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Abstract

Code-based cryptography received attention after the NIST started the post-
quantum cryptography standardization process in 2016. A central NP-hard
problem is the binary syndrome decoding problem, on which the security of many
code-based cryptosystems lies. The best known methods to solve this problem all
stem from the information-set decoding strategy, first introduced by Prange in
1962. A recent line of work considers augmented versions of this strategy, with
hints typically provided by side-channel information. In this work, we consider
the integer syndrome decoding problem, where the integer syndrome is available
but might be noisy. We study how the performance of the decoder is affected by
the noise. We provide experimental results on cryptographic parameters for the
BIKE and Classic McEliece cryptosystems, which are both candidates for the
fourth round of the NIST standardization process.

Keywords: Code-based cryptography, Syndrome decoding problem, Information-set
decoding
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1 Introduction

1.1 Post-quantum cryptography: on its way to become reality

With the practical feasibility of a quantum computer of sufficient capacity getting more
and more probable by the day, the threat posed by Shor’s algorithm [38] on number
theory base cryptosystems grows as well. To address this threat, NIST began a stan-
dardization process in 2016 for post-quantum cryptography. The fourth round of this
process started in July 2022 when, in the Key Encapsulation Mechanism category, four
candidates were submitted. Among them, the Classic McEliece [2] and the BIKE [3]
cryptosystems are two solutions based on error-correcting codes. Their security relies
on the NP-hardness of the binary syndrome decoding problem (SDP) [6]. The SDP
is the core hard problem of several cryptographic constructions, e.g., the FSB hash
function [4], the SYND stream cipher [25] or the Stern identification scheme [40].

Given a parity-check matrix H of a binary linear code, a binary syndrome vector
s∗ and an integer t, the SDP consists in finding a binary vector x of Hamming weight
t such that Hx = s∗. There are three main techniques for solving the SDP: statistical
decoding [24, 28, 36, 15, 12], information set decoding (ISD) [37, 30, 39, 31, 19, 20,
10, 23, 7, 33, 5, 34, 9] and generalized inverse based decoding [18]. Information Set
Decoding was originally proposed by Prange in 1962 [37], and it has been incrementally
refined since by Lee and Brickell [30], Stern [39] and, more recently, by May, Meurer
and Thomae [33] and by Becker, Joux, May and Meurer [5]. The complexity of the
ISD method has been used to better tune the parameters of the cryptosystems [21]
according to the required security levels.

1.2 Integer syndrome decoding

One recent line of work considers modified versions of the SDP, for which additional
information is available, for instance via side-channel analysis on implementations of
the aforementioned cryptosystems. In [27], authors study the case where parts of the
error are known, or only their Hamming weight. The case where the integer syndrome
s is available, instead of the binary one, as if the matrix-vector multiplication had
been performed in the integer ring instead of the binary finite field, is considered in
[17]. One method to obtain the integer syndrome is by laser fault injection attack, as
presented in [13]. The problem one has to solve in this case is the integer syndrome
decoding, referred to as N− SDP, where the input is the parity-check matrix H, the
integer syndrome vector s and the weight of the solution t. The same question is
raised, whether Hx = s admits a solution of weight t. This problem can be tackled
down by means of Integer Linear Programming [13] or probabilistic methods [22].

Another method of obtaining an integer syndrome, much more feasible and realistic
than laser fault injection, is by side-channel analysis [14]. However, due to physical
factors, the integer entries of the syndrome might not be perfectly accurate. Hence,
in the resulting problem, the N − SDP in the presence of noise, we are given a noisy
integer syndrome s̃ = s+ ϵ, where ϵ models the noise as a vector of random variables.
The solution proposed in [14] uses a combination of ISD techniques and the score
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decoder from [22]. However, only simulations were provided to assess the performance
of this proposal and no theoretical evidence was given.

1.3 Related work

Learning with errors and hints

Not only code-based cryptosystems are vulnerable to such attacks. Similar results
were obtained in the context of lattice-based cryptosystems by Bootle et al. [8]. The
BLISS cryptosystem was cryptanalysed by means of similar hybrid attacks, where
side-channel attacks revealed an Integer version of the Learning With Errors (ILWE).
The ILWE problem is the lattice-based equivalent of the N−SDP. However, ILWE was
solved with another technique that does not seem to work for N− SDP. Nevertheless,
it points out that such scenarios extend broader than code-based cryptography.

Quantitative Group Testing

Quantitative Group Testing (QGT) is an active field of research, lately boosted by the
COVID-19 epidemic. In the QGT we are given a large population out of which some
individuals suffer from a disease, and the goal is to identify the infected individuals.
Possible applications of QGT go from bio-informatics [11], traffic monitoring [42] and
confidential data transfer [16, 1] to machine learning [32, 43]. The N − SDP can be
also seen as a QGT in presence of noise. As we shall demonstrate, the algorithm we
propose here, solves a noisy QGT instance, by adapting and improving (using coding
theory tools, such as ISD techniques) a recent solution to the classical QGT [22].

1.4 Contributions

In this article, we analyze in detail the algorithm proposed in [14], referred to as ISD-
score decoder, and provide the following contributions. First, we demonstrate that the
ISD-score decoder finds a solution to the N− SDP in the presence of noise with high

probability, as long as the weight is sub-linear in n, more exactly, t ≤ O
(

n−k
log(n−k)

)
,

where n is the length of the code and k the dimension. We consider two noise models,
present in several schemes/scenarios, i.e., Binomial centered in zero and Bernoulli
variables. We demonstrate that the ISD-score decoder can tolerate noise levels that
are linear in the weight of the solution t. For that we partially build our demonstration
on the techniques used in [22]. We incorporate the noise models into these techniques
and, by using sharper inequalities, determine a much clearer condition for having a
higher probability of success. One consequence of this new method is that when the
noise is null and the ISD part is ignored, equivalently the ISD-score decoder boils
down to the algorithm proposed in [22], the conditions we propose on the range of
t for which the algorithm succeeds is larger than those from [22]. This gives a lower
bound on the number of syndrome entries, or the number of rows in the parity-check
matrix, required to find a solution, known as the information theoretic bound. A 5
page short version of this article was presented at the Information Theory Workshop
(ITW) 2022. We are extending on this short version by providing the full proofs of
our results additional comments and a complete section on experimental results.
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Outline of the article

In Section 2 we introduce the SDP and its variants, N − SDP and N − SDP in the
presence of noise. We also recall the cryptographic context where these problems occur.
Section 3 begins by recalling the score decoder proposed in [14]. Then, it analyzes the
distribution of the discriminant function for the N − SDP in the presence of noise.
The section ends with the description of the ISD-Score decoder. Next, we analyze the
success probability of the ISD-Score decoder in Section 4. The theoretical results from
this part are being compared with numerical values from our implementation of the
algorithm in Section 5. The section also makes a parallel between the efficiency of the
ISD-Score decoder and other methods such as ILP. Finally, we conclude the article in
Section 6.

