Key reconciliation protocol application to error correction in silicon PUF responses

Brice Colombier*, Lilian Bossuet*, David Hély ${ }^{+}$
*Laboratoire Hubert Curien Saint-Étienne - France
${ }^{+}$LCIS, Grenoble Institute of Technology
Valence - France
June 23, 2016

Cryptarchi workshop

SALWARE

${ }^{1}$ http://www.univ-st-etienne.fr/salware/

Different responses to the same challenge.

Principle:

Extract entropy from process variations.

Aim:

Provide a unique, per-device ID, thanks to the inter-device uniqueness.

Problem:

PUF responses to the same challenge change over time.
This variation depends on multiple parameters:

- PUF architecture,
- Process node,
- Aging,
- Temperature,
- Environment...
\rightarrow It prevents the PUF response from being used as a key.

Solution:

Correct the PUF response.
time

Requirements for the error correction module:

- Low area,
- High correction probability.

Several error-correcting code implementations exist:

Article	Construction and code(s)	Logic resources (Xilinx Slices) Xilinx Spartan 3	Xilinx Spartan 6
2	Concatenated: Repetition and BCH	$\mathbf{2 2 1}$	
3	Reed-Muller	$\mathbf{1 7 9}$	
4	BCH	$\mathbf{1 6 8}$	>59
5	Concatenated: Repetition and Reed-Muller		

[^0]Several error-correcting code implementations exist:

Article	Construction and code(s)	Logic resources (Xilinx Slices) Xilinx Spartan 3	Xilinx Spartan 6
2	Concatenated: Repetition and BCH	221	
3	Reed-Muller	179	
4	BCH	$\mathbf{1 6 8}$	>59
5	Concatenated: Repetition and Reed-Muller	$\mathbf{6 9}$	$\mathbf{1 9}$
This work	CASCADE protocol		

[^1]
Information reconciliation protocols

CASCADE introduced in 1993 by Brassard and Salvail ${ }^{6}$

The final key is shorter than the original message.

[^2]CASCADE introduced in 1993 by Brassard and Salvail ${ }^{6}$

The final key is shorter than the original message.
This could be used to derive keys from slightly different PUF responses.

[^3]
CONFIRM: Dichotomous error correction

Works on parts of the responses that have a different parity.

Server

Part of the response

Even parity Odd parity

Device

Part of the response

Odd parity Odd parity

Allows to correct one error.

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.
\rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes odd again.

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.
\rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes odd again.
\rightarrow one more error from this block can be corrected.

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.
\rightarrow if an error is corrected on a bit from this block in a subsequent pass, then its relative parity becomes odd again.
\rightarrow one more error from this block can be corrected.

Example:

12	14	4	7	9	0	13	5

Parity check does not detect these errors.
If, in a subsequent pass, the error 9 is corrected:
\rightarrow The block can be processed again to correct error 13 .

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Blocks of even relative parity: \varnothing
Blocks of odd relative parity:
\varnothing

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Blocks of even relative parity:

Blocks of odd relative parity:
\varnothing

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Blocks of even relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15

Blocks of odd relative parity:
\varnothing

0	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15
Correction																	
0	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15
Shuffling																	
	2	14	4	7	9	0	13	5	2	10	8	11	3	15	6		1

Blocks of even relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15

Blocks of odd relative parity:
\varnothing

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15

Blocks of odd relative parity:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even
relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even
relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15
Correction																
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15
Shuffling																
12	214	4	7	9	0	13	5	2	10	8	11	3	15	6		1
Correction																
12	14	4	7	9	0	13	5	2	10	8	11	3	15	6		1

Blocks of even relative parity:

0	1	2	3	4	5	6	7
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:

8	9	10	11	12	13	14	15

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

0	1	2	3	4	5	6	7
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:

8	9	10	11	12	13	14	15

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

0	1	2	3	4	5	6	7
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:

8	9	10	11	12	13	14	15

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

Blocks of odd relative parity:

12	13	14	15

12	14	4	7	9	0	13	5

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Shuffling

Correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{2} \times 10$ Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

