Key reconciliation protocol application to
error correction in silicon PUF responses

Brice CoLomBIER®, Lilian BossueT*, David HELY*

*Laboratoire Hubert Curien
Saint-Etienne — France
*LCIS, Grenoble Institute of Technology
Valence — France

June 23, 2016

Cryptarchi workshop]

) hugear cumien - Rhonedies @y) SALWARE

E— UMR - ENRS - S516 - SAINT-ETIENNE French ANR Project

SALWARE project' 2/25

French ANR Project

Locking

module Remotely
activable
IC

Cryptographic
processing

Unigue.
2 '/identiﬁz<;3 ; [

Activation request

Thttp://www.univ-st-etienne.fr/salware/

PUFs as unique identifiers

PUF
description

[TTTTTHI
[TTTTTII
E||I|Eia||||E
[TTTTTII
#/
g||||‘%i“||g

Different responses to the same
challenge.

J

Principle:

Extract entropy
from process
variations.

\

Aim:

Provide a unique,
per-device ID,
thanks to the
inter-device
uniqueness.

The instability problem 4125

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
@ PUF architecture,
@ Process node,
e Aging,
e Temperature,

@ Environment...

— It prevents the PUF response from being used as a key.

Assumptions and requirements

Correct the PUF response.

time

t0t+cl—

Error

tlt+cl—

At
H
—_

correction

Requirements for the error correction module:

@ Low area,

e High correction probability.

State-of-the-art error correction for PUF responses .

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx
Spartan 3 Spartan 6
2 Concatenated: 221
Repetition and BCH
3 Reed-Muller 179
4 BCH
5 Concatenated: 168

Repetition and Reed-Muller

2R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.
CHES. 2012.

3M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015.

4A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual
Authentication for PUF-Enabled RFIDs”. FC. 2012.

5C. Bésch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.

State-of-the-art error correction for PUF responses .

Several error-correcting code implementations exist:

Logic resources (Xilinx Slices)

Article Construction and code(s) Xilinx Xilinx
Spartan 3 Spartan 6
2 Concatenated: 221
Repetition and BCH
3 Reed-Muller 179
4 BCH
5 Concatenated: 168

Repetition and Reed-Muller

This work CASCADE protocol 69 19

2R. Maes et al. “PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator”.
CHES. 2012.

3M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015.

4A. V. Herrewege et al. “Reverse Fuzzy Extractors: Enabling Lightweight Mutual
Authentication for PUF-Enabled RFIDs”. FC. 2012.

5C. Bésch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008.

Information reconciliation protocols 7125

CASCADE introduced in 1993 by Brassard and Salvail®

‘ Quantum channel ‘
. GE—

‘ Public discussion ‘
m m
l Key l
key reconciliation key

The final key is shorter than the original message.

6G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.

Information reconciliation protocols 7125

CASCADE introduced in 1993 by Brassard and Salvail®

‘ Quantum channel ‘
. GE—

‘ Public discussion ‘
m m
l Key l
key reconciliation key

The final key is shorter than the original message.

This could be used to derive keys
from slightly different PUF responses. }

6G. Brassard et al. “Secret-Key Reconciliation by Public Discussion”. EUROCRYPT. 1993.

CONFIRM: Dichotomous error correction

Works on parts of the responses that have a different parity.

Server Device
Part of the response Part of the response
I\I\I\I\I\I\I\I\I\I\I\I\I\I\I\II I\I\I\I\I\I\I\I\l\l\I\I\I\I\I\}
Odd parity Odd parlty Odd parity Even parlty
DDDDDDDD‘ 5 EEEEEe
Odd parlty ' Even parity Eveq pa ;1ty | Even parity
DDDD O
Even parlty - 0dd parity Odd parity | Odd parity
! Bit transmission e

> L
Error correction I Correct bit
[Faulty bit

Allows to correct one error.

Backtracking o/25

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

Backtracking o/25

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.
— if an error is corrected on a bit from this block in a
subsequent pass, then its relative parity becomes odd again.

Backtracking o/25

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

— if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.
— one more error from this block can be corrected.

Backtracking

Backtracking can be used to leak fewer bits.

After a pass, all the blocks have an even relative parity.

— if an error is corrected on a bit from this block in a

subsequent pass, then its relative parity becomes odd again.
— one more error from this block can be corrected.

