Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques

Brice Colombier, Damien Robissout, Gabriel Zaid, Lilian Bossuet, Amaury Habrard

Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516

FETCH 2020

Présentation 2/18

Brice Colombier

Chercheur post-doctorant à l'Université Jean Monnet, Saint-Étienne, France

Domaines de recherche:

- Sécurité matérielle,
- Contrefaçon de circuits intégrés,
- Attaques et évaluation,
- Génération de nombres aléatoires.

© les contributeurs d'OpenStreetMap

Contexte

Contexte 3/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

"implémentations de fonctions cryptographiques"

☐ Sécurité → Confidentialité → Chiffrement par bloc : AES

Contexte 3/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

"implémentations de fonctions cryptographiques"

△ Sécurité **→** Confidentialité **→** Chiffrement par **bloc** : AES

Message découpé en blocs de 128 bits, clé de 128 bits.

État courant : 16 octets

0,0	0,1	0,2	0,3
1,0	1,1	1,2	1,3
2,0	2,1	2,2	2,3
3,0	3,1	3,2	3,3

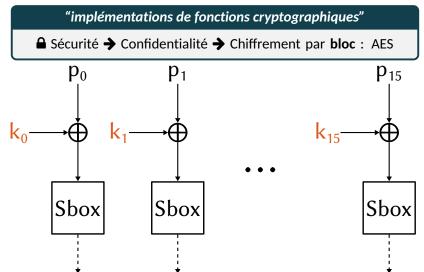
Transformations successives (10 \times):

- ◆ AddRoundKey : OU exclusif
- **SubBytes**: substitution
- ShiftRows
- MixColumns

Important

Opérations réalisées sur les octets

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

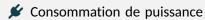

"implémentations de fonctions cryptographiques"

△ Sécurité **→** Confidentialité **→** Chiffrement par **bloc** : AES

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1-	CA	82	C9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	CO
2-	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3-	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4-	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5-	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6-	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7-	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8-	CD	OC	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9-	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	OB	DB
A-	EO	32	3A	OA	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
B-	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C-	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D-	70	3E	B5	66	48	03	F6	OE	61	35	57	В9	86	C1	1D	9E
E-	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F-	8C	A1	89	OD	BF	E6	42	68	41	99	2D	OF	BO	54	BB	16

Contexte 3/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

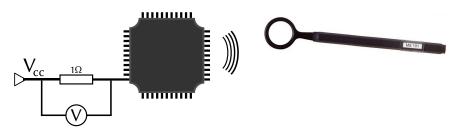


Contexte 4/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

"attaques par analyse de canaux auxiliaires"

Canaux (non prévus) donnant de l'information sur le système


Contexte 4/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

"attaques par analyse de canaux auxiliaires"

Canaux (non prévus) donnant de l'information sur le système

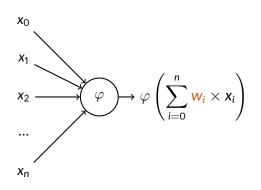
- Consommation de puissance
- Rayonnement électromagnétique

Dans la plupart de cas, la **grandeur physique** mesurée est **proportionnelle au poids de Hamming** de la donnée manipulée.

Contexte 5/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

"Apprentissage profond"

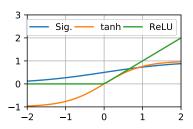

Utilisation de réseaux de neurones.

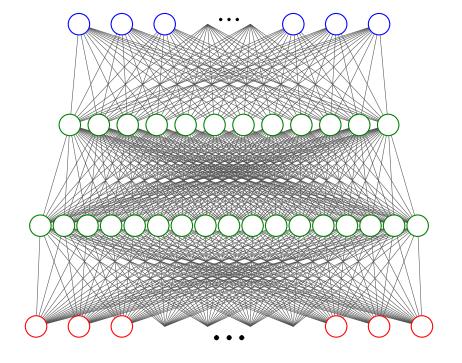
Contexte 5/18

"Apprentissage profond pour les attaques par analyse de canaux auxiliaires des implémentations de fonctions cryptographiques".