2 Preliminaries

Notations

A finite field is denoted by F, and the ring of integers by Z. We write N∗
n = {1, . . . , n}

and Z−n,n = {−n, . . . , 0, . . . , n}. For p ∈ [0, 1] and n ∈ N∗ a random variable X that
follows a distribution will be marked as X ∼ Ber(p) for the Bernoulli distribution and
by X ∼ B(n, p) for the Binomial distribution. We denote by W (x) the Lambert W
function. Matrices and vectors are written in bold capital, respectively small letters.
We also use HW(c) to denote the Hamming weight of the vector c.

Error correcting codes

Let n and k be two positive integers such that k ≤ n. An [n, k] linear code can be
defined as a sub-vector space of dimension k of the vector space Fn. A code can be
specified either by its generator matrix G ∈ Fk×n (a basis for the code), or by its
parity-check matrix H ∈ F(n−k)×n (a basis for the dual code). The minimum distance,
or the Hamming distance of a code C, is the minimum of all HW(v) for v ∈ C,v ̸= 0.

One of the main features of linear codes is their ability to decode noisy informa-
tion/data. Several general decoding strategies exist, the syndrome decoding problem
being one of them.

Some variations of the syndrome decoding problem

Let us start by formally defining the binary SDP.
Definition 1 (SDP).

Inputs: H ∈ F(n−k)×n
2 , s∗ ∈ Fn−k

2 , t ∈ N∗.
Output: x ∈ Fn

2 s.t. Hx = s∗, and HW(x) = t.
This problem is NP-Complete [6] and, as we shall quickly see, it constitutes the

building block of code-based solution for post-quantum cryptography.
Now, a slightly different problem, the N − SDP [13, 17], considers matrix-vector

multiplication over the ring of integers instead of the binary field F2. Formally, the
problem can be stated as follows.
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Definition 2 (N− SDP).
Inputs: H ∈ {0, 1}(n−k)×n, s ∈ Nn−k, t ∈ N∗.
Output: x ∈ {0, 1}n, s.t. Hx = s, and HW(x) = t.
To define N− SDP in the presence of noise as generally as possible, we model the

noise ϵ = (ϵ1, . . . , ϵn−k) as a vector of random variables ϵi ∼ D, where D is a discrete
probability distribution. In the N − SDP in the presence of noise, instead of having
access to an instance of the N − SDP, i.e., (H, s, t), we are given a noisy syndrome
s̃ = s+ ϵ and the value s∗ = s (mod 2) (component-wise).
Definition 3 (N− SDP in the presence of noise ϵ).
Inputs: H ∈ {0, 1}(n−k)×n, s̃ ∈ Zn−k

s∗ ∈ {0, 1}n−k, t ∈ N∗

Output: x ∈ {0, 1}n, s.t. Hx = s∗ with HW(x) = t
s∗ = s mod 2, and s̃ = s+ ϵ.

Remark that N−SDP in presence of noise is the SDP with additional information.
Under certain conditions, we hope that, given (H, s∗, t, s̃), we can find x, solution to
the SDP. Also, when the noise is zero we face the classic N− SDP.

The Niederreiter encryption framework

Both, Classic McEliece [2] and BIKE [3], are based on the Niederreiter encryption
scheme [35]. Here, we will focus on the encryption algorithm (see Alg. 1).

Algorithm 1 Niederreiter encryption

1: function Encrypt(m, pk)
2: Encode m→ x with HW(x) = t
3: Compute s∗ = Hpubx
4: return s∗

Recent message recovery attacks are pointing the encryption step, where the cipher-
text is obtained from the multiplication of the public parity-check matrixHpub and the
secret error vector x. Hence, in [14, 13] the matrix-vector multiplication is targeted as
leakage point (line 3 in Algorithm 1). We shall not insist here on the technical details
that allow the derivation of the integer syndrome s or the noisy integer syndrome s̃
from this matrix-vector computation. However, such an exploit is achievable, hence,
enabling one to tackle the N − SDP or the N − SDP in presence of noise, in order to
retrieve the secret message. The sets of (n, k, t) parameters defined in [2] and [3] are
given in Table 1.

3 ISD-Score decoder

3.1 Score decoder

The idea of assigning a score to each column was already used in for the N − SDP
in [14]. The objective is to distinguish columns of H in the support of the solution
vector from columns which are outside the support. We shall begin by defining a
score decoder, as introduced in [22], that proved to be particularly discriminant in the
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Table 1: (n, k, t) parameters for Clas-
sic McEliece and BIKE

n k t

Classic McEliece

3488 2720 64
4608 3360 96
6688 5024 128
8192 6528 128

BIKE
24646 12323 134
49318 24659 199
81946 40973 264

context of N− SDP. For a better illustration of the nice features of the decoder in the
presence of noise, we will express it in function of the noiseless decoder. As we shall
see, this method allows not only to derive a particularly simple relation between those
two, but also to deduce conditions on the tolerated noise level.
Definition 4. Let H ∈ {0, 1}(n−k)×n, s ∈ Nn−k and t ∈ Z∗ be the input of N− SDP.
Then define the score of a column:

∀i ∈ N∗
n ψi(s) =

n−k∑
ℓ=1

(hℓ,isℓ + (1− hℓ,i)(t− sℓ))) . (1)

For the N − SDP in the presence of noise we shall use ψi(s̃). The next result,
rephrased from [22], expresses the capability of the score decoder to distinguish
between columns in the support of the solution vector from columns which are outside
the support.
Theorem 1. Let H ∈ {0, 1}(n−k)×n be a random matrix, with distribution given by
hj,i ∼ Ber( 12 ) and s ∈ Nn−k such that ∃ x ∈ {0, 1}n with HW(x) = t satisfying
Hx = s. Then

ψi(s) ∼
{
B((n− k)t, 12 ) , i ̸∈ Supp(x)
B((n− k)(t− 1), 12 ) + n− k , i ∈ Supp(x)

Straightforward from Theorem 1 we have E(ψi(s)) = (n − k)t/2 for i ̸∈ Supp(x)
and E(ψi(s)) = (n− k)t/2 + (n− k)/2 for i ∈ Supp(x). The difference in the average
value points out that ψ can be a distinguisher between positions in the support and
outside the support of the vector x. In addition, the variance also differs, fact that
will be used in the tail bounds. Moving forward, we will consider the noisy version of
this problem in the next section.

3.2 Score decoder in the presence of noise

As in [14], we make some assumptions on the noise considered here, i.e., ϵi are inde-
pendent and identically distributed random variables, the noise does not depend on
the distribution of the entries in H and the distribution D is symmetric.
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Fig. 1: Distribution of ψi for ϵ ∼ −d+ B(2d, 12 )

Proposition 2 ([14]). For j ∈ Z∗
n−k let ϵj be i.i.d. discrete random variables follow-

ing a symmetric distribution over the set Z−d,d, s.t. ϵj and hi,j are independent. Then

Prob (ψi(s̃)− ψi(s) = α) = Prob

(
n−k∑
j=1

ϵj = α

)
.

