
CEA - DRT/DPACASecure Architectures and Systemslaboratory

Brice Colombier
brice.colombier@cea.fr

Pierre-Alain Moëllic
pierre-alain.moellic@cea.fr

Experimental evaluation
of software countermeasures

PROSECCOWorkshop

6 novembre 2018
|1

Goal of the presentation

Goal: Present the first results of the security evaluation we perform atthe Secure Architectures and Systems laboratory (joint team CEA Tech,Mines Saint-Etienne).
This evaluation helps to design efficient countermeasures byprodiving a feedback to the designer.
Evaluation carried out for different:
	 Physical threats:

	 Side-channel analysis
	 Fault-attacks

	 Hardware targets:
	 8-bit microcontrollers
	 32-bit microcontroller ARM Cortex M/A

	 Practical use-cases:
	 VerifyPIN
	 AES encryption

|2

Evaluation method

Two main axes:
	 Leakage assessment using statistical tools

	 Attack-independent
	 Attack-based methodology:

Complexity / Cost Side-channel attacks Fault attacks
+ / 5 Correlation power analysis Clock glitchesTemplate attacks

+++ / 555 Machine learning Laser(deep neural networks)

|3

Outline

1 Side-channel leakage assessment

2 Fault attacksVerifyPINAES-128 encryption
3 Combination of protections

4 Conclusion

|4

Side-channel leakage
assessment

Leakage assessment

Aim: conduct a statistical study to evaluate the leakages.
Statistical tests: reject or not a null hypothesis (i.e. the means of thetarget populations are equal)
Two common tools in SCA context:
	 t-test [1]: split the traces in two sets w.r.t an intermediate value,see if they differ statistically.

	 The t statistic follows a Student law. For sufficient number oftraces, |t| > 4.5 give a confidence of 99.999 % to reject the NH.
	 In our experiments: target at bit level.

	 F-test [2], SNR: generalization of t-test for multiple sets. Takesthe variance into consideration.
	 Ratio of inter-class VS intra-class variance.
	 In our experiments: target at byte level.

[1] Tobias Schneider and Amir Moradi. "Leakage Assessment Methodology - a clear roadmap for sidechannel evaluations".IACR ePrint 2015.
[2] Omar Choudary and Markus G. Kuhn. "Efficient template attacks."International Conference on Smart Card Research and Advanced Applications. 2013.

|5

Comparison of unmasked and masked S-boxes

Splitting according to the value of the 8 bits at the 1st S-box output.20000 traces of 128-bit AES encryption.

unmasked

masked

à No more 1st order leakage with this masking scheme.
|6

Identification of new leakage points

Themasks generation process leaks information as well (F-test).Generation of the 6 random masks (4 for MixColumn, 2 for SubBytes):

In the worst case scenario (profiled attacks), these can be combinedwith other leakage points later to perform a second order attack.(M ; SBOX(P⊕K)⊕M)à SBOX(P⊕K)
|7

Identification of new leakage points

Interestingly, we can see the masks manipulation during theencryption process. The initial (masked) key schedule can also leakinformation or be profiled for efficient differential fault attack (DFA):

|8

Identification of new leakage points

Interestingly, we can see the masks manipulation during theencryption process. The initial (masked) key schedule can also leakinformation or be profiled for efficient differential fault attack (DFA):

|8

Identification of new leakage points

Interestingly, we can see the masks manipulation during theencryption process. The initial (masked) key schedule can also leakinformation or be profiled for efficient differential fault attack (DFA):

|8

F-test on desynchronised traces

A second order CPA can target – jointly – the two shares.Desynchronization-based protections can reduce this exploitability.
Leakage evaluation when simulating desynchronisation by randomlyinserting n blocks of w NOPs during the execution:

à Leakage shrinks and becomes unexploitable (20000 traces here).
à Provide hints for protecting the design.

|9

Ongoing works

On protected AES (masking, hiding), powerful template attacks need:
	 Strong information compression (PCA, LDA) or
	 Detection of points of interest
	 Resynchronization techniques

à can become rapidly difficult in practice.
Machine Learning-based analysis can be helpful here [3] [4]
	 Deep learning-based attacks againstmasking
	 Denoising and resynchronization with autoencoder
	 ...

