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Definition: fault attacks

A fault attack consists in disturbing the operating conditions
of a device to gain privileged access or knowledge about the
secret data it handles.

Fault injection techniques

© Global
© Clock glitches,
© Supply voltage glitches,
© Underpowering,
© ..

© Local

© Electromagnetic,
© Optical,
© ..
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8-bit understanding:
© attacks on cryptographic algorithms,
© register corruption and instruction skip,
© timing constraints violation.

32-bit understanding:

© Currently: mostly algorithmic
and execution level.

32-bit challenges

© Bigger, more complex chips,
© Micro-architecture: pipeline, pre-fetch...
© Execution timing variability.
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A 32-bit microcontroller:
© 2.5x2.5mm.
© ARM Cortex-M3 core,
© 90 nm technology node,
© 128 kB of Flash memory,

The C source code is compiled into the Thumb-2 instruction set.
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Laser bench characteristics

© Infrared (1064 nm) for
back-side injection,
© >30ps,
© 0-3W,
© 3 objective lenses:
© x5 (20 um),

© x20 (5um),
© x100 (1um).
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Preparatory work (4-5 months)

« Design of a custom ChipWhisperer target board:

« Front-side access,
« Back-side access.

v Target preparation: decapsulate the chip to see the die,
« Mechanical setup on the laser injection bench,
« Faults mapping:
v x-position,
v y-position,
v power,
' duration,
v delay,
« type of fault: instruction skip, bit-set, bit-reset, bit-flip...
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Preparatory work (4-5 months)

« Design of a custom ChipWhisperer target board:

« Front-side access,
« Back-side access.

v Target preparation: decapsulate the chip to see the die,
« Mechanical setup on the laser injection bench,

v ing: .
Faults ma‘p.plng trigger ‘ |
+ x-position,

v y-position, X X

v power, laser 1 !

« duration 1 J€lAY . P
’ out 1/ duration

v delay,

« type of fault: instruction skip, bit-set, bit-reset, bit-flip...
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. test_data: © Write a test data at a specific

s .word 0x00000000 address in Flash memory,
3 NOP © Store this value in a known register,
+ NOP © Read back the register.

5 NOP

¢ NOP

7 NOP

s NOP

9 LDR RO, test_data €

10 NOP

11 NOP

12 NOP

13 NOP

14 NOP

15 NOP

16 # Reading back RO



Characterisation code 8/23

© Write a test data at a specific

1 test_data:

s .word 0x00000000 address in Flash memory,
3 NOP © Store this value in a known register,
+ NOP © Read back the register.

5 NOP

¢ NOP

7 NOP

s NOP Choice of test data
° LDR RO, test_data € © 0x00000000: bit-sets,
o NOP © OxFFFFFFFF: bit-resets,
11 NOP

12 NOP © 0x55555555

13 NOP OxAAAAAAAA: bit-flips.
14 NOP

15 NOP

16 # Reading back RO
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Fault model Parameters dependency

Monobit-set on fetched data. Faulty bit depends on y position.
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Increasing the energy allows to fault more bits.
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1 # Initialising registers
2 # RO, R1, R{, R5, R6, RS
s # and R9 to OxFFFFFFFF

4+ NOP

5 NOP

6 MOVW RO, 0x0000 €

7 MOVW R1, 0x0000 €

s MOVW R4, 0x0000 €

o MOVW R5, 0x0000 €

10 MOVW R6, 0x0000 €

11 MOVW R8, 0x0000 €

12 MOVW R9, 0x0000 €

13 NOP

14 NOP

15 # Reading back the registers



Fault
occurrence

MOVW
MOVW
MOVW
MOVW
MOVW
MOVW
MOVW

Fault periodicity (faulty bit wrt. delay)
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RO, 0x0000 € © Each instruction can be faulty,

R1, 0x0000 € © The occurence always reaches 100%,

R4, 0x0000 € © The delay between two optimal

R, 0x0000 € injection timings is always a

R6, 0x0000 € multiple of the clock period

RS, 0x0000 € The delay between two optimal

R9, 0x0000 € © e delay between two optima

injection timings is not constant.
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Physical explanation for the y-dependency

Vread ~|§L Gnd %il?f

A4 v

s Charged floating gate (Logic 0)
Reverse biased junction
Z Laser spot

U_
>
1-_-—-_-—

Moving along the x-axis Moving along the y-axis

© Transistors of the same BL. © Transistors of the same WL.
© Same faulty bit. © Successive faulty bits.