Proof. Let Yℓ,i = (2hℓ,i − 1)ϵℓ. Then we have,

ψi(s̃) =

n−k∑
ℓ=1

(hℓ,i(s̃ℓ + (1− hℓ,i)(t− s̃ℓ)))

=

n−k∑
ℓ=1

(hℓ,i(sℓ + ϵℓ + (1− hℓ,i)(t− sℓ − ϵℓ)))

ψi(s̃) = ψi(s) +

n−k∑
ℓ=1

(hℓ,iϵℓ − (1− hℓ,i)ϵℓ)︸ ︷︷ ︸
Yl,i

For any fixed value of ℓ ∈ Z∗
n−k we have Prob(Yℓ,i = αℓ) = Prob(ϵℓ = αℓ) for any

αℓ ∈ Z−d,d (using the symmetry property and the independence of hℓ,i and ϵℓ). Hence
Yℓ,i follows the same distribution as ϵℓ. Thus, ψi(s̃) − ψi(s) ∈ Z−(n−k)d,(n−k)d with

probability distribution Prob(ψi(s̃)− ψi(s) = α) = Prob
(∑n−k

j=1 ϵj = α
)
.
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Keeping the difference ψi(s̃)−ψi(s) as small as possible resumes to controlling the
sum of ϵj . The variance of ϵj plays a crucial role in the distinguishing capacity of ψ.
Proposition 3. For any j ∈ Z∗

n−k let ϵj be a discrete random variable satisfying the
conditions from Proposition 2 and let σ2 = V ar(ϵj). Let g(n, k, t) be a function in the

parameters of N− SDP. Then for any α > σ
√

(n− k)g(n, k, t)

Prob(ψi(s̃)− ψi(s) ≥ α) ≤
1

g(n, k, t)
. (2)

Proof. Use Chebyshev inequality for the sum of ϵj and the linearity of the variance.

The case of centered binomial noise

Corollary 4. Let d ∈ N and ϵi ∼ −d+ B(2d, 12 ). Then
• for i ̸∈ Supp(x)

ψi(s̃) ∼ −d(n− k) + B
(
(n− k)(t+ 2d),

1

2

)
• for i ∈ Supp(x)

ψi(s̃) ∼ −(d− 1)(n− k) + B
(
(n− k)(t− 1 + 2d),

1

2

)
Moreover, E(ψi(s̃)) = E(ψi(s)) and V ar(ψi(s̃)) = V ar(ψi(s)) + (n− k)d/2.

To maintain the capability to distinguish between positions inside the support and
positions outside the support, the noise parameter d from B(2d, 12 ) should be restricted.
Corollary 5. Let ϵi ∼ −d + B(2d, 12 ) and g(n, k, t) a unbounded function in t, n, k.

Then w.h.p. we have |ψi(s̃)− ψi(s)| ≤
√

d(n−k)g(n,k,t)
2 . Moreover, for any d ≤

n−k
8g(n,k,t) , the function ψ(s̃) distinguishes positions in Supp(x) from positions outside

Supp(x).
In particular, we can put g(n, k, t) = log log t or g(n, k, t) = log log n depending on

the wanted speed of convergence.
Figure 1 shows the distribution of ψi values for different levels of noise, ranging

from d = 0, i.e. the noiseless setting, to a very high noise of B(2t, 12 ). Notice that
the distinguishing capability is much higher for the BIKE parameters, as shown in
Figure 1a, than for the Classic McEliece parameters, as shown in Figure 1b.

Bernoulli noise

Proposition 6. Let ϵi ∼ Ber({0, 1}, 1/2). Then ψi(s̃) is a random variable

that follows the distribution

{
B((n− k)(t+ 2), 12 )− (n− k) , i ̸∈ Supp(x)
B((n− k)(t+ 1), 12 ) , i ∈ Supp(x)

.Moreover,

E(ψi(s̃)) = E(ψi(s)) and V ar(ψi(s̃)) = V ar(ψi(s)) + (n− k)/2.
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Notice that, in the case of a Bernoulli type of noise, the behavior is equivalent to
the case of a centered binomial noise. (equivalent to d = 1 in Corollary 4). Indeed, the
result in Proposition 6 is equivalent to the one given in Corollary 4 with d = 1.

3.3 Combining ISD and score decoder

The idea in [14] was to boost the distinguishing capability of the score decoder with
ISD-like techniques. To this end, the score decoder is integrated in the “permutation”
step of the ISD method. Indeed, this method starts by performing a permutation on the
columns ofH that will hopefully rearrange the solution in a useful way. More precisely,
in the first ISD algorithm, the Prange decoder [37], a “good” permutation (Π) is one

that satisfies Π−1x =

(
x1

0

)
. Hence, the initial system becomes HΠΠ−1x = s∗. By

Gaussian elimination on HΠ one can find an invertible matrix A s.t. AHΠ =
(
I∥B

)
.

Hence, the system becomes
(
I∥B

)(x1

0

)
= As∗ which yields x1 = As∗. In the original

ISD methods, permutations are sampled randomly until a “good” one is obtained.
Thanks to the extra-information provided by s or s̃, the function ψ allows to construct
a permutation which by no means is random. Indeed, we have seen that ψ, by its
nature, allows one to distinguish between positions in the support of x and positions
outside. Hence, the underlying permutation, hopefully is a “good” permutation. As
pointed out in [14], sorting the list of values ψi(s̃) in descending order is equivalent
to generating a permutation Π. Algorithm 2 finds a solution to the N − SDP in the
presence of noise as long as Π is “good” enough.

Algorithm 2 Prange Score Decoder(H, s, t)

1: Compute Π from the list ψi(s̃)
2: Compute A∗,H∗ ← rref(HΠ)
3: if HW(A∗s∗) = t then

4: return x = Π

(
A∗s∗

0n−r

)
▷ r = rank(A)

The procedure rref(HΠ), which stands for “reduced row echelon form”, is equiv-
alent to performing a partial Gaussian elimination over F2. Indeed, there is an

(n − k) × (n − k) non-singular matrix A∗ such that, A∗HΠ =

[
Ir

0n−k−r,r
∥B∗

]
where HΠ = [A ∥ B] with A a (n − k) × r matrix satisfying A∗A =

[
Ir

0n−k−r,r

]
,

and B∗ = A∗B. In the of a full rank matrix A we have A∗A = In−k. From the
description of the algorithm above, the following result can be deduced.
Proposition 7 ([14]). Prange Score Decoder outputs a valid solution as long as
there exists at least one set L ⊂ N∗

n\Supp(x) with #L ≥ n−r such that min{ψi(s̃), i ∈
Supp(x)} > max{ψi(x̃), i ∈ L}.
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The overall time complexity of Prange Score Decoder is O((n− k)3), since it
is dominated by the partial Gaussian elimination, i.e. the computation of A∗.

