Key reconciliation protocol application to
error correction in silicon PUF responses

Brice CoLomBIER*, Lilian BossueT*, David HELY*

*Laboratoire Hubert Curien
Saint-Etienne — France
*LCIS, Grenoble Institute of Technology
Valence — France

May 31, 2016

Journée Sécurité Numérique du GDR SoC-SiP : 11°™ édition
La génération d’aléa dans le matériel : TRNG & PUF

) hugear cumien - Rhonedises @y) SALWARE

" UMR + CNRS » 5516 + SAINT-ETIENNE French ANR Project

SALWARE project' 2/30

French ANR Project

Locking

module Remotely
activable
IC

Cryptographic
processing

Unigue.
2 '/identiﬁz<;3 ; [

Activation request

Thttp://www.univ-st-etienne.fr/salware/

PUFs as unique identifiers 330

description EXt l’aCt entropy
from process
variations.

Aim:

Provide a unique,
per-device ID,
thanks to the
inter-device

[TTTTTHI
[TTTTTII
E||I|Eia||||E
[TTTTTII
#/
g||||‘%i“||g

uniqueness.

\

Different responses to the same
challenge.

The instability problem 4130

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
@ PUF architecture,
@ Process node,
e Aging,
e Temperature,

@ Environment...

— It prevents the PUF response from being used as a key.

Assumptions and requirements

Correct the PUF response.

time

t0t+cl—

Error

tlt+cl—

At
H
—_

correction

Requirements for the error correction module:

@ Low area,

e High correction probability.

State-of-the-art error correction for PUF responses ,,

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx
Spartan 3 Spartan 6
2 Concatenated: 221
Repetition and BCH
3 Reed-Muller 179
4 BCH
5 Concatenated: 168

Repetition and Reed-Muller

2R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.
CHES. 2012.

3M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015.

4A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual
Authentication for PUF-Enabled RFIDs”. FC. 2012.

5C. Bésch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.

State-of-the-art error correction for PUF responses ,,

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx
Spartan 3 Spartan 6
2 Concatenated: 221
Repetition and BCH
3 Reed-Muller 179
4 BCH
5 Concatenated: 168

Repetition and Reed-Muller

This work CASCADE protocol 69 19

2R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.
CHES. 2012.

3M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015.

4A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual
Authentication for PUF-Enabled RFIDs”. FC. 2012.

5C. Bésch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.

Information reconciliation protocols 7130

CASCADE introduced in 1993 by Brassard and Salvail®

‘ Quantum channel ‘
. GE—

‘ Public discussion ‘
m m
l Key l
key reconciliation key

The final key is shorter than the original message.

6G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.

Information reconciliation protocols 7130

CASCADE introduced in 1993 by Brassard and Salvail®

‘ Quantum channel ‘
. GE—

‘ Public discussion ‘
m m
l Key l
key reconciliation key

The final key is shorter than the original message.

This could be used to derive keys
from slightly different PUF responses. }

6G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.

Dichotomous error detection and correction

Works on parts of the responses that have a different parity.

Server Device
Part of the response Part of the response
I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\II I\I\I\I\I\I\I\I\l\l\I\I\I\I\I\}
Odd parity Odd parlty Odd parity Even parlty
DDDDDDDD‘ 5 EEEEEe
Odd parlty ' Even parity Eveq pa ;1ty | Even parity
DDDD O
Even parlty - 0dd parity Odd parity | Odd parity
! Bit transmission e

> L
Error correction I Correct bit
[Faulty bit

Allows to correct one error.

BINARY o0

Algorithm 1: BINARY
Input: ro, rt, Npgsses
for i = 1to npgsses do
Shuffle ry and r; using a public permutation g
Split ry and r¢ in blocks of size sp,
forall blocks do
Compute the relative parity P.(by;, b;;) // Detection
if Pr(boy,', bt,,') =1then
L CONFIRM (b, b i) // Correction

Double the block size s, =2 sp,

Un-shuffle ry and r; with inverse permutations 0]_1, 02_1, o]

return ry, ry

Npasses

BINARY o730

Example: 32-bit responses, 5 errors.