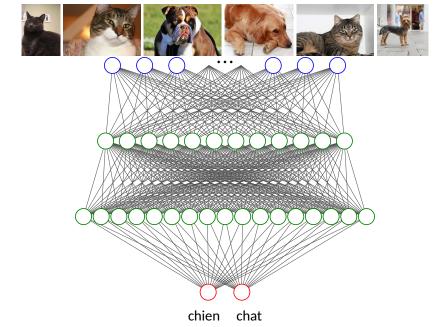
"Apprentissage profond"

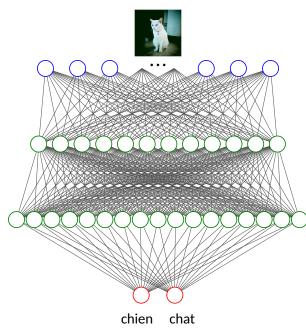
Utilisation de réseaux de neurones.

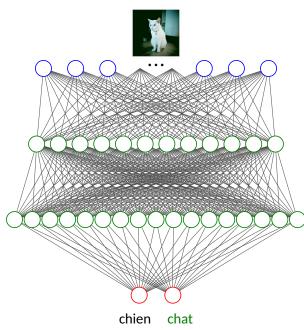


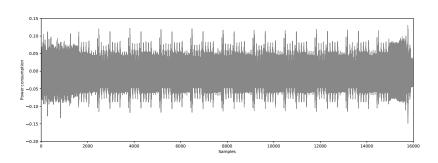

Fonction d'activation φ :

Sigmoïde : $\frac{e^x}{e^x+1}$

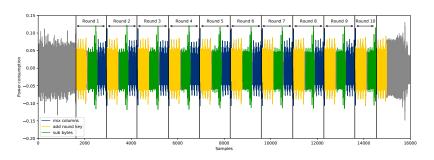

Tan hyperbolique : tanh(x)

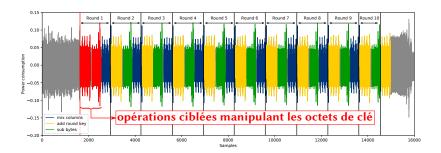

 \bullet ReLU: max(0, x)





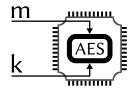
Déroulement d'une attaque

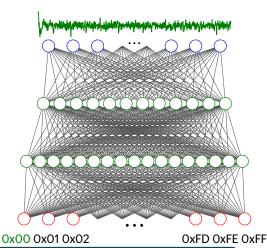




8/18

Différences avec l'utilisation classique des réseaux de neurones :

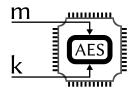

- Information extrêmement localisée,
- Nombreux échantillons non informatifs,
- Nécessité d'accumulation statistique des prédictions,

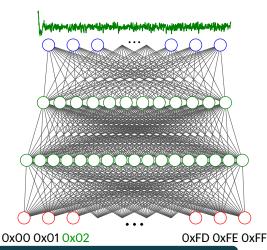

Système **maîtrisé**:

- Message aléatoire,
- O Clé aléatoire.

Entrée : mesure physique

Labels: octet secret connu

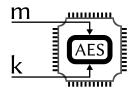

Principe

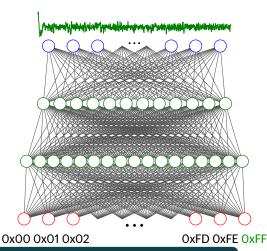

Système **maîtrisé**:

- Message aléatoire,
- O Clé aléatoire.

Entrée : mesure physique

Labels: octet secret connu

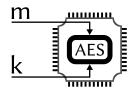

Principe

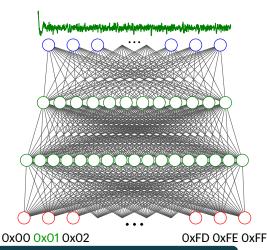

Système **maîtrisé**:

- Message aléatoire,
- O Clé aléatoire.

Entrée : mesure physique

Labels: octet secret connu

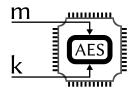

Principe

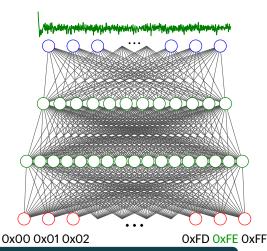

Système **maîtrisé** :

- Message aléatoire,
- O Clé aléatoire.

