compute pairwise differences betweeen average signals,
# we keep the point where this is maximum.

Then, for each set, at this point of interest, we compute :
# The average signal µi (we have it already),
# The noise variance σ2i .
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Matching phase 18/27

Attack on a closed device:
# we know the plaintext input P but not the key,
# we look for the intermediate value of interest: SBox[pi ⊕ ki],
# we can perform side-channel measurements on it.



Matching phase 19/27

Let us assume we measure a voltage of 0.1.
We now “match” this on our templates.
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We can now sort the target byte values by probability.
Values can then be enumerated until we find the correct key.
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Improvements and options



Combining information 20/27

Onemeasurement is (usually) not enough for the matching phase.
We combine information obtained from multiple measurements.

Intermediate Measurements Overall

values 1 2 ... N Probability
0 0.12 0.15 0.13

N∏
i=0

pi

1 0.01 0.02 0.01
2 0.13 0.14 0.16
3 0.02 0.03 0.04
... ... ... ...
255 0.04 0.05 0.03

We can stop when the confidence is large enough.



More dimensions 21/27

With only one point of interest, we may miss valuable information.
We can take into account more points of interest.
Templates are then multivariate Gaussian distributions.

Voltage at PoI1 Voltage at PoI2
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These are specified by a mean vector and a covariance matrix.



Preprocessing 22/27

For the template attack to work, samples must be perfectly aligned.
Pre-processing them might be necessary:

# Variable shift based on correlation value (linear),
# Dynamic time warping (non-linear).

c https://en.wikipedia.org/wiki/Dynamic_time_warping

https://en.wikipedia.org/wiki/Dynamic_time_warping


Selecting points of interest 23/27

Selecting points of interest is not easy...
Information can spread over multiple samples.
Principal Component Analysis can help reduce the data dimension.
Get principal components of the signal, but which one to keep? [4]

[5]

Still an open question, relies on attacker’s knowledge.
[4] L. Batina, J. Hogenboom, and J. G. J. van Woudenberg. “Getting More from PCA: First

Results of Using Principal Component Analysis for Extensive Power Analysis”. CT-RSA. 2012,
pp. 383–397.
[5] E. Cagli, C. Dumas, and E. Prouff. “Enhancing Dimensionality Reduction Methods for

Side-Channel Attacks”. CARDIS. 2015, pp. 15–33.



Computational aspects 24/27

As highlighted in [6], computational problems may arise in practice:
# The covariance matrix might not be invertible,
# Multiplying the probabilites can lead to floating-point errors.

They propose the following solutions:
# Use the logarithm of the multivariate normal distribution,
# Use a pooled covariance matrix,
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[6] O. Choudary and M. G. Kuhn. “Efficient Template Attacks”. CARDIS. 2013, pp. 253–270.
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Known plaintext VS known ciphertext 25/27

The presented attack requires to know
the plaintext.

Same principles apply if we know the
ciphertext instead.

This time we attack the last round.

We recover C ⊕ K10 and we know C.

From the round-key K10 we recover the
key K by reverting the key-schedule.
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Q: How many traces are needed for the profiling phase?

A: As many as possible! Typically hundreds of thousands.

Q: How many traces are needed for thematching phase?
A: Target dependent. Less than 5 for unprotected ones.

Q: Can we profile one device to attack another?
A: Theoretically yes (very powerful).

Q: How long does the attack take?
A: Typically a few seconds, measurements take time.

Q: What if the correct key does not rank first?
A: Key enumeration methods [7] exploit the probabilities.

Q: Other questions?

[7] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F. Standaert. “An Optimal Key
Enumeration Algorithm and Its Application to Side-Channel Attacks”. SAC. vol. 7707. 2012,
pp. 390–406.
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Q: How long does the attack take?
A: Typically a few seconds, measurements take time.

Q: What if the correct key does not rank first?
A: Key enumeration methods [7] exploit the probabilities.

Q: Other questions?

[7] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F. Standaert. “An Optimal Key
Enumeration Algorithm and Its Application to Side-Channel Attacks”. SAC. vol. 7707. 2012,
pp. 390–406.
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Template attacks are a very powerful tool.

Even protected implementations can be targeted.

They can be used to attack other algorithms (asymmetric, etc.)

Slightly less fashionable now, because of... deep learning.
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Backup slides



PCA

Identify the components where data varies the most.
Orthogonal vectors.
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