
Laser-induced Single-bit Faults in FlashMemory: Instructions Corruption ona 32-bit Microcontroller
Brice Colombier1, Alexandre Menu2,Jean-Max Dutertre2, Pierre-Alain Moëllic3,Jean-Baptiste Rigaud2 and Jean-Luc Danger4

1Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 55162IMT, Mines Saint-Etienne, Centre CMP, Equipe Commune CEA Tech - Mines Saint-Etienne3CEA Tech, Centre CMP, Equipe Commune CEA Tech - Mines Saint-Etienne4LTCI, Télécom ParisTech , Institut Mines-télécom, Université Paris Saclay

Cryptarchi workshopJune 25th, 2019

Fault attacks on
32-bit microcontrollers

Fault attacks 2/23

Definition: fault attacks
A fault attack consists in disturbing the operating conditionsof a device to gain privileged access or knowledge about thesecret data it handles.

Fault injection techniques
Global

Clock glitches,
Supply voltage glitches,
Underpowering,
...

Local
Electromagnetic,
Optical,
...

Understanding fault attacks: a timeline 3/23

Algorithmic level

Execution level

Implementation level

Physical level

8-bit understanding:
attacks on cryptographic algorithms,
register corruption and instruction skip,
timing constraints violation.

32-bit understanding:
Currently: mostly algorithmicand execution level.

32-bit challenges
Bigger, more complex chips,
Micro-architecture: pipeline, pre-fetch...
Execution timing variability.

Understanding fault attacks: a timeline 3/23

Algorithmic level

Execution level

Implementation level

Physical level

8-bit understanding:
attacks on cryptographic algorithms,
register corruption and instruction skip,
timing constraints violation.

32-bit understanding:
Currently: mostly algorithmicand execution level.

32-bit challenges
Bigger, more complex chips,
Micro-architecture: pipeline, pre-fetch...
Execution timing variability.

Understanding fault attacks: a timeline 3/23

Algorithmic level

Execution level

Implementation level

Physical level

8-bit understanding:
attacks on cryptographic algorithms,
register corruption and instruction skip,
timing constraints violation.

32-bit understanding:
Currently: mostly algorithmicand execution level.

32-bit challenges
Bigger, more complex chips,
Micro-architecture: pipeline, pre-fetch...
Execution timing variability.

Understanding fault attacks: a timeline 3/23

Algorithmic level

Execution level

Implementation level

Physical level

8-bit understanding:
attacks on cryptographic algorithms,
register corruption and instruction skip,
timing constraints violation.

32-bit understanding:
Currently: mostly algorithmicand execution level.

32-bit challenges
Bigger, more complex chips,
Micro-architecture: pipeline, pre-fetch...
Execution timing variability.

Experimental setup and
preparatory work

Hardware target 4/23

A 32-bitmicrocontroller:
2.5 x 2.5mm.
ARM Cortex-M3 core,
90 nm technology node,
128 kB of Flash memory,

The C source code is compiled into the Thumb-2 instruction set.

Experimental setup 6/23

Laser bench characteristics
Infrared (1064 nm) forback-side injection,
>30 ps,
0-3W,
3 objective lenses:

x5 (20 µm),
x20 (5 µm),
x100 (1 µm).

Experimental setup 6/23

Laser bench characteristics
Infrared (1064 nm) forback-side injection,
>30 ps,
0-3W,
3 objective lenses:

x5 (20 µm),
x20 (5 µm),
x100 (1 µm).

Experimental setup 6/23

Laser bench characteristics
Infrared (1064 nm) forback-side injection,
>30 ps,
0-3W,
3 objective lenses:

x5 (20 µm),
x20 (5 µm),
x100 (1 µm).

Perparatory work 7/23
Preparatory work (4-5 months)

Ë Design of a custom ChipWhisperer target board:
Ë Front-side access,
Ë Back-side access.

Ë Target preparation: decapsulate the chip to see the die,
Ë Mechanical setup on the laser injection bench,
Ë Faults mapping:

Ë x-position,
Ë y-position,
Ë power,
Ë duration,
Ë delay,
Ë type of fault: instruction skip, bit-set, bit-reset, bit-flip...

