
Key reconciliation protocol application to
error correction in silicon PUF responses

Brice Colombier
∗
, Lilian Bossuet

∗
, David Hély

+

∗
Laboratoire Hubert Curien

Saint-Étienne — France

+
LCIS, Grenoble Institute of Technology

Valence — France

May 31, 2016

Journée Sécurité Numérique du GDR SoC-SiP : 11ème édition
La génération d’aléa dans le matériel : TRNG & PUF



SALWARE project1 2/30

Remotely
activable

IC

 

Cryptographic
processing

Unique
identifier

Activation request

Locking
module

key

1
http://www.univ-st-etienne.fr/salware/



PUFs as unique identifiers 3/30

Different responses to the same
challenge.

Principle:

Extract entropy

from process
variations.

Aim:
Provide a unique,

per-device ID,

thanks to the

inter-device
uniqueness.



The instability problem 4/30

Problem:
PUF responses to the same challenge change over time.

This variation depends on multiple parameters:

PUF architecture,

Process node,

Aging,

Temperature,

Environment...

→ It prevents the PUF response from being used as a key.



Assumptions and requirements 5/30

Solution:
Correct the PUF response.

time

t0

t1 c1 r1~ r1
Error

correction

IC1

IC1

c1 r1

Requirements for the error correction module:

Low area,

High correction probability.



State-of-the-art error correction for PUF responses 6/30

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx

Spartan 3 Spartan 6

2
Concatenated: 221
Repetition and BCH

3
Reed-Muller 179

4
BCH >59

5
Concatenated: 168
Repetition and Reed-Muller

This work CASCADE protocol 69 19

2
R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.

CHES. 2012.
3
M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code

Construction for PUFs”. ISVLSI. 2015.
4
A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual

Authentication for PUF-Enabled RFIDs”. FC. 2012.
5
C. Bösch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.



State-of-the-art error correction for PUF responses 6/30

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx

Spartan 3 Spartan 6

2
Concatenated: 221
Repetition and BCH

3
Reed-Muller 179

4
BCH >59

5
Concatenated: 168
Repetition and Reed-Muller

This work CASCADE protocol 69 19

2
R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.

CHES. 2012.
3
M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code

Construction for PUFs”. ISVLSI. 2015.
4
A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual

Authentication for PUF-Enabled RFIDs”. FC. 2012.
5
C. Bösch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.



Information reconciliation protocols 7/30

CASCADE introduced in 1993 by Brassard and Salvail
6

Quantum channel
m m

Public discussion

m

key

m

key

~
Key 

reconciliation

~

The final key is shorter than the original message.

This could be used to derive keys

from slightly different PUF responses.

6
G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.



Information reconciliation protocols 7/30

CASCADE introduced in 1993 by Brassard and Salvail
6

Quantum channel
m m

Public discussion

m

key

m

key

~
Key 

reconciliation

~

The final key is shorter than the original message.

This could be used to derive keys

from slightly different PUF responses.

6
G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.



Dichotomous error detection and correction 8/30

Works on parts of the responses that have a different parity.

Odd parity Odd parity Even parityOdd parity

Odd parity Even parity Even parityEven parity

Even parity Odd parity Odd parityOdd parity

Server

Part of the response

Device

Part of the response

Bit transmission

Error correction

Faulty bit
Correct bit

Allows to correct one error.



BINARY 9/30

Algorithm 1: BINARY
Input: r0, rt , npasses
for i = 1 to npasses do

Shuffle r0 and rt using a public permutation σi

Split r0 and rt in blocks of size sb
forall blocks do

Compute the relative parity Pr(b0,i ,bt,i) // Detection
if Pr(b0,i ,bt,i)= 1 then

CONFIRM(b0,i ,bt,i) // Correction

Double the block size sb = 2∗ sb
Un-shuffle r0 and rt with inverse permutations σ−1

1
, σ−1

2
, ..., σ−1

npasses
return r0, rt



BINARY 10/30

Example: 32-bit responses, 5 errors.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 102022 81719 23 4 612253 111326 02124 27 1516 28295 1418301 7 931