Blocks of odd relative parity:

$$
\begin{array}{|l|l|l|l|}
\hline 12 & 13 & 14 & 15 \\
\hline
\end{array}
$$

12	14	4	7	9	0	13	5

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Shuffling

Correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{2} \times 10$

Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even relative parity:

Blocks of odd relative parity:

$$
\begin{array}{|l|l|l|l|}
\hline 12 & 13 & 14 & 15 \\
\hline
\end{array}
$$

12	14	4	7	9	0	13	5

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even
relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:
\varnothing

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Correction

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Shuffling

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

| 12 | 14 | 4 | 7 | 9 | 0 | 13 | 5 | 2 | 10 | 8 | 11 | 3 | 15 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Extra correction

12	14	4	7	9	0	13	5	2	10	8	11	3	15	6	1

Blocks of even
relative parity:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
2	10	8	11	3	15	6	1
12	14	4	7	9	0	13	5

Blocks of odd relative parity:
\varnothing

Associated information leakage

Two ways of leaking information:

- Relative parity computations,
- 1 bit.
- CONFIRM executions on an n-bit block.
- $\log _{2}(n)$ bits.

Two ways of leaking information:

- Relative parity computations,
- 1 bit.
- CONFIRM executions on an n-bit block.
- $\log _{2}(n)$ bits.

Example:

128-bit response, $\varepsilon=0.05 \rightarrow 7$ errors.

- $1^{\text {st }}$ pass: 8 -bit blocks, 4 errors corrected.
- $2^{\text {nd }}$ pass: 16 -bit blocks, 3 errors corrected.

Leakage: $\frac{128}{8}+4 \times \log _{2}(8)+\frac{128}{16}+3 \times \log _{2}(16)=48$ bits.
The final effective length of the response is $128-48=\mathbf{8 0}$ bits.

What is the lower bound on the information leakage?

It is related to the conditional entropy ${ }^{7} H\left(r_{t} \mid r_{0}\right)=n h(\varepsilon)$ where: ε is the error rate and n is the response length.

$$
h(\varepsilon)=-\varepsilon \cdot \log _{2}(\varepsilon)-(1-\varepsilon) \cdot \log _{2}(1-\varepsilon)
$$

The best length we can expect for the final response is then:

$$
n-n h(\varepsilon)=n(1-h(\varepsilon))
$$

Examples:

With a 128-bit response and a 5% error rate: 91 bits. With a 128-bit response and a 10% error rate: 67 bits.

[^4]
Parameters to tune to limit the leakage

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- Number of passes: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

Parameters to tune to limit the leakage

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- Number of passes: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

The block size cannot exceed $n / 2$.
The failure rate remains too high.

How to set the CASCADE parameters?

- Initial block size: depends on the error rate.
- Number of passes: depends on the required correction success rate.
- Block size multiplier: x2 at each pass.

The block size cannot exceed $n / 2$.
The failure rate remains too high.

Solution

Add extra passes without increasing the block size.

Experimental results

Several realistic PUF references:

- RO PUF in FPGA $\varepsilon=0.9 \%{ }^{8}$.
- TERO PUF in FPGA $\varepsilon=1.8 \%{ }^{9}$.
- SRAM PUF in ASIC $\varepsilon=5.5 \%{ }^{10}$.

256-bit responses, aim for 128-bit security

Simulation carried out on 2500000 responses.

[^5]
Leakage for $\varepsilon=1 \%$, (RO-PUF)

Failure rate for $\varepsilon=1 \%$, (RO-PUF)

Leakage for $\varepsilon=2 \%$, (TERO-PUF)

\square	Shannon bound		
$0-0$	(32/64/128)-bit blocks	○	0
0	$(8 / 32 / 128)$-bit blocks		
0	$(16 / 64 / 128)$-bit blocks	0	0

Failure rate for $\varepsilon=2 \%$, (TERO-PUF)

Leakage for $\varepsilon=5 \%$, (SRAM-PUF)

\square	Shannon bound		
$0-0$	(32/64/128)-bit blocks	○	0
0	$(8 / 32 / 128)$-bit blocks		
0	$(16 / 64 / 128)$-bit blocks	0	0

Failure rate for $\varepsilon=5 \%$, (SRAM-PUF)

From an n-bit response, if t bits are leaked, it is possible to obtain an $(n-t)$-bit secret key.