[3] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, François-Xavier StandaertTemplate Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in Side-Channel Analysis). COSADE 2015
[4] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, Cécile DumasStudy of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database. IACR ePrint 2018

|10

Fault attacks

Low cost: Clock glitches on a VerifyPIN

Different hardened VerifyPIN have been successfully bypassed:
± Constant-time
± Constant-time and inlined functions
± Constant-time and inlined functions and loop counter
Ï Constant-time and inlined functions and double call
Limitations
The ChipWhisperer platform cannot glitch at two different times.

Plan to overcome

We shall shoot with the laser!
|11

Laser faults

Preparatory work

± Design a custom ChipWhisperer target board:
± Front-side access
± Back-side access

± Prepare the target: decapsulate the chip to access the die
± Mechanical setup of the target on the bench
... Mapping out the faults:

	 x-y position,
	 power,
	 duration,
	 delay,
	 type of fault (skip, set, reset, flip, ...)

|12

Laser setup

Characteristics

	 IR (1064nm)
	 >30ps
	 0-3W
	 3 objective lenses:

	 x5 (20µm)
	 x20 (5µm)
	 x100 (1µm)

|13

Laser setup

Characteristics

	 IR (1064nm)
	 >30ps
	 0-3W
	 3 objective lenses:

	 x5 (20µm)
	 x20 (5µm)
	 x100 (1µm)

|13

Laser setup

Characteristics

	 IR (1064nm)
	 >30ps
	 0-3W
	 3 objective lenses:

	 x5 (20µm)
	 x20 (5µm)
	 x100 (1µm)

|13

8-bit microcontroller results

Instruction skip fault model previously validated experimentally [5]

[5] Practical results on laser-induced instruction-skip attacks into microcontrollers.T. Riom, J.-M. Dutertre, O. Potin, J.-B. Rigaud, TRUDEVICE Workshop 2016, Barcelona
|14

8-bit microcontroller results

This time, all implementations are vulnerable.
± Constant-time
± Constant-time and inlined functions
± Constant-time and inlined functions and loop counter
± Constant-time and inlined functions and double call
± Constant-time and inlined functions and control-flow integrity

Paradox

Constant-time implementation makes laser attacks much easier

|15

32-bit microcontroller

Amore complex target (32 bits) implies:
	 Larger area to cover for cartography (2.5x2.5cm),
	 Complex micro-architecture,
	 More time variability

|16

32-bit microcontroller

Amore complex target (32 bits) implies:
	 Larger area to cover for cartography (2.5x2.5cm),
	 Complex micro-architecture,
	 More time variability

RAM
CPU

ANALOG

FL
A
S
H

|16

32-bit microcontroller

Amore complex target (32 bits) implies:
	 Larger area to cover for cartography (2.5x2.5cm),
	 Complex micro-architecture,
	 More time variability

RAM
CPU

ANALOG

FL
A
S
H

|16

Instruction corruption in Flash memory

A laser shot in flash memory alters the fetched data on-the-fly.

200 300 400 500
x (µm)

200

400

600

800

1000

1200

1400

y
(µ

m
)

1650 1750 1850
delay (ns)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Fa
ul

ty
 b

it

Fault model

Bit-set on data (and instructions) fetched from flash memory
|17

Examples of instruction corruption

Modifying a MOVW instruction(32 bits).

bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructionsGeneric MOVW 1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
MOVW, R0, 0 1 1 1 1 0 i 1 0 0 1 0

Data corruption Þ
MOVW, R0, 4 1 1 1 1 0 i 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Destination register corruption Þ
MOVW, R1, 0 1 1 1 1 0 i 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Opcode corruption Þ
MOVT, R0, 0 1 1 1 1 0 i 1 0 1 1 0

|18

Laser fault injection on VerifyPIN

Constant-time implementation with hardened booleans.
1: trials = 3
2: ref_PIN[4] = {1, 2, 3, 4}
3: procedure VerifyPIN(user_PIN[4])
4: authenticated = FALSE
5: diff = FALSE
6: if trials > 0 then
7: for i← 0 to 3 do
8: if user_PIN[i] != ref_PIN[i] then
9: diff = TRUE
10: if diff == TRUE then
11: trials = trials - 1
12: else
13: authenticated = TRUE
14: return authenticated

C code:
if (trials > 0)

Assembly code:
CMP R3, 0
BLE address

|19

Fault injection on the CMP instruction

Performing a bit-set at index 10.Instead of comparing R3, we compare R7.By design, R7 stores the frame pointer, always positive.
bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
Register corruption Þ
CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

Outcome

The trials value is never comparedà unlimited number of trials.