Shufflingeandesplittingeintoeblocks

2 102022 81719 23 4 612253 111326 02124 27 1516 28295 1418301 7 931

15 9 1516 19 2021 2 34 712 1324 29 6 10 1718 2225263008 1114 23 272831

15 9 1516 19 2021 2 34 712 1324 29 6 10 1718 2225263008 1114 23 272831

02 35 89 11 1417

19

2024 27 2829 301 46

7

10 1213 1516 1821 222325 2631

02 35 89 11 1417

19

2024 27 2829 301 46

7

10 1213 1516 1821 222325 2631

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Passe1ErrorecorrectioneusingeCONFIRM

Shufflingeandesplittingeintoeblocks

Shufflingeandesplittingeintoeblocks

Un-shuffling

Passe2

Passe3

ErrorecorrectioneusingeCONFIRM

ErrorecorrectioneusingeCONFIRM



Associated information leakage 11/30

Two ways of leaking information:

Relative parity computations,

1 bit.

CONFIRM executions on an n-bit block.
log2(n) bits.

Example:

128-bit response, ε= 0.05→ 7 errors.

1
st
pass: 8-bit blocks, 4 errors corrected.

2
nd

pass: 16-bit blocks, 3 errors corrected.

Leakage:
128

8
+ 4× log2(8) + 128

16
+ 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

How can it be improved?



Associated information leakage 11/30

Two ways of leaking information:

Relative parity computations,

1 bit.

CONFIRM executions on an n-bit block.
log2(n) bits.

Example:

128-bit response, ε= 0.05→ 7 errors.

1
st
pass: 8-bit blocks, 4 errors corrected.

2
nd

pass: 16-bit blocks, 3 errors corrected.

Leakage:
128

8
+ 4× log2(8) + 128

16
+ 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

How can it be improved?



Associated information leakage 11/30

Two ways of leaking information:

Relative parity computations,

1 bit.

CONFIRM executions on an n-bit block.
log2(n) bits.

Example:

128-bit response, ε= 0.05→ 7 errors.

1
st
pass: 8-bit blocks, 4 errors corrected.

2
nd

pass: 16-bit blocks, 3 errors corrected.

Leakage:
128

8
+ 4× log2(8) + 128

16
+ 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

How can it be improved?



Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

→ if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.

→ one more error from this block can be corrected.

Example:

04 57 912 1314

Parity check does not detect these errors.

If, in a subsequent pass, the error 9 is corrected:

→ The block can be processed again to correct error 13.



Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

→ if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.

→ one more error from this block can be corrected.

Example:

04 57 912 1314

Parity check does not detect these errors.

If, in a subsequent pass, the error 9 is corrected:

→ The block can be processed again to correct error 13.



Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

→ if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.

→ one more error from this block can be corrected.

Example:

04 57 912 1314

Parity check does not detect these errors.

If, in a subsequent pass, the error 9 is corrected:

→ The block can be processed again to correct error 13.



Backtracking 12/30

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

→ if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.

→ one more error from this block can be corrected.

Example:

04 57 912 1314

Parity check does not detect these errors.

If, in a subsequent pass, the error 9 is corrected:

→ The block can be processed again to correct error 13.



Backtracking 13/30

Required:
Two lists storing blocks according to their relative parity.

Correcting an error at index i makes blocks containing

index i move from one list to the other

→ (their relative parity changed).
Error correction is carried out until there are no more
blocks of odd parity.
At the end of each pass, the blocks are added to the list of

blocks of even relative parity.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Blocks of even

relative parity:

∅
Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correction
Blocks of even

relative parity:

∅
Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correction
Blocks of even

relative parity:

3210 7654

111098 15141312

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Blocks of even

relative parity:

3210 7654

111098 15141312

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even

relative parity:

3210 7654

111098 15141312

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even

relative parity:

3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even

relative parity:

3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even

relative parity:

3210 7654

118102 16153

741412 51309

Blocks of odd relative

parity:

111098 15141312

For the same number of passes, the CASCADE protocol

allows to correct more errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even

relative parity:

3210 7654

118102 16153

741412 51309

Blocks of odd relative

parity:

111098 15141312

For the same number of passes, the CASCADE protocol

allows to correct more errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even

relative parity:

3210 7654

118102 16153

741412 51309

Blocks of odd relative

parity:

111098 15141312

For the same number of passes, the CASCADE protocol

allows to correct more errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even

relative parity:

3210 7654

111098

118102 16153

Blocks of odd relative

parity:

15141312

741412 51309

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even

relative parity:

3210 7654

111098

118102 16153

Blocks of odd relative

parity:

15141312

741412 51309

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even

relative parity:

3210 7654

111098

118102 16153

Blocks of odd relative

parity:

15141312

741412 51309

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even

relative parity:

3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



The CASCADE protocol 14/30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even

relative parity:

3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative

parity:

∅

For the same number of passes, the CASCADE protocol

allows to correctmore errors than BINARY.
→ The information leakage is lower.



Information leakage 15/30

What is the lower bound on the information leakage?

It is related to the conditional entropy
7 H(rt |r0)= nh(ε) where:

ε is the error rate and n is the response length.

h(ε)=−ε.log2(ε)− (1−ε).log2(1−ε)

The best length we can expect for the final response is then:

n−nh(ε)= n(1−h(ε))

Examples:

With a 128-bit response and a 5% error rate: 91 bits.

With a 128-bit response and a 10% error rate: 67 bits.

7
J. Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol

CASCADE”. (2015).



Parameters to tune to limit the leakage 16/30

How to set the CASCADE parameters?

Initial block size: depends on the error rate.

Number of passes: depends on the required correction

success rate.

Block size multiplier: x2 at each pass.

B B B

The block size cannot exceed n/2.
The failure rate remains too high.

Solution
Add extra passes without increasing the block size.



Parameters to tune to limit the leakage 16/30

How to set the CASCADE parameters?

Initial block size: depends on the error rate.

Number of passes: depends on the required correction

success rate.

Block size multiplier: x2 at each pass.

B B B

The block size cannot exceed n/2.
The failure rate remains too high.

Solution
Add extra passes without increasing the block size.



Parameters to tune to limit the leakage 16/30

How to set the CASCADE parameters?

Initial block size: depends on the error rate.

Number of passes: depends on the required correction

success rate.

Block size multiplier: x2 at each pass.

B B B

The block size cannot exceed n/2.
The failure rate remains too high.

Solution
Add extra passes without increasing the block size.



Experimental results 17/30

Several realistic PUF references:

RO PUF in FPGA ε= 0.9%8
.

TERO PUF in FPGA ε= 1.8%9
.

SRAM PUF in ASIC ε= 5.5%10
.

256-bit responses, aim for 128-bit security

Simulation carried out on 2 500 000 responses.

8
A. Maiti et al. “A large scale characterization of RO-PUF”. . HOST. 2010.

9
C. Marchand et al. “Enhanced TERO-PUF Implementations and Characterization on

FPGAs”. International Symposium on FPGAs. ACM, 2016.

10
M. Claes et al. “Comparison of SRAM and FF-PUF in 65nm Technology”. Nordic

Conference on Secure IT Systems. 2011.



Leakage for ε= 1%, (RO-PUF) 18/30

0 1 3 5 10 15 20

Passes

0
16
32

64

128

235
256

F
in

al
re

sp
on

se
le

ng
th

(b
it

s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Failure rate for ε= 1%, (RO-PUF) 19/30

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Leakage for ε= 2%, (TERO-PUF) 20/30

0 1 3 5 10 15 20

Passes

0
16
32

64

128

219

256
F

in
al

re
sp

on
se

le
ng

th
(b

it
s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Failure rate for ε= 2%, (TERO-PUF) 21/30

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Leakage for ε= 5%, (SRAM-PUF) 22/30

0 1 3 5 10 15 20

Passes

0
16
32

64

128

182

256
F

in
al

re
sp

on
se

le
ng

th
(b

it
s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Failure rate for ε= 5%, (SRAM-PUF) 23/30

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks



Privacy amplification 24/30

From an n-bit response, if t bits are leaked, it is possible to
obtain an (n− t)-bit secret key.

A hash function can be used for privacy amplification
11
.

11
R. Impagliazzo, L.A. Levin and M. Luby, Pseudo-random Generation from one-way

functions, 21st Annual Symposium on Theory of Computing, 1989.



Implementation 25/30

Only parity computations are embedded.

All other computations can be done on the server.