Since the permutation Π might not move all the positions in the support of x in
the first n − k positions, more powerful ISD methods may be used, e.g. Lee-Brickell
[30], Stern [39] or Dumer [19]. The idea is to allow a number of δ positions from
Supp(x) outside the first n − k positions. This is equivalent to extending Prange
Score Decoder so that it covers error vectors with a more general pattern. The Lee-
Brickell score decoder, where δ positions are searched exhaustively, is thus proposed
in [14] as a possible solution.

Algorithm 3 Lee-Brickell Score Decoder ([14])

1: function Lee-Brickell Score Decoder(H, s̃, s∗, t)
2: Compute Π← sort(H, s̃, t)
3: Set HΠ = [A ∥B]
4: Compute A∗,H∗ ←rref(HΠ) and B∗ = A∗B
5: Compute s

′
= A∗s∗

6: if HW(s
′
) == t then

7: return x = Π(s
′ ∥ 0k)

t

8: else
9: for i← 1, δ do

10: S = Gener-Subsets({1, . . . , k},i)
11: for E in S do
12: x

′′ ← Vector({0, 1}, k, E)
13: x

′ ← s
′ −B∗x

′′

14: if HW(x
′
) == t− i then

15: return
(
Π(x

′ ∥ x′′
)t,Π

)

When the Lee-Brickell variant is used and δ = O(1), k = O(n), the work factor of
the resulting algorithm becomes polynomial in n.
Proposition 8. The δ-ISD-score decoder outputs a valid solution as long as there are
at most δ indices i ∈ Supp(x) with values ψi(s̃) < ψj(s̃) with j in a set J ⊂ Nn of
cardinality n− k.

4 Success probability of the ISD-Score decoder

4.1 Main results

The following result gives a condition on the parameters for having a high probability
of success for the ISD score decoder on the N− SDP in presence of noise.
Theorem 9. Let ϵi ∼ −d + B(2d, 12 ). If the interval[√

t+2d
n−kW

(
n−t

n−k−t+δ+1
e
√
2

π

)2
, 1−

√
t+2d−1
n−k W

(
t

δ+1
2e
π

)2]
is non-empty, then w.h.p.

the ISD-score decoder succeeds in finding a valid solution.
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To prove this theorem we shall use 3 steps. More precisely, we first give an estima-
tion on the tails of the distributions ψi(s̃), then we insert these results into a generic
upper bound on the probability of success of the ISD-score decoder, and finally we
study the range of parameters for which our conditions are valid.

4.1.1 Tail bounds on the distribution

Firstly we have the following result on the distribution of ψ in the noiseless scenario.

Theorem 10. Let β ∈ (0, 1) and Bβ = (n−k)t
2 + β(n−k)

2 . Then we have
for i ̸∈ Supp(x)

Prob (ψi(s) ≥ Bβ) ≤
e√
2πβ

√
t

n− k
e−

n−k
2t β2

, (3)

for i ∈ Supp(x)

Prob (ψi(s) ≤ Bβ) ≤
e

π(1− β)

√
t− 1

n− k
e−

n−k
2(t−1)

(1−β)2 . (4)

Moving forward, in the case of a binomial noise we have
Theorem 11. Let ϵi ∼ −d+ B(2d, 12 ), β ∈ (0, 1) and Bβ as previously defined. Then
we have
for i ̸∈ Supp(x)

Prob (ψi(s̃) ≥ Bβ) ≤
e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) , (5)

for i ∈ Supp(x)

Prob (ψi(s̃) ≤ Bβ) ≤
e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) . (6)

The proof of these theorems is given in Appendix. Let us denote the two upper
bounds in Theorem 11 by UbSupp(x)(n, k, t, β) and UbSupp(x)c(n, k, t, β).

4.1.2 A general bound on the success probability using tail
estimations

A general theorem regarding the success probability of ISD-score decoder can be
stated. For that we suppose that the distribution ψi(s̃) when i ∈ Supp(x) has to be
different from ψi(s̃) when i ̸∈ Supp(x), e.g., it is at least shifted. If not it is obvious
that ISD-score decoder can not retrieve a valid solution with high probability.
Theorem 12. Let ψi(s̃) be random variables and f(n, k, t, d, B), g(n, k, t, d, B) be two
functions s.t.

Prob(ψi(s̃) ≤ B) ≤ e−f(n,k,t,d,B) , i ∈ Supp(x) (7)
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Prob(ψi(s̃) ≥ B) ≤ e−g(n,k,t,d,B) , i ̸∈ Supp(x) (8)

The ISD-score decoder finds the solution if ∃B∗ s.t.

• 0 ≤ 1− t
δ+1e

−f(n,k,t,d,B∗) ≤ 1,

• 0 ≤ 1− n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) ≤ 1,

• t
δ+1e

−f(n,k,t,d,B∗) + n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) is close to zero,

Typically, the theorem gives a sufficient condition for having a high probability of
success. Indeed, if one finds a value Bβ for which the lower bound tends to 1 then the
Score function achieves its goal, namely to distinguish positions in the support of x
from those outside it. The proof of this result is given in the Appendix.

Combining the tail bounds on the distribution of ψi(s̃) with the condition on β∗

for having a high probability of success enables the following result. Denote

LbSupp(x)c = 1 − e(n−t)√
2πβ(n−k−t+δ+1)

√
t+2d
n−k e

− (n−k)β2

2(t+2d) , LbSupp(x) = 1 −
e.t

π(1−β)(δ+1)

√
t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) .

Proposition 13. Let ϵi ∼ −d + B(2d, 12 ). If ∃β
∗ ∈ (0, 1) s.t. LbSupp(x),LbSupp(x)c ∈

[0, 1] and LbSupp(x)LbSupp(x)c is close to 1, then w.h.p. ISD-score decoder succeeds in
finding a valid solution.
Corollary 14. When d = 0 and δ = 0 the condition on β∗ simplifies to

• 0 ≤ et
π(1−β)

√
t

n−ke
− (n−k)(1−β)2

2t ≤ 1,

• 0 ≤ e(n−t)

(
√
2πβ)(n−k−t)

√
t

n−ke
− (n−k)β2

2t ≤ 1,

• et
π(1−β)

√
t

n−ke
− (n−k)(1−β)2

2t + e(n−t)

(
√
2πβ)(n−k−t)

√
t

n−ke
− (n−k)β2

2t is close to zero,

To fairly compare with state-of-the-art techniques such as the algorithm in [22],
which is only valid for the noiseless scenario, we adapted the conditions from [22]
to the noise model considered here. This gives two similar functions in β, namely

1 − n−t
n−k−t

√
t+2d
n−k e

− (n−k)β2

2(t+2d) , and 1 − t
√

t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) . In Figure 2, we plot the

modified functions from [22] (dashed lines) and LbSupp(x),LbSupp(x)c (solid lines).
In dark green and light green, the valid interval/region for the adapted functions

from [22], and our functions, respectively, are represented. Notice that for all parameter
sets and all noise levels considered here, our function offers a larger interval. Hence,
this implies that for some sets of parameters, e.g., in Figure 2d, the interval is empty
w.r.t. conditions in [22], while w.r.t. our conditions the interval exists.