BENGE > 08

Parity check does not detect these errors.
If, in a subsequent pass, the error 9 is corrected:
— The block can be processed again to correct error 13.

J

The CASCADE protocol 10/25

OF : BBBBEE - HE: 5

Blocks of even
relative parity:
(%)
Blocks of odd relative
parity:
107)

The CASCADE protocol 10/25

OF : BBBOEE - HE:

Correction
[oTxT2Ts][4T5 67][IERY vt][> IR 5] Blocks of even
relative parity:
(%)
Blocks of odd relative
parity:
107)

The CASCADE protocol 10/25

OB : BEO0AE © DD 0
Correction Blocks of even

|0|l|2|3”4|5|6|7| relativeparity:

lo]s]2[3][4]s]e]7]

[8]9[10]11|[12[13]14]15]

Blocks of odd relative

parity:
1]

The CASCADE protocol 10/25

OR : AAEERE © 0@ 5

Correction Blocks of
L) Lo L[KNSR v parity
Shuffling '

006 ° 008 -onEEonEE B BEEH

[8]9[10]11|[12[13]14]15]

Blocks of odd relative

parity:
1]

The CASCADE protocol 10/25

OR : AAEERE © 0@ 5

Correction Blocks of
DRRERBEnRE - HE - 6 lative parity:
Shuffline relative parity:
B0 000 onEnonEEEEnE0n
Correction [8]9[10]11|[12[13]14]15]
Gl o BB 5 (2 [1o] s [r] 3 15[6] 1 Blocks of odd relative
parity:

1G]

The CASCADE protocol 10/25

KA : HABREHA > o [mE: [Blocks of even

Correction relative parity:

[of:T2Ts][4 s e[7][e IEMERY 11 |[12BERM15] [o[a]2]s][«]5]c]7]
Shuffling
8|11|3|15|6|1| [8] 9[10]11|[12[13]14]15]

Correction [2|10]811]3]15]6[1]
e[TR B 5[z o[[u[3[sTe 5] [safuala]s oo [5)
Blocks of odd relative

parity:
%)

The CASCADE protocol 10/25

KA : HABREHA > o [mE: [Blocks of even

Correction relative parity:
[of:T2Ts][4 s e[7][e IEMERY 11 |[12BERM15] [o[a]2]s][«]5]c]7]
Shuffling
B 0H ° 058 DREEERR DR LR EEDE
Correction [2|10]811]3]15]6[1]

e[« [ROl s | 2 [o[s[uls[sle 5] [oafuala] To o]uals]
Blocks of odd relative

parity:
%)

The CASCADE protocol 10/25

(o[B s[4 567][= NEMERY v][22 ERRERY 25] Blocks of even

Correction

[Tz [3][+Ts o 7][s IR u o pEMs] | [elative parity:
Shuffling Lof2]2]z]l4]5]6][7]
8|11|3|15|6|1| [2]10[8]11]3]15]6]1]

Correction

e[B o B o]z ho[s[ulalsls]x] 2lelel7lolofsals)

Blocks of odd relative

parity:
[8]9[10]11|[12]13]14]15]

The CASCADE protocol 10/25

|0|1|4|5|6|7| Blocks of even
Correction

[Tz [3][+Ts o 7][s IR u o pEMs] | [elative parity:
Shuffling Lof2]2]z]l4]5]6][7]
8|11|3|15|6|1| [2]10[8]11]3]15]6]1]

Correction
e[RO s |2 [ols[m]a]wle]x] L2dlelrlolofials]
Extra correction Blocks of odd relative
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 [1] parity:

[8]9[10]11|[12]13]14]15]

The CASCADE protocol 10/25

|0|1|4|5|6|7| Blocks of even
Correction

[Tz [3][+Ts o 7][s IR u o pEMs] | [elative parity:
Shuffling Lof2]2]z]l4]5]6][7]
8|11|3|15|6|1| [2]10[8]11]3]15]6]1]

Correction
e[RO s | 2[ols[n]a]wle]s] 2ndlelrlofofials]
Extra correction Blocks of odd relative
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 [1] parity:

DOmABEnE

The CASCADE protocol 10/25

|0|1|4|5|6|7| Blocks of even

Correction relative parity:
[oTsT2Ts][4]sTe[7][c EMEEN v |- FEM 5] [o]z]2]3][2]5]6]7]

