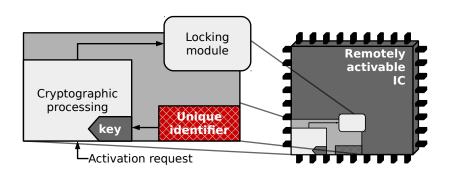
Key reconciliation protocol application to error correction in silicon PUF responses

Brice Colombier*, Lilian Bossuet*, David Hély+

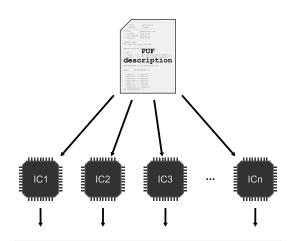
*Laboratoire Hubert Curien Saint-Étienne — France *LCIS, Grenoble Institute of Technology Valence — France

May 31, 2016

Journée Sécurité Numérique du GDR SoC-SiP : 11ème édition La génération d'aléa dans le matériel : TRNG & PUF



¹http://www.univ-st-etienne.fr/salware/



Different responses to the **same** challenge.

Principle:

Extract entropy from **process variations**.

Aim:

Provide a unique, per-device ID, thanks to the **inter-device** uniqueness.

Problem:

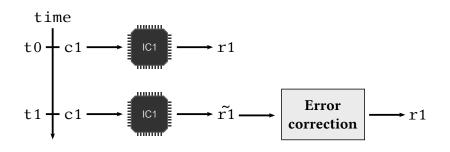
PUF responses to the **same** challenge **change** over time.

This variation depends on multiple parameters:

- PUF architecture,
- Process node,
- Aging,
- Temperature,
- Environment...
- → It prevents the PUF response from being used as a **key**.

Solution:

Correct the PUF response.



Requirements for the error correction module:

- Low area,
- High correction probability.

Several error-correcting code implementations exist:

Article	Construction and code(s)	Logic resourd Xilinx Spartan 3	ces (Xilinx Slices Xilinx Spartan 6
2	Concatenated: Repetition and BCH		221
3	Reed-Muller		179
4	ВСН		>59
5	Concatenated: Repetition and Reed-Muller	168	

²R. Maes et al. "PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator". *CHES*, 2012.

³M. Hiller et al. "Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs". *ISVI SI*, 2015

⁴A. V. Herrewege et al. "Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs". *FC*. 2012.

⁵C. Bösch et al. "Efficient Helper Data Key Extractor on FPGAs". CHES. 2008.

Several error-correcting code implementations exist:

Article	Construction and code(s)	Logic resources (Xilinx Slices)	
		Xilinx Spartan 3	Xilinx Spartan 6
2	Concatenated: Repetition and BCH		221
3	Reed-Muller		179
4	ВСН		>59
5	Concatenated: Repetition and Reed-Muller	168	
This work	CASCADE protocol	69	19

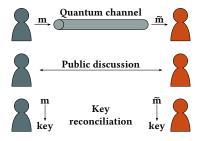
²R. Maes et al. "PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator". *CHES*, 2012.

³M. Hiller et al. "Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs" /SV/SI 2015

⁴A. V. Herrewege et al. "Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs". *FC*. 2012.

⁵C. Bösch et al. "Efficient Helper Data Key Extractor on FPGAs". CHES. 2008.

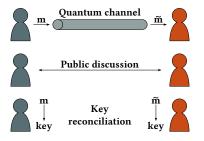
CASCADE introduced in 1993 by Brassard and Salvail⁶



The final key is **shorter** than the original message.

⁶G. Brassard et al. "Secret-Key Reconciliation by Public Discussion". *EUROCRYPT*. 1993.

CASCADE introduced in 1993 by Brassard and Salvail⁶

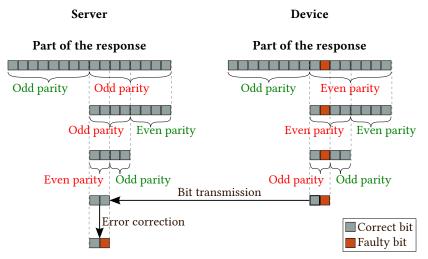


The final key is **shorter** than the original message.

This could be used to derive keys from slightly different PUF responses.

⁶G. Brassard et al. "Secret-Key Reconciliation by Public Discussion". *EUROCRYPT*. 1993.