[o[1]2]3]4]5]6[7 I8N S ro[11[12[13[14]i8] 1 o} 1 sJ8l20[21]22[23]24]25]26 27]28[B8[30][31]
Shuffling and splitting into blocks
B[T7T9] l2613[3]11] (30[8] 5]14] [22[2 [oo[0] [ES238l 2427211 o] [162B28]8] [25]12[4] 6]
Error correction using CONFIRM Pass 1
B[719] fel13[3117 Bo[18 5 [14] [22] 2 20l 0] [@[17123]80 [24[27]21 0] [16BBI28[8 [25[12[4] 6]
Shuffling and splitting into blocks
Bl o[1431[28[23[11[27] [51s[21 89 [1 [iBl20] [24[4[2[12[7 [13@B[3] [30[6 [26[18]25[1022]17]
Error correction using CONFIRM Pass 2
(8]oT4[31[28[23[11[27] [5T16[21[@8 9 [1[iBl20] [24[4[2]12[7[13[29]3] 30l 6 [26[18[25[1022]17]
Shuffling and splitting into blocks
[10[13[16] 1 [3125[MB[21[18] 6 [12[4] 7 [23]26]22] (5 [29]30[24[17]20] 9 o7 [2 [28[11] 0 [8 3 [14|
Error correction using CONFIRM Pass 3
[1o[13[16] 1]31]25[15]21]18[6 [12] 4| 7 [23]26]22] [5293024]17]20[9 J27]19[2 [28[11] 0 [8 [3]14]
Un-shuffling
[o]1]2]3]4]5]6]7]8]9 [1o[11]12]13[14][15[16]17]18]19]20[21]22]23]24]25]26]27]28]29]30]3 1]

Associated information leakage 11730

Two ways of leaking information:
@ Relative parity computations,
o 1 bit.
o CONFIRM executions on an n-bit block.
o log,(n) bits.

Associated information leakage

Two ways of leaking information:
@ Relative parity computations,
o 1 bit.
o CONFIRM executions on an n-bit block.
o log,(n) bits.

128-bit response, € =0.05 — 7 errors.
e 1% pass: 8-bit blocks, 4 errors corrected.
o 2 pass: 16-bit blocks, 3 errors corrected.

Leakage: 125 + 4 log,(8) + 12 + 3x logy(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

Associated information leakage

Two ways of leaking information:
@ Relative parity computations,
o 1 bit.
o CONFIRM executions on an n-bit block.
o log,(n) bits.

128-bit response, € =0.05 — 7 errors.
e 1% pass: 8-bit blocks, 4 errors corrected.
@ 2" pass: 16-bit blocks, 3 errors corrected.

Leakage: 125 + 4 log,(8) + 12 + 3x logy(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

How can it be improved?]

Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.
— if an error is corrected on a bit from this block in a
subsequent pass, then its relative parity becomes odd again.

Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

— if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.
— one more error from this block can be corrected.

Backtracking

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

— if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.
— one more error from this block can be corrected.

BENGE > 08

Parity check does not detect these errors.
If, in a subsequent pass, the error 9 is corrected:
— The block can be processed again to correct error 13.

J

Backtracking 13/30

Required:
Two lists storing blocks according to their relative parity.

e Correcting an error at index i makes blocks containing
index i move from one list to the other
— (their relative parity changed).

@ Error correction is carried out until there are no more
blocks of odd parity.

@ At the end of each pass, the blocks are added to the list of
blocks of even relative parity.

The CASCADE protocol 14/30

OH : ANBBRE - ©HE::

Blocks of even
relative parity:
(%)
Blocks of odd relative
parity:
(%)

The CASCADE protocol 14/30

OH : ANBORE - ©HE::

Correction
[o]1]2]s][4]5 e]7][e JEMERY 1] [22 R 15] Blocks of even
relative parity:
(%)
Blocks of odd relative
parity:
(%)

The CASCADE protocol 14/30

OB : ANB0ED ° ©BE: 15
Correction Blocks of even

|O|1|2|3”4|5|6|7| re]ativeparity:

lofs]2]s][4]s]e]7]

[8]9[10]11|[12]13]14]15]

Blocks of odd relative

parity:
%]

The CASCADE protocol 14/30

Ob : AAEERE © 0@ 5

Correction Blocks of even
|0|1|2|3“4|5|6|7| 14 [relative parity:

Shufflin

8|11|3|15|6|1| [o]z]2[3][4]s]e]7]