SILLLI (2[5 [0l]
06 ° 008 - OnEnan EIENTE

Correction |2 |10| 8 |11| 3 |15| 6 | 1|

N o Bl 5][2]w0[8[n[s[15[6 [1] Blocks of odd relative

Extra correction aritv:
[2[we[a]7 oo B 5 |[2 [10] s [] 3 [15] 6] 1] p

[12[14[4| 7] 9] 013] 5]

The CASCADE protocol 10/25

O BN Ts e 7| e BN [Blocks of even

Correction relative parity:

GTal2l3) T sle 7] s BRI = [o[lz[3][<[s[e[7]
oo (s Jo[]
H . 01 ° 0 BH © IRBEE N

Correction |2|1O|8|11|3|15|6|1|
M o BRI 5[2]10[8]n[3[15[6]1] Blocks of odd relative
Extra correction

EROEEN - HEEONEECE R

Extra correction
[12[14] 4790]13]5][2]10[8 [12][315[6 1] [12[14]4]7]9]0[13]5]

The CASCADE protocol 10/25

O BN Ts e 7| e BN [Blocks of even

Correction relative parity:

GTal2l3) T sle 7] s BRI = [o[lz[3][<[s[e[7]
oo (s Jo[]
H . 01 ° 0 BH © IRBEE N

Correction |2|1O|8|11|3|15|6|1|
M o BRI 5[2]10[8]n[3[15[6]1] Blocks of odd relative
Extra correction

parity:
[12]14] 4] 7] oJo B 5][2]20[811 3]25[6 [1]

Extra correction
[12[14] 4790]13]5][2]10[8 [12[3[15[6 1] [12[14]4]7]9]0[13]5]

The CASCADE protocol 10/25

KA : HABREHA > o [mE: [Blocks of even

Correction relative parity:

[o2]2]3][«]sTe]7][e IEMERN][2EERMN 5] [o]x]z[3][«]5]6]7]
Shuffling
8|11|3|15|6|1| [8] 9[10]11|[12[13]14]15]

Correction [2|10]811]3]15]6[1]
e[RN B 5[z o[[u[s[sTe 5] [afuala]s oo [5)
Extra correction]
[12[1a]4]7[oJo P 5][2]w0[8]u[s]1s[6 2] Blocks of odd relative
Extra correction parity:
[12[14] 4| 7] 90 [13]5][2 [10] 8 [11] 3 [15]6] 1| %)

The CASCADE protocol 10/25

KA : HABREHA > o [mE: [Blocks of even

Correction relative parity:

[o2]2]3][«]sTe]7][e IEMERN][2EERMN 5] [o]x]z[3][«]5]6]7]
Shuffling
8|11|3|15|6|1| [8] 9[10]11|[12[13]14]15]

Correction [2|10]811]3]15]6[1]
e[RN B 5[z o[[u[s[sTe 5] [afuala]s oo [5)
Extra correction]
[12[1a]4]7[oJo P 5][2]w0[8]u[s]1s[6 2] Blocks of odd relative
Extra correction parity:
[12[14] 4| 7] 90 [13]5][2 [10] 8 [11] 3 [15]6] 1| %)

Associated information leakage /25

Two ways of leaking information:
@ Relative parity computations,
o 1 bit.
@ CONFIRM executions on an n-bit block.
o logy(n) bits.

Associated information leakage

Two ways of leaking information:
@ Relative parity computations,
e 1 bit.
@ CONFIRM executions on an n-bit block.
o logy(n) bits.

128-bit response, € =0.05 — 7 errors.

e 1% pass: 8-bit blocks, 4 errors corrected.

e 2" pass: 16-bit blocks, 3 errors corrected.
Leakage: 122 + 4% log,(8) + <22 + 3x logy(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

Information leakage 12/25

What is the lower bound on the information leakage?]

It is related to the conditional entropy’ H(r|ry) = nh(e) where:
€ is the error rate and n is the response length.

h(e) = —¢e.logy(e) — (1—¢).loga(1—¢)
The best length we can expect for the final response is then:

n—nh(e) = n(1- h(e))

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

7). Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. (2015).

Parameters to tune to limit the leakage 13/25

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

Parameters to tune to limit the leakage

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

The block size cannot exceed n/2.
The failure rate remains too high.

Parameters to tune to limit the leakage

How to set the CASCADE parameters?
e Initial block size: depends on the error rate.