Works on **parts** of the responses that have a **different parity**.



Allows to correct **one error**.

Algorithm 1: BINARY

```
Input: r_0, r_t, n_{passes}

for i = 1 to n_{passes} do

Shuffle r_0 and r_t using a public permutation \sigma_i

Split r_0 and r_t in blocks of size s_b

forall blocks do

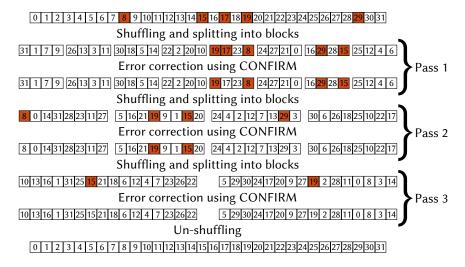
Compute the relative parity P_r(b_{0,i},b_{t,i}) // Detection if P_r(b_{0,i},b_{t,i}) = 1 then

CONFIRM(b_{0,i},b_{t,i}) // Correction
```

Double the block size $s_b = 2 * s_b$

Un-shuffle r_0 and r_t with inverse permutations σ_1^{-1} , σ_2^{-1} , ..., $\sigma_{n_{passes}}^{-1}$ return r_0 , r_t

Example: 32-bit responses, 5 errors.



Two ways of leaking information:

- Relative parity computations,
 - 1 bit.
- CONFIRM executions on an *n*-bit block.
 - $log_2(n)$ bits.

Two ways of leaking information:

- Relative parity computations,
 - 1 bit.
- CONFIRM executions on an *n*-bit block.
 - $log_2(n)$ bits.

Example:

128-bit response, $\varepsilon = 0.05 \rightarrow 7$ errors.

- 1st pass: 8-bit blocks, 4 errors corrected.
- 2nd pass: 16-bit blocks, 3 errors corrected.

Leakage: $\frac{128}{8} + 4 \times log_2(8) + \frac{128}{16} + 3 \times log_2(16) = 48$ bits.

The final effective length of the response is 128 - 48 = 80 bits.

Two ways of leaking information:

- Relative parity computations,
 - 1 bit.
- CONFIRM executions on an *n*-bit block.
 - $log_2(n)$ bits.

Example:

128-bit response, $\varepsilon = 0.05 \rightarrow 7$ errors.

- 1st pass: 8-bit blocks, 4 errors corrected.
- 2nd pass: 16-bit blocks, 3 errors corrected.

Leakage: $\frac{128}{8} + 4 \times log_2(8) + \frac{128}{16} + 3 \times log_2(16) = 48$ bits.

The final effective length of the response is 128 - 48 = 80 bits.

How can it be improved?

After a pass, all the blocks have an **even** relative parity.

After a pass, all the blocks have an **even** relative parity.

 \rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes **odd** again.

After a pass, all the blocks have an **even** relative parity.

- \rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes **odd** again.
 - → **one more** error from this block can be corrected.

After a pass, all the blocks have an **even** relative parity.

- \rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes **odd** again.
 - → **one more** error from this block can be corrected.

Example:

12 14 4 7 9 0 13 5

Parity check does not detect these errors.

If, in a subsequent pass, the error 9 is corrected:

 \rightarrow The block can be **processed again** to correct error 13.

Required:

Two lists storing blocks according to their relative parity.

- Correcting an error at index *i* makes blocks containing index *i* move from one list to the other
 - → (their relative parity changed).
- Error correction is carried out until there are no more blocks of odd parity.
- At the end of each pass, the blocks are added to the list of blocks of **even relative parity**.

relative parity: \varnothing Blocks of odd relative

Blocks of even

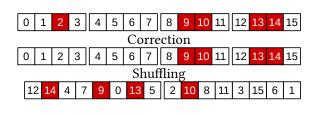
Blocks of odd relative parity:

7

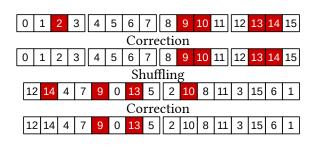
8

Blocks of odd relative parity:

Blocks of odd relative parity:



Blocks of odd relative parity:



Blocks of odd relative parity:



Blocks of even relative parity:

1 2 3 4 5 6 7

9 10 11 12 13 14 15

10 8 11 3 15 6 1

9 | 0 | 13 | 5

Blocks of odd relative parity:



Blocks of even relative parity:

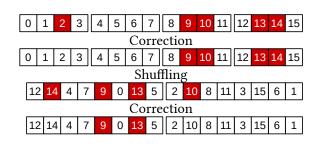
1 2 3 4 5 6 7

9 10 11 12 13 14 15

10 8 11 3 15 6 1

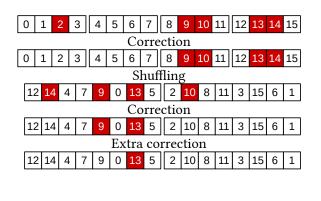
9 | 0 | 13 | 5

Blocks of odd relative parity:



Blocks of odd relative parity:

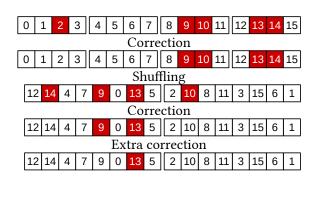
8 9 10 11 12 13 14 15



0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5

Blocks of odd relative parity:

8 9 10 11 12 13 14 15

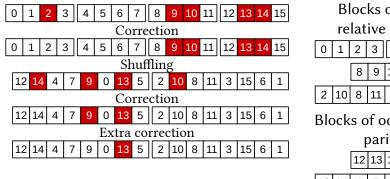


0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1

12 14 4 7 9 0 13 5

Blocks of odd relative parity:

8 9 10 11 12 13 14 15



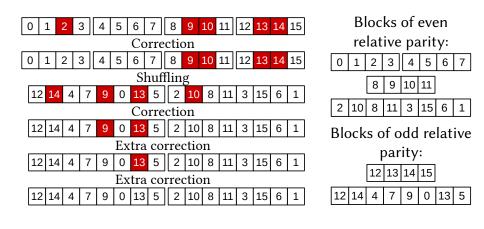
5 6 9 10 11

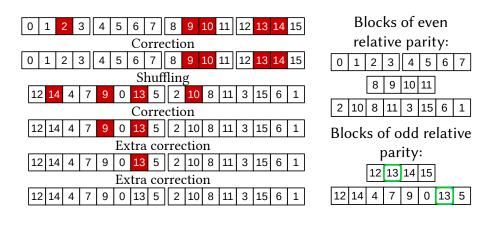
8 | 11 | 3 | 15 |

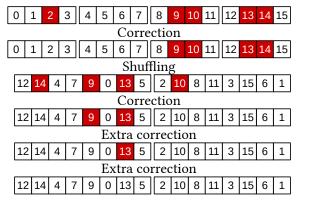
Blocks of odd relative parity:

12 13 14 15

9 13 5







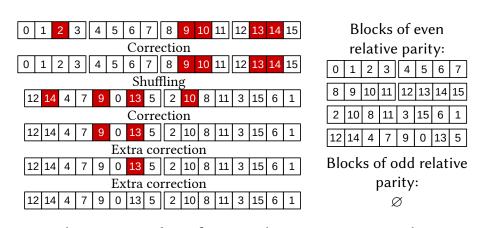
 0
 1
 2
 3
 4
 5
 6
 7

 8
 9
 10
 11
 12
 13
 14
 15

 2
 10
 8
 11
 3
 15
 6
 1

 12
 14
 4
 7
 9
 0
 13
 5

Blocks of odd relative parity:



For the **same number of passes**, the CASCADE protocol allows to correct **more errors** than BINARY.

→ The information leakage is **lower**.

What is the lower bound on the information leakage?

It is related to the conditional entropy $H(r_t|r_0) = nh(\varepsilon)$ where: ε is the error rate and n is the response length.

$$h(\varepsilon) = -\varepsilon . log_2(\varepsilon) - (1 - \varepsilon) . log_2(1 - \varepsilon)$$

The best length we can expect for the final response is then:

$$n - nh(\varepsilon) = n(1 - h(\varepsilon))$$

Examples:

With a 128-bit response and a 5% error rate: 91 bits. With a 128-bit response and a 10% error rate: 67 bits.

 $^{^{7}\}text{J.}$ Martinez-Mateo et al. "Demystifying the Information Reconciliation Protocol CASCADE". (2015).