D Q
parity

Requirements:

Multiplexer to select the bits to XOR,

One XOR gate,

One D flip-flop.



Latency 26/30

Compute the parity of an n-bit block: n cycles.

Correct one error in an n-bit block:
log2(n)∑
i=1

n
2
i =n−1 cycles.

Example:

256-bit response, ε= 2%, 20 passes, k1 = 8 bits:

Best case (3%): 1 error, corrected AEAP.

→ Latency: 5 127 clock cycles.

Worst case (0.05%): 14 errors, corrected ALAP.

→ Latency: 8 690 clock cycles.



Latency 26/30

Compute the parity of an n-bit block: n cycles.

Correct one error in an n-bit block:
log2(n)∑
i=1

n
2
i =n−1 cycles.

Example:

256-bit response, ε= 2%, 20 passes, k1 = 8 bits:

Best case (3%): 1 error, corrected AEAP.

→ Latency: 5 127 clock cycles.

Worst case (0.05%): 14 errors, corrected ALAP.

→ Latency: 8 690 clock cycles.



Implementation 2nd option 27/30

D Q
parity

log2(n)-bit counter

Shift
Register

enaindex

D Q

D Q

Requirements:

Circular shift register to select the bits to XOR,

One counter,

One XOR gate,

Two D flip-flops.



Latency 28/30

Compute the parity of an n-bit block: n2
2 cycles.

Correct one error in an n-bit block: n(n−1)
2 cycles.

Example:

256-bit response, ε= 2%, 20 passes, k1 = 8 bits:

Best case (3%): 1 error, corrected AEAP.

→ Latency: 656 256 clock cycles.

Worst case (0.05%): 14 errors, corrected ALAP.

→ Latency: 1 112 320 clock cycles.

Trade-off: area/latency.



Latency 28/30

Compute the parity of an n-bit block: n2
2 cycles.

Correct one error in an n-bit block: n(n−1)
2 cycles.

Example:

256-bit response, ε= 2%, 20 passes, k1 = 8 bits:

Best case (3%): 1 error, corrected AEAP.

→ Latency: 656 256 clock cycles.

Worst case (0.05%): 14 errors, corrected ALAP.

→ Latency: 1 112 320 clock cycles.

Trade-off: area/latency.



Latency 28/30

Compute the parity of an n-bit block: n2
2 cycles.

Correct one error in an n-bit block: n(n−1)
2 cycles.

Example:

256-bit response, ε= 2%, 20 passes, k1 = 8 bits:

Best case (3%): 1 error, corrected AEAP.

→ Latency: 656 256 clock cycles.

Worst case (0.05%): 14 errors, corrected ALAP.

→ Latency: 1 112 320 clock cycles.

Trade-off: area/latency.



Implementation 29/30

IP core activation procedure:

Server Device i

at t = 0 Generates challenge ci
ci−→

enrolment r0 ← PUF (ci)
r0←−

Stores r0

at t = t1 Requests activation

ci−→
rt1 ← PUF (ci)

activation r0
CASCADE←→ rt1

K ← PA(rt1)
Privacy

K ← PA(rt1)amplification
Encrypts UW with K

[UW ]K−→
Decrypts UW
Activates by unlocking



Conclusion 30/30

Compared to existing methods:

→ few on-chip logic resources,

→ can reach very low failure rates,

→ very tunable depending on the expected error-rate

DONE/TO-DO:

✓ Software model,

✓ Implementation in VHDL,

× Tests with a real PUF: TERO-PUF

× Integration in the overall module.

—Questions? —



Conclusion 30/30

Compared to existing methods:

→ few on-chip logic resources,

→ can reach very low failure rates,

→ very tunable depending on the expected error-rate

DONE/TO-DO:

✓ Software model,

✓ Implementation in VHDL,

× Tests with a real PUF: TERO-PUF

× Integration in the overall module.

—Questions? —



Conclusion 30/30

Compared to existing methods:

→ few on-chip logic resources,

→ can reach very low failure rates,

→ very tunable depending on the expected error-rate

DONE/TO-DO:

✓ Software model,

✓ Implementation in VHDL,

× Tests with a real PUF: TERO-PUF

× Integration in the overall module.

—Questions? —