Physical explanation for the asymmetry

BL | WL WL Vyd
.:——————1 E Cayi
Vread *|§L Gnd %*l? E
S |ph :
\/
A4 A4

s Charged floating gate (Logic 0)
Reverse biased junction
) Laser spot

Without laser shot With laser shot

© with charges: BL to Vgyq © with charges: BL to GND
© without charges: BL to GND © without charges: BL to GND
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MOVW: store a 16-bit value in the lower half of a 32-bit register.

bits

[31]30[29]28]27]26]25]24[23[22[21]20]19[18[17]16]15[14[13[1 2[ 11]10] 9 [ 8] 7[ 6 [ 5[ 4 [ 3] 2] 1] O]

Reference instructions:

MOVW

1(1(1|(1|O0|i|1|O0|Of1|O|O| imm4 |O| imm3 Rd imm8

MOVW,

Ro, o[1]1]1]1]oJo]1]oJo]1]o]o]o]o]o]o]o]o]o]o]o[0[0[0[0[0[0[0[0O[O]0O]O

Data corruption:

MOVW,

RO, 4[1]1]1]1JoJoJ1]oJo]1]oJoJoJoJoJoJoJoJoJoJoJoJoJoJoJoJoJo[of1]0]O]

Register corruption:
L 2

MOVW,

rRi, o[1]1]1]1]oJoJ1]oJo]1]oJoJoJoJoJoJoJoJoJoJoJoJof1]oJoJoJo[o[o[0]O]

Opcode corruption:

MovT,

RO, oJ1J1]1]1JoJoJ1]oJa]1]oJoJoJoJoJoJoJoJoJoJoJoJo]o]o]o]o]o[0[0[0[O]




PIN verification algorithm 16/23

Constant-time implementation with hardened booleans:
No simple side-channel attack and TRUE=0x5555, FALSE=0xAAAA.

1: trials=3
2: ref_PIN[4] ={1, 2, 3, 4}

: procedure VerifyPIN(user_PIN[4])
: authenticated = FALSE

> W

4
5: diff = FALSE

6: dummy = TRUE

7: if trials > O then

8 fori< Oto3do

9: if user_PIN[i] '= ref_PIN[i] then
10: diff = TRUE
1: else
12: dummy = FALSE
13: end if
14: end for
15: if diff == TRUE then
16: trials = trials - 1
17: else
18: authenticated = TRUE
19: end if
20: end if
21: return authenticated

22: end procedure



PIN verification algorithm 16/23

Constant-time implementation with hardened booleans:
No simple side-channel attack and TRUE=0x5555, FALSE=0xAAAA.

1: trials=3 . .
2: ref_PIN[4]= (1,2, 3, 4} if (trials > 0)
3: procedure VerifyPIN(user_PIN[4]) {
4: authenticated = FALSE
5: diff = FALSE
6:  dummy = TRUE T
7: if trials > O then
8 fori< Oto3do
9: if user_PIN[i] '= ref_PIN[i] then
10: diff = TRUE
1: else
12: dummy = FALSE CMP R3, 0
13: end if BLE address
14: end for
15: if diff == TRUE then
16: trials = trials - 1
17: else
18: authenticated = TRUE
19: end if
20: end if
21: return authenticated

22: end procedure



Fault injection on the CMP instruction

bits [15[14]13]12]11]10[9[8]7]6]|5]4|3[2][1]0]

Reference instructions
GenericCMP [0 | O | 1
cMP R3, 0 [0[0[1]o|1]0[1][1]0]0[0]0][O]0O]O]O
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By design, R7 stores the frame-pointer, always positive.
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Fault injection on the CMP instruction

bits [15[14]13]12]11]10[9[8]7]6]|5]4|3[2][1]0]

Reference instructions
GenericCMP [0 |0 | 1|01 Rd
CMP R3, 0 [0[O[1][0[1]0[1]1

Perform a bit-set on the 10t bit of the instruction: R3 < R7.
By design, R7 stores the frame-pointer, always positive.