[8]9[10]11|[12]13]14]15]

Blocks of odd relative

parity:
%]

The CASCADE protocol 14/30

Ob : AAEERE © 0@ 5

Correction Blocks of even
|o|1|2|3“4|5|68|h7 1« [relative parity:
uffling
8|11|3|15|6|1| [o]z]2[3][4]s]e]7]
Correction [8]9[10]11|[12]13]14]15]
214l 4|7 o BRI s |[2[ro] [u]3 156]1] Blocks of odd relative
parity:

6]

The CASCADE protocol 14/30

|O|1|4|5|6|7| Blocks of even

Correction relative parity:
[o1T2]3][«]sTe]7][e IEMERN1][2EERMA 5] [o[x[2[3][«[5]6]7]
Shuffling
- o n13 sTu3[6]1] | 8|9 [10]11][12]13]14]15]
Correction |2 10| 8[11]3[15]6] 1]
ENOE - 0 - EERBE0N R ORODEE
Blocks of odd relative

parity:
1]

The CASCADE protocol 14/30

|O|1|4|5|6|7| Blocks of even

Correction relative parity:
I0I1I2I3|I4I5Iﬁslhz1 5] [o[i[2]3][«]5]6]7]
SR TR B s s s ele[r] [l lomfaeliahass

Correction |2 10| 8[11]3[15]6] 1]

2l [T RO B s]2 [ole [ul= [5] [yafualaT 7 e o]eals)
Blocks of odd relative

parity:
1]

The CASCADE protocol 14/30

(o[I s][4]5]6]7][5 NEMERY v][22 ERRERY »5] Blocks of even

Correction

LTz]3] s o 7][c Iu e Rilss] _ relative parity
Shuffling lof1]2[s][4]s]6]7]

1247 B n13 ulslisl6]1]| [2]iwo]s[11][a]15]6]1]
Correction [12]1a[a7]9 [0 [13] 5]

12[14] 4|7 EH o fRJ 5][2[10] 8 1] 3[15]6]1

Blocks of odd relative
parity:
[8]9]10]11|[12[13]14]15]

The CASCADE protocol 14/30

(o[I s][4]5]6]7][5 NEMERY v][22 ERRERY »5] Blocks of even

Correction

[T T2[s](«Ts o7 (s IR copliss] _ felative parity:
Shuffling [o[i]2[3][«]5]e]7]
1247 B 8|11|3|15|6|1| [2]10]811]3]15] 6] 1]

Correction
e[R0 s | 2[wols[m]a]wsle]x] 22elelrlolofuals]
Extra correction Blocks of odd relative
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 1] parity:

[8]9]10]11|[12[13]14]15]

The CASCADE protocol 14/30

(o[I s][4]5]6]7][5 NEMERY v][22 ERRERY »5] Blocks of even

Correction

[T T2[s](«Ts o7 (s IR copliss] _ felative parity:
Shuffling [o[i]2[3][«]5]e]7]
1247 B 8|11|3|15|6|1| [2]10]811]3]15] 6] 1]

Correction
e [Tl s | 2 [wols[ula]wsle]x] aelelrle]ofuals]
Extra correction Blocks of odd relative
(e[l a 7o o BT 5] 2 [l s Tl s T[] ety

& o [20[) 2[5

The CASCADE protocol 14/30

HA : BRAEBEEHE ° o FE - <[Blocks of even

Correction relative parity:
[ofx]2]3][4]se7][c RN u1][12EEREY15] [o[a[2[3][4[5]6]7]

7120 (&9 0[]
8|11|3|15|6|1| (8]0 [10]]

Correction |2 |10| 8 |11| 3 |15| 6 | 1|

1214]4 |7 M o BRI 5 || 2[10] 8 [u[315[6[1] Blocks of odd relative

Extra correction parity:
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 1]

[12[14] 4|7][9]0 13] 5|

The CASCADE protocol 14/30

HA : BRAEBEEHE ° o FE - <[Blocks of even

Correction relative parity:

[Tz]3]+ Ts e][MR o BERM] [o]xl2[s][«]s]e]7]
S (s [Jxo]]
8|11|3|15|6|1| 8]0 [10[n]