Perparatory work 7/23
Preparatory work (4-5 months)

Ë Design of a custom ChipWhisperer target board:
Ë Front-side access,
Ë Back-side access.

Ë Target preparation: decapsulate the chip to see the die,
Ë Mechanical setup on the laser injection bench,
Ë Faults mapping:

Ë x-position,
Ë y-position,
Ë power,
Ë duration,
Ë delay,
Ë type of fault: instruction skip, bit-set, bit-reset, bit-flip...

trigger

laser
out

P
duration

delay

Characterisation results

Characterisation code 8/23

1 test_data:
2 .word 0x00000000
3 NOP
4 NOP
5 NOP
6 NOP
7 NOP
8 NOP
9 LDR R0, test_data ù

10 NOP
11 NOP
12 NOP
13 NOP
14 NOP
15 NOP
16 # Reading back R0

Write a test data at a specificaddress in Flash memory,
Store this value in a known register,
Read back the register.

Choice of test data
0x00000000: bit-sets,
0xFFFFFFFF: bit-resets,
0x55555555

0xAAAAAAAA: bit-flips.

Characterisation code 8/23

1 test_data:
2 .word 0x00000000
3 NOP
4 NOP
5 NOP
6 NOP
7 NOP
8 NOP
9 LDR R0, test_data ù

10 NOP
11 NOP
12 NOP
13 NOP
14 NOP
15 NOP
16 # Reading back R0

Write a test data at a specificaddress in Flash memory,
Store this value in a known register,
Read back the register.

Choice of test data
0x00000000: bit-sets,
0xFFFFFFFF: bit-resets,
0x55555555

0xAAAAAAAA: bit-flips.

Faulty bit wrt. x/y position and delay 9/23

200 300 400 500
x (µm)

200

400

600

800

1000

1200

1400

y
(µ

m
)

1650 1750 1850
delay (ns)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Fa
ul

ty
 b

it

Fault model
Monobit-set on fetched data.

Parameters dependency
Faulty bit depends on y position.

Faulty bit wrt. power and duration 10/23

300 350 400 450 500

0%
50

%
10

0%

Fa
ul

t
oc

cu
rr

en
ce

P=0.5W, duration 65ns

Mono-bit fault
Dual-bit fault

300 350 400 450 500

P=0.5W, duration 135ns

300 350 400 450 500

P=0.5W, duration 200ns

300 350 400 450 500

P=0.5W, duration 270ns

300 350 400 450 500

0%
50

%
10

0%

Fa
ul

t
oc

cu
rr

en
ce

P=0.8W, duration 65ns

300 350 400 450 500

P=0.8W, duration 135ns

300 350 400 450 500

P=0.8W, duration 200ns

300 350 400 450 500

P=0.8W, duration 270ns

300 350 400 450 500

0%
50

%
10

0%

Fa
ul

t
oc

cu
rr

en
ce

P=1.1W, duration 65ns

300 350 400 450 500

P=1.1W, duration 135ns

300 350 400 450 500

P=1.1W, duration 200ns

300 350 400 450 500

P=1.1W, duration 270ns

300 350 400 450 500
Delay (ns)

0%
50

%
10

0%

Fa
ul

t
oc

cu
rr

en
ce

P=1.4W, duration 65ns

300 350 400 450 500
Delay (ns)

P=1.4W, duration 135ns

300 350 400 450 500
Delay (ns)

P=1.4W, duration 200ns

300 350 400 450 500
Delay (ns)

P=1.4W, duration 270ns

Observation
Increasing the energy allows to fault more bits.