The PIN value can be brute-forced.
|20

Laser fault injection on AES-128

1: procedure Add_round_key
2: for i← 0 to 3 do
3: for j← 0 to 3 do
4: state[i][j] ^= round_key[round][i][j]

C code:
for (int i=0; i<4; i++){

for (int j=0; j<4; j++){
...

}}

Assembly code:
MOV R0, 0
addr_i:
MOV R1, 0
addr_j:
...
ADD R1, 1
CMP R1, 3
BLE addr_j
ADD R0, 1
CMP R0, 3
BLE addr_i

|21

Faulting the loop variable increment

Add 5 instead of 1 after executing the body of the loop.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reference instructionsGeneric ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
Data corruption Þ
ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

Outcome

The for loop exits after one execution only.

|22

Faulting the for loops

Faulting the inner for loopon its first execution
C0,0 C1,0 C2,0 C3,0

C0,1 ⊕ K100,1 C1,1 C2,1 C3,1
C0,2 ⊕ K100,2 C1,2 C2,2 C3,2
C0,3 ⊕ K100,3 C1,3 C2,3 C3,3

Faulting the
outer for loop

C0,0 C1,0 ⊕ K101,0 C2,0 ⊕ K102,0 C3,0 ⊕ K103,0
C0,1 C1,1 ⊕ K101,1 C2,1 ⊕ K102,1 C3,1 ⊕ K103,1
C0,2 C1,2 ⊕ K101,2 C2,2 ⊕ K102,2 C3,2 ⊕ K103,2
C0,3 C1,3 ⊕ K101,3 C2,3 ⊕ K102,3 C3,3 ⊕ K103,3

What is left?
Holding one correct and two faulty ciphertexts, the attacker onlyneeds to brute-force the tenth round-key byte K100,0 à 27.

|23

Conclusion on laser faults in flash memory

Capabilities

	 Temporarily alter instruction/data from flash memory,
	 Corrupt the control flow of a program,
	 Weaken security of embedded programs.

Limitations

	 Bit-set only (so far),
	 Adjacent bits only,
	 Control-flow corruption mostly.

Future possibilities

	 Multispot laser
|24

Combination of
protections

For the best: 2nd order CPA made harder

Principle of 2nd order CPA: attack two S-box output bytes.Traditionally, target the two shares (mask + masked value) but twoconsecutive bytes work well:
	 |Leak(Sbox(Pi ⊕ Ki)⊕M ′) - Leak(Sbox(Pj ⊕ Kj)⊕M ′)|

	 HW(Sbox(Pi ⊕ Ki)⊕M ′ ⊕ Sbox(Pj ⊕ Kj)⊕M ′)

= HW(Sbox(Pi ⊕ Ki) ⊕ Sbox(Pj ⊕ Kj))à no more mask !

2 4 6 8
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
co

ef
fic

ie
nt

|25

For the best: 2nd order CPA made harder

Combining leakages is easy when traces are perfectly synchronised.

800 traces required to break 1st-roder masked AES on STM32.

A desynchronising countermeasure is very powerful here!
|26

For the worst

Countermeasure against FA or SCA are usually compatible.
Countermeasure against FA and SCA can be incompatible.
Example

Redundancy-based protection against Fault Injection Analysis can
enhance side-channel leakages...

Side-Channel Analysis is not only for key recovering purpose, it alsohelps in temporaly profiling fault injection (bypassing secure boot [6])
Each casemust be evaluated separately.
[6] Niek Timmers, Albert Spruyt, Bypassing Secure Boot using Fault Injection, Black Hat Europe 2016

|27

Conclusion

Conclusion

	 Inserting protections at software level is powerful
	 Leakage assessment is a great tool to design protections

	 Providesmetrics of leakage reduction efficiency
	 New attack on flash memory of a 32-bit microcontroller
	 Combinations of protections is a double-edged sword

—Questions ? —

|28

Conclusion

	 Inserting protections at software level is powerful
	 Leakage assessment is a great tool to design protections

	 Providesmetrics of leakage reduction efficiency
	 New attack on flash memory of a 32-bit microcontroller
	 Combinations of protections is a double-edged sword

—Questions ? —
|28

Commissariat à l’énergie atomique et aux énergies alternatives
17 rue des Martyrs | 38054 Grenoble Cedex
www.cea-tech.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Contacts: Brice Colombier
brice.colombier@cea.fr

Pierre-Alain Moëllic
pierre-alain.moellic@cea.fr

	Side-channel leakage assessment
	Fault attacks
	VerifyPIN
	AES-128 encryption

	Combination of protections
	Conclusion