4.1.3 Range of valid parameters

Here, we shall determine the conditions on the parameters such that the conditions
in Proposition 13 are satisfied. We will begin by determining the existence of β∗. We
will need to denote by W (x) the Lambert W function.

12
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Fig. 2: Valid β interval from the bounds in [22] (dashed lines) and the proposed ones
(solid lines)

Proposition 15. For any β ≥
√

t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
we have that

n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) ≤ 1, and for any β ≤ 1 −

√
t+2d−1
n−k W

(
t

δ+1
e
π

)2
we

have that t
δ+1UbSupp(x)(n, k, t, d, β) ≤ 1.

Having both functions positive and strictly smaller than 1, at the same time, can
be achieved as long the interval defined by the two extreme points, in the previous
Proposition is non-empty, i.e.,√

t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
≤ 1−

√
t+2d−1
n−k W

(
t

δ+1
e
π

)2
To give a more sensitive meaning of our result, we could approximate

the value of the Lambert W function by W (m) = logm − log logm +
log logm
logm as m tends to infinity. Using only the first term we define Iβ =[√

2(t+2d)
n−k log n−t

n−k−t+δ+1 , 1−
√

2(t+2d−1)
n−k log t

δ+1

]
. Hence, we deduce the following

result.
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Proposition 16. If Iβ ̸= ∅ then the probability of success of the ISD-score decoder is
at least 1− e

2π

1√
log n−t

n−k−t+δ+1

1− e√
2π

1√
log t

δ+1

 .

Typically, our result gives a sub-interval where the conditions are safely satis-
fied. When simulations are to be performed, one could solve the inequalities in order
to determine a more accurate interval. However, in using the Taylor series of the
LambertW function we can deduce the following.
Corollary 17. Let fn,k,t,δ = n−t

n−k−t+δ+1 and f∗t,δ = t
δ+1 . The extreme

points of the interval where the first two conditions in Theorem 13 are satis-

fied, converges to

√
t+2d
n−k

(
2 log fn,k,t,δ − log 2 log fn,k,t,δ +

log 2 log fn,k,t,δ

2 log fn,k,t,δ

)
, and 1 −√

t+2d−1
n−k

(
2 log f∗t,δ − log 2 log f∗t,δ +

log 2 log f∗
t,δ

2 log f∗
t,δ

)
.
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Fig. 3: Number of ones in the first n − k positions for some of the Classic McEliece
and BIKE sets of parameters and different levels of a centered binomial noise.

4.2 Information-theoretic bounds

4.2.1 Bounding the value of t

To see how large the weight of the error t must be to have a non-empty interval, the
following rough estimate can be used.
Theorem 18 (Upper bound on t). Let k ≤ n−t+δ+1−(n−t)(δ+1)/t and d = ct/2.
Then Iβ ̸= ∅ as long as we have

t ≤ n− k

8(1 + c)W
(

n−k
8(1+c)(δ+1)

) (9)

14



Moreover, when n→∞, we have that t ≤ O
(

n−k
log(n−k)

)
.

Using a first term approximation for the Lambert W function near infinity,
we obtain a threshold on t. More exactly this value can be approximated by

n−k
8(1+c) log n−k

8(1+c)(δ+1)

.

Now, recall that we have determined a preliminary condition on d, such that the ψ
function can distinguish between positions in the support of the solution and outside
it. This condition was d ≤ n−k

8 log log(n−k) . Taking a slightly smaller noise level, e.g.

d = n−k
8 log(n−k) ≤

n−k
8 log log(n−k) validates the choice in the hypothesis d = ct/2, as per

Theorem 18 t ≤ O
(

n−k
log(n−k)

)
. Taking into account this condition and the hypothesis

of Theorem 18, i.e. d = ct/2, we deduce the following upper bound on t

d =
ct

2
≤ n− k

8 log t
⇒ t log t ≤ n− k

4c
. (10)

This improves the constant term by t ≤ n− k
4cW (n−k

4c )
.

4.2.2 Bounding the required ratio of syndrome entries

The existence of a value such that the ISD-score decoder succeeds in finding a solution
using fewer syndrome entries could be deduced. It suffices to replace (n − k) with
γ(n − k), where γ ∈ (0, 1] represents the percentage of syndrome entries required to
achieve a high probability. This value can be deduced from Theorem 18. Typically,
given a number of rows n−k, the maximum value of t for which the success probability
is close enough to 1 also determines the minimum number of required rows. More
exactly, for a fixed value of t and n−k, we can compute γ(n−k), the value for which t
satisfies 8t(1+c) log t

δ+1 = γ(n−k). By Theorem 18, with only γ(n−k) rows, one can
recover a solution of weight at most t with high probability. Formally, the following
holds.
Corollary 19. Let d = ct/2 where c is a constant. Then the minimum quantity
of information required by the ISD-score decoder to find a valid solution is 4(1 +
c)t log t

δ+1 . Moreover, in the noiseless scenario, the minimum quantity of information

becomes 4t log t
δ+1 .

Consequently, we deduce that one could improve the constant term, however, not
lower than 2(1 + c) log t

δ+1 .

5 Experimental results

The following experiments have been carried out on a standard laptop embedding
an 8-core processor running at 1.6GHz and 32GB of RAM. The ILP solver we used
is provided by the Scipy Python package [41] under the scipy.optimize.linprog

function. The score decoder is implemented using the Numpy Python package [26] to
perform matrix computations.
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5.1 Success probability and ratio of syndrome entries

For the results presented below, we set the (n, k, t) parameters according to the
specifications of the Classic McEliece [2] and BIKE [3] cryptosystems.

The following experiments look at the number of syndrome entries required to
bring t−δ ones in the first n−k positions, as dictated by the ISD method. Results are
shown in Figure 3, for both the Classic McEliece and the BIKE cryptosystems. Let
us explain the meaning of the plots, when these are read horizontally. One way this
could be read is as the weight of solutions retrieved by the ISD-Score decoder with
probability 1. The green stripe represents the region corresponding to possible values
of δ. The value of δ for the [t− δ; t] interval is lower for the BIKE cryptosystem since
it comes with much larger values of n, making the exhaustive search for the correct
permutation much more costly. Conversely, we allow for δ = 3 in the case of Classic
McEliece since the n values are smaller. For example, when n = 8192 and noise level
equal to t we can hope to retrieve solutions of weight at most 122 (which is smaller
than the proposed parameters), while for the same length and noise smaller than t/2
we can retrieve any solution of weight at most 128 using the ISD-score decoder using
δ = 3, or equivalently solutions of weight 125 using the Prange-score decoder. To
summarize, except for the case n = 8192 with noise levels strictly greater than t/2, all
the plots suggest that the ISD-score decoder is able to retrieve with high probability
a valid solution of weight t in presence of noise.