Correction |2|10|8|11|3|15|6|1|
12[14] 4|7 [EH o B 5 |[2[10]8 [11[3]15[6|1] Bjocks of odd relative
Extra correction

parity:
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 1]

Extra correction
[12[1a]a]7]9]o]13][5][2]10] 8 [11][3]15] 6 [1] [12[14]4[7][9]0]13[5]

The CASCADE protocol 14/30

HA : BRAEBEEHE ° o FE - <[Blocks of even

Correction relative parity:

[Tz]3]+ Ts e][MR o BERM] [o]xl2[s][«]s]e]7]
S (s [Jxo]]
8|11|3|15|6|1| 8]0 [10[n]

Correction |2|10|8|11|3|15|6|1|
12[14] 4|7 [EH o B 5 |[2[10]8 [11[3]15[6|1] Bjocks of odd relative
Extra correction

parity:
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 1]

Extra correction
[12[1a] 4] 7] 9]0]13][5][2]10] 8 [11]3]15] 6 [1] [12[14]4[7][9]0 [13]5]

The CASCADE protocol 14/30

|O|1|4|5|6|7| Blocks of even

Correction relative parity:

[o1T2]3][«]sTe]7][e IEMERN1][2EERMA 5] [o[x[2[3][«[5]6]7]
Shuffling
2+ B 8|11|3|15|6|1| | 8|9 [10]11][12]13]14]15]

Correction |2 10| 8[11]3[15]6] 1]
[+ RN B 5[z o[[u[3[STe 5] [safuala]s o o [5]
Extra correction]
[12[1a] 4] 7]oJo B 5][2]10]8]u[31s[6[1] Blocks of odd relative
Extra correction parity:
[12]14] 4| 7] 90 13]5][2 |10] 8 |11] 3 |15]6 | 1| %)

The CASCADE protocol 14/30

|0|1|4|5|6|7| Blocks of even

Correction relative parity:

[o1T2]3][«]sTe]7][e IEMERN1][2EERMA 5] [o[x[2[3][«[5]6]7]
Shuffling
2+ B 8|11|3|15|6|1| | 8|9 [10]11][12]13]14]15]

Correction |2 10| 8[11]3[15]6] 1]
[+ RN B 5[z o[[u[3[STe 5] [safuala]s o o [5]
Extra correction]
[12[1a] 4] 7]oJo B 5][2]10]8]u[31s[6[1] Blocks of odd relative
Extra correction parity:
[12]14] 4| 7] 90 13]5][2 |10] 8 |11] 3 |15]6 | 1| %)

For the same number of passes, the CASCADE protocol
allows to correct more errors than BINARY.
— The information leakage is lower.

Information leakage 15/30

What is the lower bound on the information leakage?]

It is related to the conditional entropy’ H(r|ry) = nh(e) where:
€ is the error rate and n is the response length.

h(e) = —¢e.logy(e) — (1—¢).loga(1—¢)
The best length we can expect for the final response is then:

n—nh(e) = n(1- h(e))

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

7). Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. (2015).

Parameters to tune to limit the leakage 16/30

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

Parameters to tune to limit the leakage 16/30

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

The block size cannot exceed n/2.
The failure rate remains too high.

Parameters to tune to limit the leakage

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

JiN A A

The block size cannot exceed n/2.
The failure rate remains too high.

Add extra passes without increasing the block size.

Experimental results 17730

Several realistic PUF references:
@ RO PUF in FPGA £ = 0.9%8.
e TERO PUF in FPGA € = 1.8%°.
® SRAM PUF in ASIC £ =5.5%".

256-bit responses, aim for 128-bit security

Simulation carried out on 2500 000 responses.

8A. Maiti et al. “A large scale characterization of RO-PUF”.. HOST. 2010.

9C. Marchand et al. “Enhanced TERO-PUF Implementations and Characterization on
FPGAs”. International Symposium on FPGAs. ACM, 2016.

10M. Claes et al. “Comparison of SRAM and FF-PUF in 65nm Technology”. Nordic
Conference on Secure IT Systems. 2011.