Entrée : mesure physique

Labels: octet secret connu


Principe


Système **maîtrisé** :

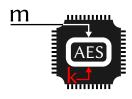
- Message aléatoire,
- O Clé aléatoire.

Entrée : mesure physique

Labels: octet secret connu

Principe

Phase 2 : inférence


Système inconnu:


Message aléatoire,

O Clé fixe (inconnue).

Entrée : mesure physique

Sorties: prédictions

Résultat

Obtention d'une probabilité pour chaque octet secret.

- Information trop bruitée,
- Confiance trop **faible**.

- Information trop bruitée,
- Confiance trop **faible**.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

- Information trop bruitée,
- Confiance trop **faible**.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

Octet	P_0
0x00 0x01	
 OxFE OxFF	

- Information trop bruitée,
 - Occidence trop faible.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

Octet	Po	P ₁	
0x00 0x01	•••		
 OxFE OxFF	•••		

- Information trop bruitée,
- Confiance trop **faible**.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

Octet	P_{0}	P ₁	P ₂
0x00 0x01			
 OxFE OxFF			

- Information trop bruitée,
- Confiance trop faible.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

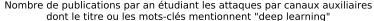
Octet	P_0	P ₁	P_2	P ₃
0x00	0.1	0.4	0.2	0.4
0x01	0.2	0.2	0.3	0.1
•••		•••	•••	•••
OxFE	0.4	0.3	0.4	0.3
OxFF	0.3	0.1	0.1	0.2

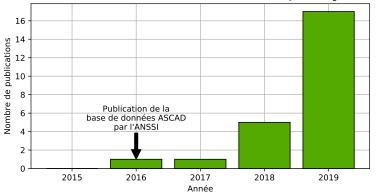
- Information trop bruitée,
- Confiance trop **faible**.

Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

Octet	Po	P ₁	P ₂	P ₃	P _{finale}
0x00 0x01	•••	• • •		• • •	
 OxFE OxFF		 0.3 0.1			


- Information trop bruitée,
- Confiance trop faible.


Solution

$$P_{finale}(\text{octet}) = \sum_{i=0}^{\#\text{inférences-1}} \log(P_i(\text{octet}))$$

Octet	P_0	P ₁	P_2	P_3	P _{finale}
0x00	0.1	0.4	0.2	0.4	-2.5 X
0x01	0.2	0.2	0.3	0.1	-2.9 🗙
•••	•••	•••	•••	•••	
OxFE	0.4	0.3	0.4	0.3	-1.8 🗸
OxFF	0.3	0.1	0.1	0.2	-3.2 🗶

Avantages et inconvénients Tendances et challenges

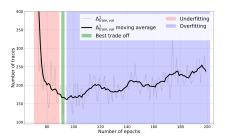
source: Cryptology ePrint Archive

https://eprint.iacr.org

R. Benadjila et al. "Deep learning for side-channel analysis and introduction to ASCAD database". *Journal of Cryptographic Engineering* (2019)

En comparaison des attaques par template, les avantages sont :

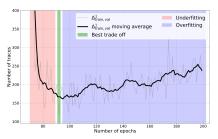
- Bons résultats obtenus relativement facilement sur des cibles non protégées,
- Pas de sélection des points d'intérêt nécessaire,
- Insensible à la désynchronisation des traces (invariance temporelle),
- Applicable aux implémentations protégées par des contre-mesures.



Néanmoins, des inconvénients subsistent...

- Choix des hyper-paramètres difficile,
- Performances inférieures aux templates dans certains cas,
- Utilisation non optimale des réseaux,
- Explicabilité des résultats limitée.

Utilisation: optimisation du processus d'apprentissage [1]

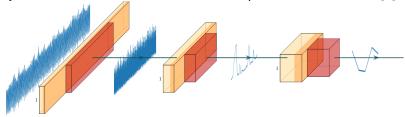


Évaluer le réseau lors de l'apprentissage et l'arrêter au bon moment :

- Meilleures performances lors de l'attaque (moins de traces),
- Coût d'entraînement moindre,
- **Exploration** des configurations possibles plus rapide.

