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PUFs as unique identifiers
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Different responses to the same
challenge.
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Principle:

Extract entropy
from process
variations.
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Aim:

Provide a unique,
per-device ID,
thanks to the
inter-device
uniqueness.




The instability problem 4125

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
@ PUF architecture,
@ Process node,
e Aging,
e Temperature,

@ Environment...

— It prevents the PUF response from being used as a key.



Assumptions and requirements

Correct the PUF response.
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Requirements for the error correction module:

@ Low area,

e High correction probability.




State-of-the-art error correction for PUF responses .

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx
Spartan 3 Spartan 6
2 Concatenated: 221
Repetition and BCH
3 Reed-Muller 179
4 BCH
5 Concatenated: 168

Repetition and Reed-Muller

2R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.
CHES. 2012.

3M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015.

4A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual
Authentication for PUF-Enabled RFIDs”. FC. 2012.

5C. Bésch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.
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CASCADE introduced in 1993 by Brassard and Salvail®
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Information reconciliation protocols 7125

CASCADE introduced in 1993 by Brassard and Salvail®

‘ Quantum channel ‘
. GE—

‘ Public discussion ‘
m m
l Key l
key reconciliation key

The final key is shorter than the original message.

This could be used to derive keys
from slightly different PUF responses. }

6G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.



CONFIRM: Dichotomous error correction

Works on parts of the responses that have a different parity.

Server Device
Part of the response Part of the response
I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\II I\I\I\I\I\I\I\I\l\l\I\I\I\I\I\}
Odd parity Odd parlty Odd parity Even parlty
DDDDDDDD‘ 5 EEEEEe
Odd parlty ' Even parity Eveq pa ;1ty | Even parity
DDDD O
Even parlty - 0dd parity Odd parity | Odd parity
! Bit transmission e

> L
Error correction I Correct bit
[ Faulty bit

Allows to correct one error.
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Backtracking

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

— if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.
— one more error from this block can be corrected.

BENGE > 08

Parity check does not detect these errors.
If, in a subsequent pass, the error 9 is corrected:
— The block can be processed again to correct error 13.

J
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OF : BBBOEE - HE:
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The CASCADE protocol 10/25
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The CASCADE protocol 10/25
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Correction
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|0|1|4|5|6|7| Blocks of even

Correction relative parity:
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Associated information leakage

Two ways of leaking information:
@ Relative parity computations,
e 1 bit.
@ CONFIRM executions on an n-bit block.
o logy(n) bits.

128-bit response, € =0.05 — 7 errors.

e 1% pass: 8-bit blocks, 4 errors corrected.

e 2" pass: 16-bit blocks, 3 errors corrected.
Leakage: 122 + 4% log,(8) + <22 + 3x logy(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.



Information leakage 12/25

What is the lower bound on the information leakage? ]

It is related to the conditional entropy’ H(r|ry) = nh(e) where:
€ is the error rate and n is the response length.

h(e) = —¢e.logy(e) — (1—¢).loga(1—¢)
The best length we can expect for the final response is then:

n—nh(e) = n(1- h(e))

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

7). Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. (2015).
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e Initial block size: depends on the error rate.
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success rate.

e Block size multiplier: x2 at each pass.
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Parameters to tune to limit the leakage

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

JiN A A

The block size cannot exceed n/2.
The failure rate remains too high.

Add extra passes without increasing the block size.




Experimental results 14725

Several realistic PUF references:
@ RO PUF in FPGA £ = 0.9%8.
e TERO PUF in FPGA € = 1.8%°.
® SRAM PUF in ASIC £ =5.5%".

256-bit responses, aim for 128-bit security

Simulation carried out on 2500 000 responses.

8A. Maiti et al. “A large scale characterization of RO-PUF”.. HOST. 2010.

9C. Marchand et al. “Enhanced TERO-PUF Implementations and Characterization on
FPGAs”. International Symposium on FPGAs. ACM, 2016.

10M. Claes et al. “Comparison of SRAM and FF-PUF in 65nm Technology”. Nordic
Conference on Secure IT Systems. 2011.
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Leakage for ¢ = 5%, (SRAM-PUF)
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Failure rate for € = 5%, (SRAM-PUF)
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Privacy amplification 2125

From an n-bit response, if t bits are leaked, it is possible to
obtain an (n—t)-bit secret key.

: ; Privac ;
n-bit response Tinti n-bit response y (n-t)-bit key
Reconciliation plification

L»t bits leaked

A hash function can be used for privacy amplification'’.

TR, Impagliazzo, L.A. Levin and M. Luby, Pseudo-random Generation from one-way
functions, 21st Annual Symposium on Theory of Computing, 1989.



Implementation

Only parity computations are embedded.
All other computations can be done on the server.

)] .
parity
° D Q
[ ]
L[]

Requirements:

256-bit response:

e Multiplexer,
@ One XOR gate,
@ One D flip-flop.

e Xilinx Spartan 6: 19 Slices,
o Altera Cyclone V: 20 LABs.




. d .
Implementation 2"¢ option S

T
D Q
( —

Shift
Register

index log,(n)-bit counter |— ena

.
256-bit response:

e Shift register,

Shift register already present:

@ One counter,
@ One XOR gate,
e Two D flip-flops.

@ Xilinx Spartan 6: 3 Slices,
@ Altera Cyclone V: 2 LABs.




Implementation 24/25

IP core activation procedure:

‘ Server Device i
att=0 Generates challenge ¢;
G
enrolment ro — PUF(c;)
o
Stores ry
att==4 Requests activation
Ci
re, — PUF(c;)
- CASCADE
activation ry — r,
Privacy
K—PA K—PA
(rs) amplification (r2)
Encrypts UW with K
[UW]k
Decrypts UW
Activates by unlocking
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DONE/TO-DO:

V' Software model,

v Implementation in VHDL,

x Tests with a real PUF: TERO-PUF

x Integration in the overall module.

— Questions? —