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- **Number of passes**: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- **Number of passes**: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- **Number of passes**: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

Solution

Add extra passes without increasing the block size.

Several realistic PUF references:

- RO PUF in FPGA $\varepsilon = 0.9\%^8$.
- TERO PUF in FPGA $\varepsilon = 1.8\%^9$.
- SRAM PUF in ASIC $\varepsilon = 5.5\%^{10}$.

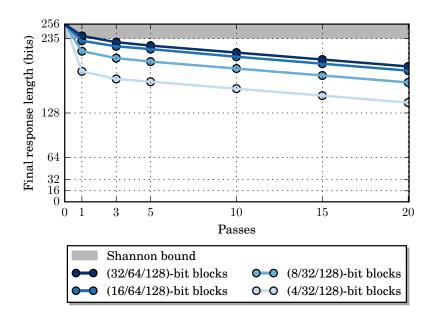
256-bit responses, aim for 128-bit security

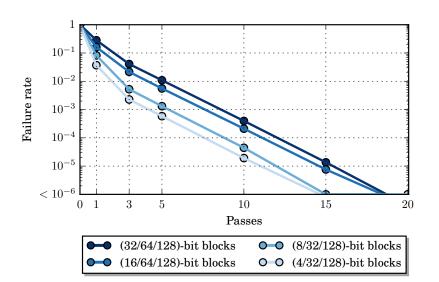
Simulation carried out on 2500 000 responses.

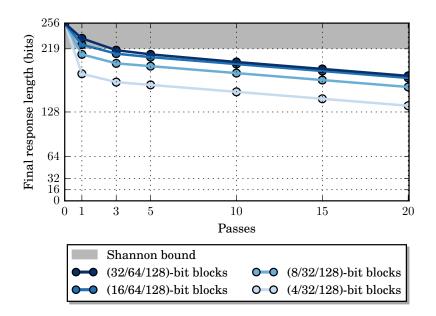
⁸A. Maiti et al. "A large scale characterization of RO-PUF". . HOST. 2010.

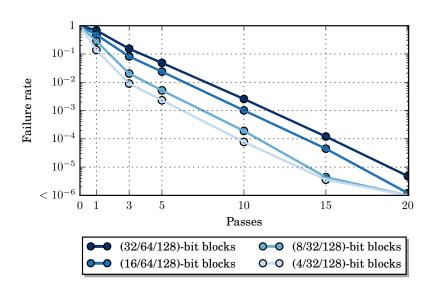
⁹C. Marchand et al. "Enhanced TERO-PUF Implementations and Characterization on FPGAs". *International Symposium on FPGAs*. ACM, 2016.

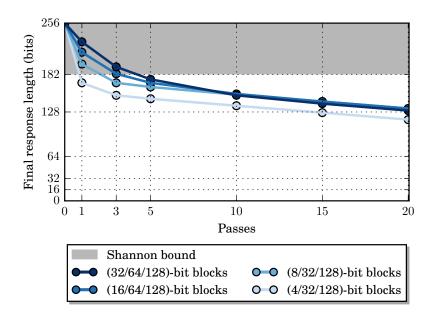
¹⁰M. Claes et al. "Comparison of SRAM and FF-PUF in 65nm Technology". Nordic Conference on Secure IT Systems. 2011.

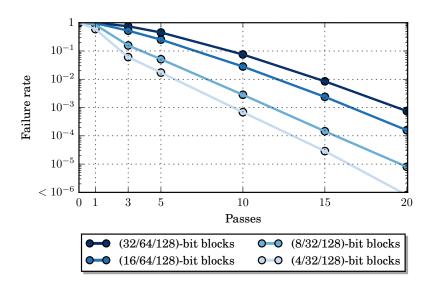




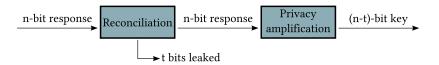








From an n-bit response, if t bits are leaked, it is possible to obtain an (n-t)-bit secret key.

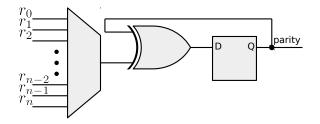


A **hash function** can be used for privacy amplification¹¹.