@ Number of passes: depends on the required correction
success rate.

e Block size multiplier: x2 at each pass.

JiN A A

The block size cannot exceed n/2.
The failure rate remains too high.

Add extra passes without increasing the block size.

Experimental results 14725

Several realistic PUF references:
@ RO PUF in FPGA £ = 0.9%8.
e TERO PUF in FPGA € = 1.8%°.
® SRAM PUF in ASIC £ =5.5%".

256-bit responses, aim for 128-bit security

Simulation carried out on 2500 000 responses.

8A. Maiti et al. “A large scale characterization of RO-PUF”.. HOST. 2010.

9C. Marchand et al. “Enhanced TERO-PUF Implementations and Characterization on
FPGAs”. International Symposium on FPGAs. ACM, 2016.

10M. Claes et al. “Comparison of SRAM and FF-PUF in 65nm Technology”. Nordic
Conference on Secure IT Systems. 2011.

Leakage for ¢ = 1%, (RO-PUF)

256
235

128

(=2}
IS

Final response length (bits)
w
[\]

—
o

o L 1 """"""""" [R
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for £ = 1%, (RO-PUF)

Failure rate

=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@—=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Leakage for ¢ = 2%, (TERO-PUF)

Final response length (bits)

128

64

=
oM

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for £ = 2%, (TERO-PUF)

Failure rate

Passes

=@ (32/64/128)-bit blocks
=@ (16/64/128)-bit blocks

O=0 (8/32/128)-bit blocks
O O (4/32/128)-bit blocks

Leakage for ¢ = 5%, (SRAM-PUF)

Final response length (bits)

182

128

(=2}
IS

=
oM

o L o [R
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for € = 5%, (SRAM-PUF)

Failure rate

10*2;
10*3;
10—4;
10—5;

<10-6L
0

101

Passes

=@ (32/64/128)-bit blocks
=@ (16/64/128)-bit blocks

O=0 (8/32/128)-bit blocks
O O (4/32/128)-bit blocks

Privacy amplification 2125

From an n-bit response, if t bits are leaked, it is possible to
obtain an (n—t)-bit secret key.

: ; Privac ;
n-bit response Tinti n-bit response y (n-t)-bit key
Reconciliation plification

L»t bits leaked

A hash function can be used for privacy amplification'’.

TR, Impagliazzo, L.A. Levin and M. Luby, Pseudo-random Generation from one-way
functions, 21st Annual Symposium on Theory of Computing, 1989.

Implementation

Only parity computations are embedded.
All other computations can be done on the server.

)] .
parity
° D Q
[]
L[]

Requirements:

256-bit response:

e Multiplexer,
@ One XOR gate,
@ One D flip-flop.

e Xilinx Spartan 6: 19 Slices,
o Altera Cyclone V: 20 LABs.

. d .
Implementation 2"¢ option S

T
D Q
(—

Shift
Register

index log,(n)-bit counter |— ena

.
256-bit response:

e Shift register,

Shift register already present:

@ One counter,
@ One XOR gate,
e Two D flip-flops.

@ Xilinx Spartan 6: 3 Slices,
@ Altera Cyclone V: 2 LABs.

Implementation 24/25

IP core activation procedure:

‘ Server Device i
att=0 Generates challenge ¢;
G
enrolment ro — PUF(c;)
o
Stores ry
att==4 Requests activation
Ci
re, — PUF(c;)
- CASCADE
activation ry — r,
Privacy
K—PA K—PA
(rs) amplification (r2)
Encrypts UW with K
[UW]k
Decrypts UW
Activates by unlocking

Conclusion 25/25

Compared to existing methods:
— few on-chip logic resources,
— can reach very low failure rates,

— very tunable depending on the expected error-rate

Conclusion 25/25

Compared to existing methods:

— few on-chip logic resources,

— can reach very low failure rates,

— very tunable depending on the expected error-rate
DONE/TO-DO:

V' Software model,

v Implementation in VHDL,

x Tests with a real PUF: TERO-PUF

x Integration in the overall module.

Conclusion 25/25

Compared to existing methods:

— few on-chip logic resources,

— can reach very low failure rates,

— very tunable depending on the expected error-rate
DONE/TO-DO:

V' Software model,

v Implementation in VHDL,

x Tests with a real PUF: TERO-PUF

x Integration in the overall module.

— Questions? —