Characterisation code 2 11/23

1 # Initialising registers
2 # R0, R1, R4, R5, R6, R8
3 # and R9 to 0xFFFFFFFF
4 NOP
5 NOP
6 MOVW R0, 0x0000 ù
7 MOVW R1, 0x0000 ù
8 MOVW R4, 0x0000 ù
9 MOVW R5, 0x0000 ù

10 MOVW R6, 0x0000 ù
11 MOVW R8, 0x0000 ù
12 MOVW R9, 0x0000 ù
13 NOP
14 NOP
15 # Reading back the registers

Fault periodicity (faulty bit wrt. delay) 12/23

450 600 750 900 1050 1200 1350 1500 1650
Delay (ns)

0%
50

%
10

0%

Fa
ul

t
oc

cu
rr

en
ce

tclk tclk tclk tclk tclk tclk tclk tclk

1 MOVW R0, 0x0000 ù
2 MOVW R1, 0x0000 ù
3 MOVW R4, 0x0000 ù
4 MOVW R5, 0x0000 ù
5 MOVW R6, 0x0000 ù
6 MOVW R8, 0x0000 ù
7 MOVW R9, 0x0000 ù

Observations
Each instruction can be faulty,
The occurence always reaches 100%,
The delay between two optimalinjection timings is always amultiple of the clock period
The delay between two optimalinjection timings is not constant.

Physical explanation

Physical explanation for the y-dependency 13/23

D

CBLi

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 0)

Moving along the x-axis
Transistors of the same BL.
Same faulty bit.

Moving along the y-axis
Transistors of the same WL.
Successive faulty bits.

Physical explanation for the y-dependency 13/23

D

CBLi

Iph

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 0)

Laser spot

Moving along the x-axis
Transistors of the same BL.
Same faulty bit.

Moving along the y-axis
Transistors of the same WL.
Successive faulty bits.

Physical explanation for the y-dependency 13/23

D

CBLi

Iph

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 0)

Laser spot

Moving along the x-axis
Transistors of the same BL.
Same faulty bit.

Moving along the y-axis
Transistors of the same WL.
Successive faulty bits.

Physical explanation for the asymmetry 14/23

D

CBLi

Iph

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 0)

Laser spot

Without laser shot
with charges: BL to Vdd
without charges: BL to GND

With laser shot
with charges: BL to GND
without charges: BL to GND

Applications

Example of instruction corruption: 32-bit MOVW 15/23

MOVW: store a 16-bit value in the lower half of a 32-bit register.
bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1 2 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions:
MOVW 1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
MOVW, R0, 0 1 1 1 1 0 0 1 0 0 1 0

Data corruption:
ø

MOVW, R0, 4 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Register corruption:

ø
MOVW, R1, 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Opcode corruption:
ø

MOVT, R0, 0 1 1 1 1 0 0 1 0 1 1 0

PIN verification algorithm 16/23
Constant-time implementation with hardened booleans:No simple side-channel attack and TRUE=0x5555, FALSE=0xAAAA.

1: trials = 32: ref_PIN[4] = {1, 2, 3, 4}3: procedure VerifyPIN(user_PIN[4])4: authenticated = FALSE5: diff = FALSE6: dummy = TRUE7: if trials > 0 then8: for i← 0 to 3 do9: if user_PIN[i] != ref_PIN[i] then10: diff = TRUE11: else12: dummy = FALSE13: end if14: end for15: if diff == TRUE then16: trials = trials - 117: else18: authenticated = TRUE19: end if20: end if21: return authenticated22: end procedure

PIN verification algorithm 16/23
Constant-time implementation with hardened booleans:No simple side-channel attack and TRUE=0x5555, FALSE=0xAAAA.

1: trials = 32: ref_PIN[4] = {1, 2, 3, 4}3: procedure VerifyPIN(user_PIN[4])4: authenticated = FALSE5: diff = FALSE6: dummy = TRUE7: if trials > 0 then8: for i← 0 to 3 do9: if user_PIN[i] != ref_PIN[i] then10: diff = TRUE11: else12: dummy = FALSE13: end if14: end for15: if diff == TRUE then16: trials = trials - 117: else18: authenticated = TRUE19: end if20: end if21: return authenticated22: end procedure

if (trials > 0)
{

...
}

CMP R3, 0
BLE address

Fault injection on the CMP instruction 17/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

Perform a bit-set on the 10th bit of the instruction: R3ú R7.By design, R7 stores the frame-pointer, always positive.
Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0
Outcome

trials is never compared ú unlimited number of trials.

Fault injection on the CMP instruction 17/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Perform a bit-set on the 10th bit of the instruction: R3ú R7.By design, R7 stores the frame-pointer, always positive.

Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0
Outcome

trials is never compared ú unlimited number of trials.

Fault injection on the CMP instruction 17/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Perform a bit-set on the 10th bit of the instruction: R3ú R7.By design, R7 stores the frame-pointer, always positive.
Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

Outcome
trials is never compared ú unlimited number of trials.

Fault injection on the CMP instruction 17/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Perform a bit-set on the 10th bit of the instruction: R3ú R7.By design, R7 stores the frame-pointer, always positive.
Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0
Outcome

trials is never compared ú unlimited number of trials.

AES-128 encryption: last AddRoundKey 18/23

1: procedure AddRoundKey
2: for i← 0 to 3 do
3: for j← 0 to 3 do
4: Si,j = Si,j ⊕ K10i,j5: end for
6: end for
7: end procedure

AES-128 encryption: last AddRoundKey 18/23

1: procedure AddRoundKey
2: for i← 0 to 3 do
3: for j← 0 to 3 do
4: Si,j = Si,j ⊕ K10i,j5: end for
6: end for
7: end procedure

for (int i=0; i<4; i++)
{

for (int j=0; j<4; j++)
{

...
}

}

MOV R0, 0
addr_i:
MOV R1, 0
addr_j:
...
ADD R1, 1
CMP R1, 3
BLE addr_j
ADD R0, 1
CMP R0, 3
BLE addr_i

Fault injection on the ADD instruction 19/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Perform a bit-set on the 2nd bit of the instruction.Add 5 instead of 1 to the loop variable.
Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
Outcome

For loop exit after one execution only.

Fault injection on the ADD instruction 19/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
Perform a bit-set on the 2nd bit of the instruction.Add 5 instead of 1 to the loop variable.

Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
Outcome

For loop exit after one execution only.

Fault injection on the ADD instruction 19/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
Perform a bit-set on the 2nd bit of the instruction.Add 5 instead of 1 to the loop variable.
Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

Outcome
For loop exit after one execution only.

Fault injection on the ADD instruction 19/23

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
Perform a bit-set on the 2nd bit of the instruction.Add 5 instead of 1 to the loop variable.
Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
Outcome

For loop exit after one execution only.

Fault on the for loops 20/23
Faulty ciphertext byte: C̃x,y = Cx,y ⊕ K10x,y

Fault on the inner for loopon its first execution.
C0,0 C1,0 C2,0 C3,0
C̃0,1 C1,1 C2,1 C3,1
C̃0,2 C1,2 C2,2 C3,2
C̃0,3 C1,3 C2,3 C3,3

Fault on the outer for loop.
C0,0 C̃1,0 C̃2,0 C̃3,0
C0,1 C̃1,1 C̃2,1 C̃3,1
C0,2 C̃1,2 C̃2,2 C̃3,2
C0,3 C̃1,3 C̃2,3 C̃3,3

Fault on the for loops 20/23
Faulty ciphertext byte: C̃x,y = Cx,y ⊕ K10x,y

Fault on the inner for loopon its first execution.
C0,0 C1,0 C2,0 C3,0
C̃0,1 C1,1 C2,1 C3,1
C̃0,2 C1,2 C2,2 C3,2
C̃0,3 C1,3 C2,3 C3,3

Fault on the outer for loop.
C0,0 C̃1,0 C̃2,0 C̃3,0
C0,1 C̃1,1 C̃2,1 C̃3,1
C0,2 C̃1,2 C̃2,2 C̃3,2
C0,3 C̃1,3 C̃2,3 C̃3,3

10th round-key recovery 21/23
Faulty ciphertext byte: C̃x,y = Cx,y ⊕ K10x,y

C0,0 C1,0 C2,0 C3,0
C̃0,1 C1,1 C2,1 C3,1
C̃0,2 C1,2 C2,2 C3,2
C̃0,3 C1,3 C2,3 C3,3

⊕ C0,0 C̃1,0 C̃2,0 C̃3,0
C0,1 C̃1,1 C̃2,1 C̃3,1
C0,2 C̃1,2 C̃2,2 C̃3,2
C0,3 C̃1,3 C̃2,3 C̃3,3

=

0 K101,0 K102,0 K103,0
K100,1 K101,1 K102,1 K103,1
K100,2 K101,2 K102,2 K103,2
K100,3 K101,3 K102,3 K103,3

What then?
Only one byte of the 10th round-key, must be brute-forced.