We can also read the plots vertically. This gives us the ratio of syndrome entries
required to find a solution of given weight with high probability. The abscissa of the
points of intersection between the curves and the green stripe gives minimum percent-
age of syndrome entries required in the ISD-score decoder to successfully retrieve a
valid solution of weight t. For the BIKE cryptosystem, the ratio of syndrome entries
required to bring at least t− 1 ones in the first n− k positions ranges from 4.75% to
6.5%. For the Classic McEliece cryptosystem, the ratio of syndrome entries required
to bring at least t− 3 ones in the first n− k positions ranges from 48% to 62%. We
have also computed the best theoretical lower bound we could hope for, i.e., the per-

centage of syndrome entries should be at least 2(1+c)t
n−k log t

δ+1 . When comparing the
experimental results shown in Figure 3 and Table 2, we observe that theoretical values
are around 10% smaller than the experimental values.

5.2 ILP solver and ISD-score decoder

Percentage of required entries

To compare the ILP solver with the ISD-score decoder we used the parameters for the
Classic McEliece proposal. We decided to consider only the Classic McEliece because
the execution time of the ILP solver for the smallest parameters of BIKE exceeded
tens of minutes for a single instance of the N−SDP. Obtaining in a reasonable time a
solid statistical evidence of the performance of the ILP solver for BIKE, would assume
a much more optimized implementation of the solver, which is not the main purpose
of this article. The results for the ILP solver in the noiseless scenario are given in
Figure 4. The success rate is computed for ten evenly spaced ratios ranging from 1 to
100%.
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Table 2: Theoretical lower bound on the ratio of syn-
drome entries necessary for the ISD-score decoder

n noiseless B( t
4
, 1
2
) B( t

2
, 1
2
) B( 3t

4
, 1
2
) B(t, 1

2
)

Classic McEliece

3488 0.46 0.58 0.69 0.81 0.92
4608 0.49 0.61 0.73 0.86 0.98
6688 0.53 0.67 0.80 0.93 1.00
8192 0.53 0.67 0.80 0.93 1.00

BIKE

24646 0.09 0.11 0.14 0.16 0.18
49318 0.07 0.09 0.11 0.13 0.15
81946 0.06 0.08 0.09 0.11 0.13
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Fig. 4: Success rate of the ILP solver for the N−SDP for four sets of parameters and
different ratios of syndrome entries considered

We observe that the behavior is the same for all sets of parameters. When con-
sidering 30% of syndrome entries, the ILP solver failed at recovering the error vector
ten times out of ten. Conversely, when considering 40% of syndrome entries, the ILP
solver succeeded at recovering the error vector ten times out of ten. Hence, the main
drawback of the ILP solver, when compared to the ISD-score decoder, is that the ILP
cannot be used when only a small percentage of syndrome entries are known.

Noisy setting

In a noisy setting, the differences between the ILP solver and the ISD-score decoder is
even more dramatic. Indeed, the ILP solver either succeeds in finding a valid solution,
with t ones in the first t positions, or it fails. Conversely, the ISD-score decoder succeeds
if t − δ ones are in the first (n − k) positions, providing a much larger margin in the
noisy setting.

Eventually, the permutation returned by the ISD-score decoder is always better
than a random permutation. Therefore, one can always resort to exhaustive search
afterwards.
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Fig. 5: Computation time of the ILP solver and the Score decoder

Computation time

When comparing the time required by the two algorithms for retrieving a valid solu-
tion, we notice a significant gap between the two algorithms. From Figure 5 we can
see that it takes less than 0.1 s for the ISD-score decoder, while for the ILP it takes at
least 10 s for any of the parameters of the Classic McEliece scheme. Broadly speaking,
the ILP solver is three orders of magnitude slower than the ISD-score decoder.

6 Conclusion

This article evaluated the efficiency of the score decoder for integer syndrome decoding
in the presence of noise. We proved that, even in the presence of noise, this decoder is
indeed able to successfully bring t− δ ones in the first n− k positions, as required by
the ISD-based methods. We then experimentally validate this capability considering
the parameter sets of two post-quantum cryptosystems, Classic McEliece and BIKE.
Future works could investigate other types of noise or improve the efficiency of the
decoder, bringing it closer to the information-theoretic bound.

Acknowledgments.

Appendix A Proof of Theorem 1

Proof. By definition 4 we have that

ψi(s) =

n−k∑
ℓ=1

(hℓ,isℓ + (1− hℓ,i)(t− sℓ))) . (A1)

Let us denote Xℓ = hℓ,isℓ+(1−hℓ,i)(t−sℓ)). As sℓ =
∑

j∈Supp(x)

hℓ,j we deduce that

Xℓ = hℓ,i
∑

j∈Supp(x)

hℓ,j + (1− hℓ,i)(t−
∑

j∈Supp(x)

hℓ,j)). (A2)
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If i ̸∈ Supp(x) then

Xℓ =


∑

j∈Supp(x)

hℓ,j = sℓ , if hℓ,i = 1

t−
∑

j∈Supp(x)

hℓ,j = t− sℓ , if hℓ,i = 0

As sℓ ∼ B(t, 12 ) we deduce that Xℓ ∼ B(t, 12 ) for all i ̸∈ Supp(x), and by independence

we obtain ψi(s) ∼ B((n− k)t, 12 ), then E(ψi(s)) =
(n−k)t

2 and V ar(ψi(s)) =
(n−k)t

4 .
If i ∈ Supp(x) we have that sℓ and hℓ,i are dependent random variables. Hence we

obtain

Xℓ =


1 +

∑
j∈Supp(x)\{i}

hℓ,j , if hℓ,i = 1

1 + (t− 1)−
∑

j∈Supp(x)\{i}
hℓ,j , if hℓ,i = 0

As sℓ−hℓ,i ∼ B(t−1, 12 ) we deduce that Xℓ ∼ 1+B(t−1, 12 ) for all i ∈ Supp(x), and
by independence of the variablesXℓ we obtain ψi(s) ∼ (n−k)+B((n−k)(t−1), 12 ).

Appendix B Proof of Corollary 5

Proof. Apply Proposition 3 and Corollary 4 to obtain the the results. In order to
determine the upper bound on d, we start by computing the intervals of confidence
for ψi(s̃) from Proposition 3. This yields an interval Is̃(i) defined by the two extremal

points E(ψi(s̃))±
√

d(n−k)g(n,k,t)
2 , i.e.,

• i ̸∈ Supp(x) the points (n−k)t
2 ±

√
d(n−k)g(n,k,t)

2

• i ∈ Supp(x) the points (n−k)t
2 + n−k

2 ±
√

d(n−k)g(n,k,t)
2 .

The two intervals are disjoint if we have

2

√
d(n− k)g(n, k, t)

2
≤ n− k

2
(B3)

Hence, we obtain d ≤ n−k
8g(n,k,t) .