Register corruption ¥
lcvp R7, 0 [oJo[1]o[1[1]1][1]o]o]o]o]0o|0[0O]O]

‘ trials is never compared = unlimited number of trials. \




AES-128 encryption: last AddRoundKey 18/23

1: procedure ADDROUNDKEY
2 fori<+ Oto3do

3 forj<— Oto3do
4: S,‘J = 5,‘7}’ D K,{?
5 end for

6 end for

7. end procedure



AES-128 encryption: last AddRoundKey 18/23

1: procedure ADDROUNDKEY MOV RO, O
2 fori< Oto3do addr_i:
3 forj< Oto3do MOV R1, O
4: Sij=Sij® K,{? addr_j:
5 end for S
6 end for ADD R1, 1
7. end procedure CMP R1, 3
BLE addr_j
ADD RO, 1
for (int i=0; i<4; i++) CiP RO, 3
C BLE addr_i
for (int j=0; j<4; j++)
{
}



Fault injection on the ADD instruction

bits [15[14]13]12]11[10] 9 [8[7[6]5]4]3]2]1]0]

Reference instructions
GenericADD |[O | O | 1|1
ADD RO, 1 |O|O[1[1]0|0[0]0]0|0|0|0|O]O]O]1

o
)
a
5
3

%




Fault injection on the ADD instruction

bits [15[14]13]12]11[10] 9 [8[7[6]5]4]3]2]1]0]

Reference instructions

GenericADD (O[O | 1|10 Rd
ADD RO, 1 |O|O[1[1]0|0[0]0]0|0|0|0|O]O]O]1

Perform a bit-set on the 2" bit of the instruction.
Add 5 instead of 1to the loop variable.



Fault injection on the ADD instruction

bits [15[14]13]12]11[10] 9 [8[7[6]5]4]3]2]1]0]

Reference instructions
GenericADD |O|{O|1|1]|0 Rd imm8
ADD RO, 1 |O|O[1[1]0|0[0]0]0|0|0|0|O]O]O]1

Perform a bit-set on the 2" bit of the instruction.
Add 5 instead of 1to the loop variable.

Data corruption
ADD RO, 5 [0]o[1]1]0]0]0]0[0[0]0O]0O]O]




Fault injection on the ADD instruction

bits [15[14]13]12]11[10] 9 [8[7[6]5]4]3]2]1]0]

Reference instructions
GenericADD |O|{O|1|1]|0 Rd imm8
ADD RO, 1 |O|O[1[1]0|0[0]0]0|0|0|0|O]O]O]1

Perform a bit-set on the 2" bit of the instruction.
Add 5 instead of 1to the loop variable.

Data corruption ¥
|ADD RO, 5 [0]o|1]1]0]0]0]0[0[0[O[O[OfH O] 1]

‘ For loop exit after one execution only. |
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Faulty ciphertext byte: Cx, = Cx, ® K&,

Co,0/C1,0|C2,0|C3,0

) )

Fault on the inner for loop Ci1|Co,1|Ca
on its first execution. Ci12|C22(C32

C13|Co3|C33
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Faulty ciphertext byte: Cx, = Cx, ® K&,

Co,0/C1,0|C2,0|C3,0

Fault on the inner for loop C21|C3,1
on its first execution. C22|Cs2
Cr3(C33

Fault on the outer for loop.




10*" round-key recovery

Faulty ciphertext byte: Cx, = Cx, ® K&,

Co,0/C1,0|C2,0|C30
C1,1]C21|C3
C12|Co2|C32

C13/Co3|C33

) )




10*" round-key recovery

Faulty ciphertext byte: Cx, = Cx, ® K&,

Co,0/C1,0|C2,0|C30
C1,1]C21|C3
C12|Co2|C32

C13/Co3|C33

) )

Only one byte of the 10t round-key, must be brute-forced.
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Summary 22/23

Force storage transistors to
conduct in Flash memory.

Physical level

Y

Perform a bit-set on a chosen

Implementation level . . . .
P single bit of the instruction.

Y

Always take the first if branch.

Excclition |evel Prematurely exit the for loops.

Y

Unlimited trials on the VerifyPIN.

Algorithmic level .
gorithmic leve AES last AddRoundKey alteration.
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Possibilities
© Bit-set on Flash data, © Contiguous bits only,
© Security level lowering. © Control-flow alteration mostly.

Perspectives:
© Try on other application codes,
© Try on protected codes,

© Try on other microcontrollers,
© Multispot laser:

© More possibilities of corruption,
© Disable error-detection/correction capabilities.

© Develop countermeasures

— Questions? —
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