¹¹R. Impagliazzo, L.A. Levin and M. Luby, *Pseudo-random Generation from one-way functions*, **21st Annual Symposium on Theory of Computing**, 1989.

Only **parity computations** are embedded.

All other computations can be done on the server.



Requirements:

- Multiplexer to select the bits to XOR,
- One XOR gate,
- One D flip-flop.

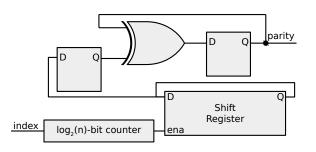
- Compute the parity of an *n*-bit block: **n cycles**.
- Correct one error in an *n*-bit block: $\sum_{i=1}^{log_2(n)} \frac{n}{2^i} = \mathbf{n} \mathbf{1} \text{ cycles}.$

- Compute the parity of an *n*-bit block: **n cycles**.
- Correct one error in an *n*-bit block: $\sum_{i=1}^{log_2(n)} \frac{n}{2^i} = \mathbf{n} \mathbf{1} \text{ cycles}.$

Example:

256-bit response, $\varepsilon = 2\%$, 20 passes, $k_1 = 8$ bits:

- Best case (3%): 1 error, corrected AEAP.
 - → Latency: **5 127** clock cycles.
- Worst case (0.05%): 14 errors, corrected ALAP.
 - → Latency: 8690 clock cycles.



Requirements:

- Circular shift register to select the bits to XOR,
- One counter,
- One XOR gate,
- Two D flip-flops.

- Compute the parity of an *n*-bit block: $\frac{n^2}{2}$ cycles.
- Correct one error in an *n*-bit block: $\frac{n(n-1)}{2}$ cycles.

- Compute the parity of an *n*-bit block: $\frac{n^2}{2}$ cycles.
- Correct one error in an *n*-bit block: $\frac{n(n-1)}{2}$ cycles.

Example:

256-bit response, $\varepsilon = 2\%$, 20 passes, $k_1 = 8$ bits:

- Best case (3%): 1 error, corrected AEAP.
 - → Latency: **656 256** clock cycles.
- Worst case (0.05%): 14 errors, corrected ALAP.
 - → Latency: 1112320 clock cycles.

- Compute the parity of an *n*-bit block: $\frac{n^2}{2}$ cycles.
- Correct one error in an *n*-bit block: $\frac{n(n-1)}{2}$ cycles.

Example:

256-bit response, $\varepsilon = 2\%$, 20 passes, $k_1 = 8$ bits:

- Best case (3%): 1 error, corrected AEAP.
 - → Latency: **656 256** clock cycles.
- Worst case (0.05%): 14 errors, corrected ALAP.
 - → Latency: 1112320 clock cycles.

Trade-off: area/latency.

IP core activation procedure:

	Server		Device i
at $t = 0$	Generates challenge c_i	$\stackrel{c_i}{\longrightarrow}$	
enrolment		<i>r</i> ₀ ←	$r_0 \leftarrow PUF(c_i)$
	Stores r ₀		
at $t = t_1$		$\stackrel{c_i}{\longrightarrow}$	Requests activation
activation	r ₀	CASCADE	$r_{t_1} \leftarrow PUF(c_i)$ r_{t_1}
	$K \leftarrow PA(r_{t_1})$	Privacy amplification	$K \leftarrow PA(r_{t_1})$
	Encrypts <i>UW</i> with <i>K</i>	$[UW]_K$	
			Decrypts <i>UW</i> Activates by unlocking

Conclusion 30/3

Compared to existing methods:

- → few on-chip logic resources,
- → can reach very low failure rates,
- $\,\rightarrow\,$ very tunable depending on the expected error-rate

Conclusion 30/30

Compared to existing methods:

- → few on-chip logic resources,
- → can reach very low failure rates,
- → very tunable depending on the expected error-rate

DONE/TO-DO:

- ✓ Software model,
- ✓ Implementation in VHDL,
- × Tests with a real PUF: TERO-PUF
- × Integration in the overall module.

Conclusion 30/3

Compared to existing methods:

- → few on-chip logic resources,
- → can reach very low failure rates,
- → very tunable depending on the expected error-rate

DONE/TO-DO:

- ✓ Software model,
- ✓ Implementation in VHDL,
- × Tests with a real PUF: TERO-PUF
- × Integration in the overall module.

— Questions? —