Leakage for ¢ = 1%, (RO-PUF)

256
235

128

(=2}
IS

Final response length (bits)
w
[\]

—
o

o L 1 """"""""" [R
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for £ = 1%, (RO-PUF)

Failure rate

=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@—=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Leakage for ¢ = 2%, (TERO-PUF)

Final response length (bits)

128

64

=
oM

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for £ = 2%, (TERO-PUF) 21/30

Failure rate

Passes

=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@—=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Leakage for ¢ = 5%, (SRAM-PUF)

Final response length (bits)

182

128

(=2}
IS

=
oM

o L o [R
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for £ = 5%, (SRAM-PUF) 23/30

101
102

1073

Failure rate

1074

1075

<10-6L
0

Passes

=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@—=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Privacy amplification 24/30

From an n-bit response, if t bits are leaked, it is possible to
obtain an (n—t)-bit secret key.

: ; Privac ;
n-bit response Tinti n-bit response y (n-t)-bit key
Reconciliation plification

L»t bits leaked

A hash function can be used for privacy amplification'’.

TR, Impagliazzo, L.A. Levin and M. Luby, Pseudo-random Generation from one-way
functions, 21st Annual Symposium on Theory of Computing, 1989.

Implementation

Only parity computations are embedded.
All other computations can be done on the server.

T2 .
parity
[D Q
[]
L

Requirements:

@ Multiplexer to select the bits to XOR,
@ One XOR gate,
@ One D flip-flop.

Late n Cy 26/30

e Compute the parity of an n-bit block: n cycles.
[ng(n)

o Correct one error in an n-bit block: ¥ % =n—1cycles.

i=1

Latency

e Compute the parity of an n-bit block: n cycles.
[ng(n)

o Correct one error in an n-bit block: ¥ % =n—1cycles.
i=1

256-bit response, € =2%, 20 passes, k; =8 bits:
@ Best case (3%): 1 error, corrected AEAP.
— Latency: 5127 clock cycles.
@ Worst case (0.05%): 14 errors, corrected ALAP.
— Latency: 8690 clock cycles.

Implementation 2" option

D Q parity
’V D Q
| 5 ol

Shift
ind Register
M' log,(n)-bit counter I—ena
Requirements:

o Circular shift register to select the bits to XOR,
@ One counter,

@ One XOR gate,

e Two D flip-flops.

Late n Cy 28/30

e Compute the parity of an n-bit block: "TZ cycles.

(n-1)

. . n
e Correct one error in an n-bit block: =5— cycles.

Latency

e Compute the parity of an n-bit block: "TZ cycles.

(n-1)

. . n
e Correct one error in an n-bit block: >

256-bit response, € = 2%, 20 passes, k; =8 bits:
@ Best case (3%): 1 error, corrected AEAP.
— Latency: 656256 clock cycles.
e Worst case (0.05%): 14 errors, corrected ALAP.
— Latency: 1112320 clock cycles.

cycles.

Latency

e Compute the parity of an n-bit block: "TZ cycles.

(n-1)

. . n
e Correct one error in an n-bit block: >

256-bit response, € = 2%, 20 passes, k; =8 bits:
@ Best case (3%): 1 error, corrected AEAP.
— Latency: 656256 clock cycles.
@ Worst case (0.05%): 14 errors, corrected ALAP.
— Latency: 1112320 clock cycles.

cycles.

Trade-off: area/latency. |

Implementation 29/30

IP core activation procedure:

‘ Server Device i
att=0 Generates challenge ¢;
G
enrolment ro — PUF(c;)
o
Stores ry
att==4 Requests activation
Ci
re, — PUF(c;)
- CASCADE
activation ry — r,
Privacy
K—PA K—PA
(rs) amplification (r2)
Encrypts UW with K
[UW]k
Decrypts UW
Activates by unlocking

Conclusion 30/30

Compared to existing methods:
— few on-chip logic resources,
— can reach very low failure rates,

— very tunable depending on the expected error-rate

Conclusion 30/30

Compared to existing methods:

— few on-chip logic resources,

— can reach very low failure rates,

— very tunable depending on the expected error-rate
DONE/TO-DO:

V' Software model,

v Implementation in VHDL,

x Tests with a real PUF: TERO-PUF

x Integration in the overall module.

Conclusion 30/30

Compared to existing methods:

— few on-chip logic resources,

— can reach very low failure rates,

— very tunable depending on the expected error-rate
DONE/TO-DO:

V' Software model,

v Implementation in VHDL,

x Tests with a real PUF: TERO-PUF

x Integration in the overall module.

— Questions? —