Appendix C Proof of Theorem 10 and Theorem 11

Let us begin by a useful result.
Lemma 20 ([29]). Let X ∼ B(n, 12 ) and

n
2 ≤ α ≤ n. Then

Prob(X ≥ α) ≤ α+ 1

2α− n+ 1
Prob(X = α). (C4)
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Lemma 21 ([22]). Let X ∼ B(n, 12 ) and α ≤
n
2 . Then

Prob
(
X =

n

2
+ α

)
≤ e

2π

√
n

n2

4 − α2
e−

2α2

n . (C5)

Proposition 22. Let X ∼ B(n, 12 ) and α < n. Then

Prob
(
X ≥ n

2
+
α

2

)
≤ e

2π

(
1 +

n+ 1

α+ 1

)√
n

n2 − α2
e−

α2

2n . (C6)

Proof. Use Lemma 20 and 21.

We can now proceed to the proof of Theorem 10.

Proof. Recall that

ψi(s) ∼
{
B((n− k)t, 12 ) for i ̸∈ Supp(x)
n− k + B((n− k)(t− 1), 12 ) for i ∈ Supp(x)

By Proposition 22, for i ̸∈ Supp(x) we have that

Prob (ψi(s) ≥ Bβ) ≤
e
2π

(
1 + (n−k)t+1

(n−k)β+1

)√
(n−k)t

(n−k)2t2−(n−k)2β2

e
(n−k)2β2

2(n−k)t

(C7)

≤ e

2πβ

√
t+ β

t− β

√
t

(n− k)
e−

(n−k)β2

2t (C8)

≤ e√
2πβ

√
t

(n− k)
e−

(n−k)β2

2t (C9)

For i ∈ Supp(x) we have that E(ψi(s)) =
(n−k)t

2 + n−k
2 . Hence, by Proposition 22

we obtain that Prob
(
ψi(s) ≤ (n−k)t

2 + (n−k)β
2

)
is upper bounded by

≤
e
2π

(
1 + (n−k)(t−1)+1

(n−k)(1−β)+1

)√
(n−k)(t−1)

(n−k)2(t−1)2−(n−k)2(1−β)2

e
(n−k)2(1−β)2

2(n−k)(t−1)

(C10)

≤ e

2πβ

√
t− β

t+ β + 2

√
t− 1

(n− k)
e−

(n−k)(1−β)2

2(t−1) (C11)

≤ e

2πβ

√
t− 1

(n− k)
e−

(n−k)β2

2(t−1) . (C12)

As for Theorem 11 we have:
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Proof. Recall that we have

• for i ̸∈ Supp(x)

ψi(s̃) ∼ −d(n− k) + B
(
(n− k)(t+ 2d),

1

2

)
;

• for i ∈ Supp(x)

ψi(s̃) ∼ −(d− 1)(n− k) + B
(
(n− k)(t− 1 + 2d),

1

2

)
.

The proof is thus identical with that of Theorem 10 by simply putting t′ = t+ 2d
when i ̸∈ Supp(x) and t′ = t+ 2d− 1 when i ∈ Supp(x).

Appendix D Proof of Theorem 12

Proof. Let XB denote the number of indices j ∈ Supp(x) for which ψi(s̃) ≤ B, and
YB the number of indices j ̸∈ Supp(x) for which ψi(s̃) ≥ B. The probability of success
of our algorithm equals

=
∑
B

Prob(XB ≤ δ)Prob(YB ≤ n− k − t+ δ)

=
∑
B

(1− Prob(XB ≥ δ + 1)) · (1− Prob(YB ≥ n− k − t+ δ + 1))

≥
∑
B

(
1− t

δ + 1
e−f(n,k,t,d,B)

)
·
(
1− n− t

n− k − t+ δ + 1
e−g(n,k,t,d,B)

)
.

In the last equation we have used Markov’s inequality. Also, the last sum is over
those values B for which the two terms in the sum are both positive and smaller than 1.
Now suppose that a B∗ satisfying the required condition exists. Then the probability
of success is

≥
(
1− t

δ + 1
e−f(n,k,t,d,B∗)

)
·
(
1− n− t

n− k − t+ δ + 1
e−g(n,k,t,d,B∗)

)
≥ 1− t

δ + 1
e−f(n,k,t,d,B∗) − n− t

n− k − t+ δ + 1
e−g(n,k,t,d,B∗).

Appendix E Range of valid parameters: proofs and
comments

The first useful results concerns the monotony of the two upper bounds.
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Lemma 23. The functions t
δ+1UbSupp(x)(n, k, t, d, β) and

n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) in β ∈ (0, 1), are positive increasing, and positive
decreasing, resp.

Proof. Let f(n, k, t, d, β) = t
δ+1UbSupp(x)(n, k, t, β

∗) and g(n, k, t, d, β) =
n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β). We have that both functions f, g are positive. We
also have

∂g(n, k, t, d, β)

∂β
= − (n− k)β2 + (t+ 2d)

β(t+ 2d)
g(n, k, t, d, β)

∂f(n, k, t, d, β)

∂β
=

(n− k)(1− β)2 + (t+ 2d− 1)

(1− β)(t+ 2d− 1)
f(n, k, t, d, β).

Using the fact that f and g are positive we deduce the wanted result.

Now we can demonstrate Proposition 15.

Proof. Let us consider the limit point β where the two functions equal 1. As the first
function is decreasing we then obtain a lower bound on β.

n− t
n− k − t+ δ + 1

UbSupp(x)c(n, k, t, d, β) = 1 (E13)

n− t
n− k − t+ δ + 1

e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) = 1 (E14)(
n− t

n− k − t+ δ + 1

e√
2π

)2
t+ 2d

(n− k)β2
= e

(n−k)β2

t+2d (E15)

By letting y = (n−k)β2

t+2d we have

yey =

(
n− t

n− k − t+ δ + 1

e√
2π

)2

, (E16)

admitting a real solution y = W
(

n−t
n−k−t+δ+1

e√
2π

)2
, where W is the Lambert W

function. From this we deduce β =

√
t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
. The second function

is increasing hence, it gives an upper bound on β.

t

δ + 1
UbSupp(x)(n, k, t, d, β) = 1 (E17)

t

δ + 1

e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) = 1 (E18)(
t

δ + 1

e

π

)2
t+ 2d− 1

(n− k)(1− β)2
= e

(n−k)(1−β)2

t+2d−1 (E19)
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As in the first case we obtain 1− β =

√
t+2d−1
n−k W

(
t

δ+1
e
π

)2
.

Proposition 16 gives a slightly weaker condition, however, it helps understanding
the order of magnitude of the parameters. Let us demonstrate the result.