10th round-key recovery 21/23
Faulty ciphertext byte: C̃x,y = Cx,y ⊕ K10x,y

C0,0 C1,0 C2,0 C3,0
C̃0,1 C1,1 C2,1 C3,1
C̃0,2 C1,2 C2,2 C3,2
C̃0,3 C1,3 C2,3 C3,3

⊕ C0,0 C̃1,0 C̃2,0 C̃3,0
C0,1 C̃1,1 C̃2,1 C̃3,1
C0,2 C̃1,2 C̃2,2 C̃3,2
C0,3 C̃1,3 C̃2,3 C̃3,3

=
0 K101,0 K102,0 K103,0
K100,1 K101,1 K102,1 K103,1
K100,2 K101,2 K102,2 K103,2
K100,3 K101,3 K102,3 K103,3

What then?
Only one byte of the 10th round-key, must be brute-forced.

Conclusion

Summary 22/23

Algorithmic level

Execution level

Implementation level

Physical level

Unlimited trials on the VerifyPIN.AES last AddRoundKey alteration.

Always take the first if branch.Prematurely exit the for loops.

Perform a bit-set on a chosensingle bit of the instruction.

Force storage transistors toconduct in Flash memory.

Summary 22/23

Algorithmic level

Execution level

Implementation level

Physical level

Unlimited trials on the VerifyPIN.AES last AddRoundKey alteration.

Always take the first if branch.Prematurely exit the for loops.

Perform a bit-set on a chosensingle bit of the instruction.

Force storage transistors toconduct in Flash memory.

Summary 22/23

Algorithmic level

Execution level

Implementation level

Physical level

Unlimited trials on the VerifyPIN.AES last AddRoundKey alteration.

Always take the first if branch.Prematurely exit the for loops.

Perform a bit-set on a chosensingle bit of the instruction.

Force storage transistors toconduct in Flash memory.

Summary 22/23

Algorithmic level

Execution level

Implementation level

Physical level

Unlimited trials on the VerifyPIN.AES last AddRoundKey alteration.

Always take the first if branch.Prematurely exit the for loops.

Perform a bit-set on a chosensingle bit of the instruction.

Force storage transistors toconduct in Flash memory.

Summary 22/23

Algorithmic level

Execution level

Implementation level

Physical level

Unlimited trials on the VerifyPIN.AES last AddRoundKey alteration.

Always take the first if branch.Prematurely exit the for loops.

Perform a bit-set on a chosensingle bit of the instruction.

Force storage transistors toconduct in Flash memory.

Perspectives 23/23

Possibilities
Bit-set on Flash data,
Security level lowering.

Limitations
Contiguous bits only,
Control-flow alteration mostly.

Perspectives:
Try on other application codes,
Try on protected codes,
Try on other microcontrollers,
Multispot laser:

More possibilities of corruption,
Disable error-detection/correction capabilities.

Develop countermeasures

—Questions? —

Perspectives 23/23

Possibilities
Bit-set on Flash data,
Security level lowering.

Limitations
Contiguous bits only,
Control-flow alteration mostly.

Perspectives:
Try on other application codes,
Try on protected codes,
Try on other microcontrollers,
Multispot laser:

More possibilities of corruption,
Disable error-detection/correction capabilities.

Develop countermeasures

—Questions? —

Perspectives 23/23

Possibilities
Bit-set on Flash data,
Security level lowering.

Limitations
Contiguous bits only,
Control-flow alteration mostly.

Perspectives:
Try on other application codes,
Try on protected codes,
Try on other microcontrollers,
Multispot laser:

More possibilities of corruption,
Disable error-detection/correction capabilities.

Develop countermeasures

—Questions? —

	Fault attacks on 32-bit microcontrollers
	Experimental setup and preparatory work
	Characterisation results
	Physical explanation
	Applications
	Conclusion