^[1] D. Robissout et al. "Online Performance Evaluation of Deep Learning Networks for Side-Channel Analysis". International Workshop on Constructive Side-Channel Analysis and Secure Design (to be published). 2020.

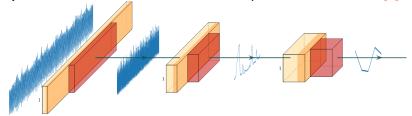
Utilisation: optimisation du processus d'apprentissage [1]



Évaluer le réseau lors de l'apprentissage et l'**arrêter** au bon moment :

	ASCAD	Travaux LabHC
Temps d'apprentissage	1h	40 min
Traces d'attaque requises	1151	802

^[1] D. Robissout et al. "Online Performance Evaluation of Deep Learning Networks for Side-Channel Analysis". International Workshop on Constructive Side-Channel Analysis and Secure Design (to be published). 2020.


Explicabilité: identification du rôle de chaque couche du réseau. [2]

- Ocuche 1: détection et combinaison des points d'intérêt,
- Couche 2 : détection et correction de la désynchronisation,
- Ocuche 3 : réduction de la dimension de la trace.

^[2] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli. "Methodology for Efficient CNN Architectures in Profiling Attacks". *IACR Transactions on Cryptographic Hardware and Embedded Systems* 2020.1 (2020), pp. 1–36.

Explicabilité: identification du rôle de chaque couche du réseau. [2]

	ASCAD	Travaux LabHC
Nombre de paramètres	66 652 444	16 960
Temps d'apprentissage	1h 30 min	4 min
Traces d'attaque requises	1146	191

^[2] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli. "Methodology for Efficient CNN Architectures in Profiling Attacks". *IACR Transactions on Cryptographic Hardware and Embedded Systems* 2020.1 (2020), pp. 1–36.

Tendances 17/18

Tendances:

- Mise en place de benchmarks : base de données ASCAD [3]
- Peu de travaux en apprentissage non supervisé
- Très bons résultats sur d'autres fonctions cryptographiques, en particulier la cryptographie asymétrique
 - Attaque réussie en une trace sur RSA [4]
- Utilisation pour l'évaluation de sécurité [5]
 - Si le réseau trouve quelque chose, il y a quelque chose"
 - Ne dit rien de l'exploitabilité des fuites.

^[3] R. Benadjila et al. "Deep learning for side-channel analysis and introduction to ASCAD database". *Journal of Cryptographic Engineering* (2019).

^[4] M. Carbone et al. "Deep Learning to Evaluate Secure RSA Implementations". IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.2 (2019), pp. 132–161.

^[5] F. Wegener, T. Moos, and A. Moradi. "DL-LA: Deep Learning Leakage Assessment: A modern roadmap for SCA evaluations". *IACR Cryptology ePrint Archive* 2019 (2019), p. 505.

Nouvelles méthodes d'attaque basées sur l'apprentissage profond :

- Efficaces sur de nombreuses cibles,
- Beaucoup de recherche sur le sujet.

Nouvelles méthodes d'attaque basées sur l'apprentissage profond :

- Efficaces sur de nombreuses cibles,
- Beaucoup de recherche sur le sujet.

Défis associés non négligeables :

- Dépassement l'utilisation en "boîte noire",
- Compréhension du succès de l'attaque,
- Exploitabilité des résultats,

Nouvelles méthodes d'attaque basées sur l'apprentissage profond :

- Efficaces sur de nombreuses cibles,
- Deaucoup de recherche sur le sujet.

Défis associés non négligeables :

- Dépassement l'utilisation en "boîte noire",
- Compréhension du succès de l'attaque,
- Exploitabilité des résultats,
- Conception de contre-mesures.

Nouvelles méthodes d'attaque basées sur l'apprentissage profond :

- Efficaces sur de nombreuses cibles,
- Beaucoup de recherche sur le sujet.

Défis associés non négligeables :

- Dépassement l'utilisation en "boîte noire",
- Compréhension du succès de l'attaque,
- Exploitabilité des résultats,
- Conception de contre-mesures.