Proof. Let β ≥ β1 =
√

2 t+2d
n−k log n−t

n−k−t+δ+1 . Then the quantity
n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) equals

=
n− t

n− k − t+ δ + 1

e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) (E20)

≤ n− t
n− k − t+ δ + 1

e

2π
√

log n−t
n−k−t+δ+1

e− log n−t
n−k−t+δ+1 (E21)

=
e

2π

1√
log n−t

n−k−t+δ+1

. (E22)

Let 1 − β ≥ β2 =
√

2 t+2d−1
n−k log t

δ+1 . Then the quantity t
δ+1UbSupp(x)(n, k, t, d, β)

equals

=
t

δ + 1

e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) (E23)

≤ e√
2π

1√
log t

δ+1

. (E24)

From this we deduce √
2(t+ 2d)√
n− k

√
log

n− t
n− k − t+ δ + 1

≤ β (E25)

β ≤ 1−
√

2(t+ 2d− 1)√
n− k

√
log

t

δ + 1
. (E26)

Now, suppose that [β1, β2] is non-empty and take β∗ ∈ [β1, β2].
Since t

δ+1UbSupp(x)(n, k, t, d, β) is increasing in β, this implies that
t

δ+1UbSupp(x)(n, k, t, d, β
∗) is upper bounded by

t

δ + 1
UbSupp(x)(n, k, t, d, β2) =

e√
2π

1√
log t

δ+1

. (E27)
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Also, as n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) is decreasing in β we have that

n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β

∗) is upper bounded by

≤ n− t
n− k − t+ δ + 1

UbSupp(x)c(n, k, t, d, β1) (E28)

≤ e

2π

1√
log n−t

n−k−t+δ+1

. (E29)

Equations (E27) and (E28) implies that both function
n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β),
t

δ+1UbSupp(x)(n, k, t, d, β) are smaller than 1 in β∗

and that the probability of success is at least1− e

2π

1√
log n−t

n−k−t+δ+1

1− e√
2π

1√
log t

δ+1

 . (E30)

The last result to demonstrate from this section is Theorem 18

Proof. Taking the simplified interval for β, the existence of this interval implies√
2(t+ 2d)√
n− k

√
log

n− t
n− k − t+ δ + 1

≤ 1−
√

2(t+ 2d− 1)√
n− k

√
log

t

δ + 1
(E31)√

log
n− t

n− k − t+ δ + 1
+

√
log

t

δ + 1
≤

√
n− k

2(t+ 2d)
(E32)

Using the condition on k we deduce

√
log

n− t
n− k − t+ δ + 1

≤√
log

n− t
n− (n− t+ δ + 1− (n−t)(δ+1)

t )− t+ δ + 1
(E33)

√
log

n− t
n− k − t+ δ + 1

≤
√

log
t

δ + 1
. (E34)

Hence, the following should hold

2

√
log

t

δ + 1
≤

√
n− k

2(1 + c)t
(E35)

t

δ + 1
log

t

δ + 1
≤ n− k

8(1 + c)(δ + 1)
, (E36)
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which is satisfied as long as t ≤ n−k
8(1+c)W ( n−k

8(1+c)(δ+1)
)
. The initial condition on k

implies t ≤ n−k+2δ+2−
√

(n−k+2δ+2)2−4n(δ+1)

2 which is greater than or equal to
n−k

8(1+c)W ( n−k
8(1+c)(δ+1)

)
.

As for the asymptotic, use one term approximation for the LambertW function
near infinity.
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Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. Array programming with numpy. Nature, 585(7825):357–
362, 2020.

[27] Anna-Lena Horlemann, Sven Puchinger, Julian Renner, Thomas Schamberger,
and Antonia Wachter-Zeh. Information-set decoding with hints. In Antonia
Wachter-Zeh, Hannes Bartz, and Gianluigi Liva, editors, International Work-
shop on Code-Based Cryptography, volume 13150 of Lecture Notes in Computer
Science, pages 60–83, Munich, Germany, jun 2021. Springer.

[28] A. Al Jabri. A statistical decoding algorithm for general linear block codes. In
Bahram Honary, editor, Cryptography and Coding, pages 1–8, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[29] Bernhard Klar. Bounds on tail probabilities of discrete distributions. Probability
in the Engineering and Informational Sciences, 14:161 – 171, 2000.

[30] Pil J. Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Advances in Cryptology - EUROCRYPT’88, volume
330 of Lecture Notes in Comput. Sci., pages 275–280. Springer, 1988.

[31] Jeffrey Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inform. Theory, 34(5):1354–1359, 1988.

[32] João Paulo Martins, Rui Santos, and Ricardo Sousa. Testing the Maximum
by the Mean in Quantitative Group Tests, pages 55–63. Springer International
Publishing, Cham, 2014.

[33] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011, volume 7073 of Lecture Notes in Comput. Sci.,
pages 107–124. Springer, 2011.

[34] Alexander May and Ilya Ozerov. On computing nearest neighbors with applica-
tions to decoding of binary linear codes. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, volume 9056 of Lecture Notes in
Comput. Sci., pages 203–228. Springer, 2015.

[35] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

[36] R. Overbeck. Statistical decoding revisited. In Lynn Margaret Batten and Rei-
haneh Safavi-Naini, editors, Information Security and Privacy, pages 283–294,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

27



[37] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[38] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In S. Goldwasser, editor, FOCS, pages 124–134, 1994.

[39] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, volume 388 of Lecture
Notes in Comput. Sci., pages 106–113. Springer, 1988.

[40] Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer Science, pages
13–21. Springer, 1993.

[41] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing
in python. Nature methods, 17(3):261–272, 2020.

[42] Chao Wang, Qing Zhao, and Chen-Nee Chuah. Group testing under sum obser-
vations for heavy hitter detection. In 2015 Information Theory and Applications
Workshop (ITA), pages 149–153, 2015.

[43] I-Hsiang Wang, Shao-Lun Huang, Kuan-Yun Lee, and Kwang-Cheng Chen. Data
extraction via histogram and arithmetic mean queries: Fundamental limits and
algorithms. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 1386–1390, 2016.

28


	Introduction
	Post-quantum cryptography: on its way to become reality
	Integer syndrome decoding
	Related work
	Learning with errors and hints
	Quantitative Group Testing


	Contributions

	Preliminaries
	Notations
	Error correcting codes
	Some variations of the syndrome decoding problem
	The Niederreiter encryption framework



	ISD-Score decoder
	Score decoder
	Score decoder in the presence of noise
	The case of centered binomial noise
	Bernoulli noise


	Combining ISD and score decoder

	Success probability of the ISD-Score decoder
	Main results
	Tail bounds on the distribution
	A general bound on the success probability using tail estimations
	Range of valid parameters

	Information-theoretic bounds
	Bounding the value of t
	Bounding the required ratio of syndrome entries


	Experimental results
	Success probability and ratio of syndrome entries
	ILP solver and ISD-score decoder
	Percentage of required entries
	Noisy setting
	Computation time



	Conclusion
	Acknowledgments

	Proof of Theorem 1
	Proof of Corollary 5
	Proof of Theorem 10 and Theorem 11
	Proof of Theorem 12
	Range of valid parameters: proofs and comments