A hash function can be used for privacy amplification ${ }^{11}$.

[^6]
Implementation

Only parity computations are embedded. All other computations can be done on the server.

Requirements:

- Multiplexer,
- One XOR gate,
- One D flip-flop.

256-bit response:

- Xilinx Spartan 6: 19 Slices,
- Altera Cyclone V: 20 LABs.

Implementation $2^{\text {nd }}$ option

Requirements:

- Shift register,
- One counter,
- One XOR gate,
- Two D flip-flops.

256-bit response:

Shift register already present:

- Xilinx Spartan 6: 3 Slices,
- Altera Cyclone V: 2 LABs.

Implementation

IP core activation procedure:

	Server	Device ${ }^{\text {i }}$
at $t=0$ enrolment	Generates challenge c_{i} Stores r_{0}	$r_{0} \leftarrow P U F\left(c_{i}\right)$
at $t=t_{1}$ activation	$K \leftarrow P A\left(r_{t_{1}}\right) \quad \begin{gathered} r_{0} \end{gathered} \begin{gathered} \text { Privacy } \\ \text { amplification } \end{gathered}$ Encrypts UW with K	Requests activation $\begin{aligned} & r_{t_{1}} \leftarrow P U F\left(c_{i}\right) \\ & r_{t_{1}} \\ & K \leftarrow P A\left(r_{t_{1}}\right) \end{aligned}$ Decrypts UW Activates by unlocking

Compared to existing methods:
\rightarrow few on-chip logic resources,
\rightarrow can reach very low failure rates,
\rightarrow very tunable depending on the expected error-rate

Compared to existing methods:
\rightarrow few on-chip logic resources,
\rightarrow can reach very low failure rates,
\rightarrow very tunable depending on the expected error-rate DONE/TO-DO:
\checkmark Software model,
\checkmark Implementation in VHDL,
\times Tests with a real PUF: TERO-PUF
\times Integration in the overall module.

Compared to existing methods:
\rightarrow few on-chip logic resources,
\rightarrow can reach very low failure rates,
\rightarrow very tunable depending on the expected error-rate
DONE/TO-DO:
\checkmark Software model,
\checkmark Implementation in VHDL,
\times Tests with a real PUF: TERO-PUF
\times Integration in the overall module.

[^0]: ${ }^{2}$ R. Maes et al. "PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator". CHES. 2012.
 ${ }^{3}$ M. Hiller et al. "Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs". ISVLSI. 2015.
 ${ }^{4}$ A. V. Herrewege et al. "Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs". FC. 2012.
 ${ }^{5}$ C. Bösch et al. "Efficient Helper Data Key Extractor on FPGAs". CHES. 2008.

[^1]: ${ }^{2}$ R. Maes et al. "PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator". CHES. 2012.
 ${ }^{3}$ M. Hiller et al. "Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs". ISVLSI. 2015.
 ${ }^{4}$ A. V. Herrewege et al. "Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs". FC. 2012.
 ${ }^{5}$ C. Bösch et al. "Efficient Helper Data Key Extractor on FPGAs". CHES. 2008.

[^2]: ${ }^{6}$ G. Brassard et al. "Secret-Key Reconciliation by Public Discussion". EUROCRYPT. 1993.

[^3]: ${ }^{6}$ G. Brassard et al. "Secret-Key Reconciliation by Public Discussion". EUROCRYPT. 1993.

[^4]: ${ }^{7}$ J. Martinez-Mateo et al. "Demystifying the Information Reconciliation Protocol CASCADE". (2015).

[^5]: ${ }^{8}$ A. Maiti et al. "A large scale characterization of RO-PUF". HOST. 2010.
 ${ }^{9}$ C. Marchand et al. "Enhanced TERO-PUF Implementations and Characterization on FPGAs". International Symposium on FPGAs. ACM, 2016.
 ${ }^{10} \mathrm{M}$. Claes et al. "Comparison of SRAM and FF-PUF in 65 nm Technology". Nordic Conference on Secure IT Systems. 2011.

[^6]: ${ }^{11}$ R. Impagliazzo, L.A. Levin and M. Luby, Pseudo-random Generation from one-way functions, 21st Annual Symposium on Theory of Computing, 1989.

