
Cross-Layer Analysis of Clock Glitch Fault Injection while

Fetching Variable-length Instructions

Ihab Alshaer1,2*, Gijs Burghoorn2, Brice Colombier2,3, Christophe Deleuze1,
Vincent Beroulle1, Paolo Maistri2

1Univ. Grenoble Alpes, Grenoble INP, LCIS, Valence, 26000, France.
2Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, Grenoble, 38000, France.

3Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, Saint-Etienne, F-42023, France.

*Corresponding author(s). E-mail(s): ihab.alshaer@univ-grenoble-alpes.fr;

Abstract

With the increasing complexity of embedded systems, the use of variable-length instruction sets has
become essential, so that higher code density and better performance can be achieved. Security aspects
are closely linked, considering the continuous improvement of attack techniques and equipment. Fault
injection is among the most interesting and rising physical attack techniques. However, hardware
designers and software developers lack accurate fault models to evaluate the vulnerabilities of their
designs or codes in the presence of such attacks. In this article, we provide a proper characterization,
at instruction set architecture (ISA) level, of several faulty behaviors that are experimentally observed
when a processor running a variable-length instruction set is targeted. We include the binary encoding
of instructions, and show how the obtained behaviors depend on the alignment in memory. Moreover,
we give a deeper insight on previous results from the literature, that were still left unexplained.
Additionally, we move downward at system level and consider the register-transfer level (RTL) to
perform RTL fault simulation; This enables a better understanding of the faults propagation, validate
the inferred fault models at ISA level, and reveal the origin of such faults at microarchitectural level.
Finally, applying the given fault models leads us to provide vulnerability analysis on three different
implementations of AES.

Keywords: variable-length instruction set, fault injection attacks, fault modeling, RTL fault simulation,
vulnerability analysis.

1 Introduction

Embedded systems complexity, along with their
running applications, is continuously increasing.
This opens the door to two considerations: The
need for high performance and new methods to
deal with such advances and on the other hand,
the emergence of new vulnerabilities exploitable
by attackers at different levels. As sensitive data

are frequently processed by embedded systems,
some form of protection is necessary to prevent
information leakage or modification. The actual
processing and protection might be vulnerable to
attacks that aim at extracting this sensitive infor-
mation. Physical attacks in particular are a serious
threat to embedded systems.

In the context of hardware security, fault injec-
tion is an efficient physical attack, belonging to

1

the family of active attacks [1]. In this setting, the
attacker has physical access to the digital device
or its immediate environment, and tries to change
the normal behavior of the device by injecting
one or more faults, which may lead to an erro-
neous behavior that could be further exploited as
a vulnerability.

To inject a fault, a physical interference is
applied on the digital device: radiations [2], laser
light [3, 4], electromagnetic pulses [5, 6], variations
of power supply [7], perturbations of clock signal
[8, 9], or changes in the environmental conditions
such as the temperature [10] or else.

A detailed knowledge of the impact of the
faults is thus necessary to protect embedded
systems, especially the most complex micro-
controllers and advanced microprocessors. This
entails identifying, researching, and evaluating the
flaws that may result in exploitable vulnerabilities
at various levels of abstraction. Yet, it also calls
for developing reasonable-cost countermeasures at
these levels.

1.1 Cross-layer analysis

With the increasing complexity of embedded sys-
tems, characterizing the effects of faults based on
a single level of analysis could lead to incomplete
fault models, which are the abstract representa-
tions of the underlying physical phenomena. Thus,
there is a need to follow and analyze the propaga-
tion of the faults at different abstraction levels. For
example, one can investigate at Register-Transfer
Level (RTL), Instruction Set Architecture (ISA)
level, or binary instruction-encoding level. Such
analysis helps to better understand the effects
of a fault. From there, efficient and well-tailored
countermeasures can be designed as a response.

In [11], we have presented a cross-layer infer-
ence methodology to provide optimized sets of
fault models at hardware and software levels of
an embedded system. In our approach, each fault
model is validated and explained by the fault effect
description at another level of abstraction, in order
to strengthen the consistency of the given mod-
els. To achieve this, we conduct an analysis that
involves comparing the observed faulty behaviors
from physical fault injection experiments with the
results obtained through simulation experiments
at both hardware and software levels, as illus-
trated in Figure 1. In order to simulate faults

at these levels, we utilize inferred fault models.
Through an iterative application of this com-
parative process, we can propose a collection of
realistic fault models. In this work, we have been
following the same methodology to provide opti-
mal set of fault models at three different levels:
RTL, binary encoding, and ISA levels. This has
been done by targeting a variable-length instruc-
tion set. The rationale behind this firstly came
after performing preliminary experiments, of both
clock glitch and RTL fault simulation, in [11]. We
could observe diverse faulty behaviors as a result
of adding a single NOP instruction to the target
program.

The presented fault models can effectively help
in analyzing possible vulnerabilities of software
codes and/or hardware designs; Thus resulting
in the creation of more efficient countermeasures
against fault attacks.

Simulated
hardware faults

Simulated
software faults

Observed
faulty behaviors

Fig. 1: Comparison of simulations and physical
injection results.

1.2 Fault effect characterization at
ISA level

Several research studies have characterized faults
at ISA level, due to the fact that it can be consid-
ered as the focal point for bringing high (software)
and low (hardware) levels of abstraction together.
The majority of the submitted fault models have
described the effects on the instruction itself: for
this reason, “instruction skip” and “instruction
corruption” are natural fault models.

In particular, the instruction skip fault model,
also described as a replacement with one or more
NOPs, can affect one [6, 8, 9], two [9], or multi-
ple instructions [4, 5, 12]. It is to be highlighted
that in all of the previous works, the authors have
always referred to the instruction skip fault model
only for complete instructions, either one or more.

2

In [4] or [5], the authors have observed that the
skip is in line with a given number of bytes being
related to the size of the instruction cache. How-
ever, it always means skipping an integer number
of instructions.

Regarding the instruction corruption fault
model, the reaction may translate into a corrup-
tion of the opcode [3] or the operands (destination
or source ones) [3, 6, 7]. These studies have
described the instruction corruption fault model
considering the instruction as the basic element.
As we highlight in this article, several monitored
effects have remained unexplained.

In [9], the authors have provided fault effect
characterization at ISA level after performing
clock glitch fault injection campaigns on an Arm
Cortex-M4 processor. Some behaviors could not
be explained, such as the corrupted values found in
some registers, independently of their actual use in
the code. Additionally, the reason for having a sin-
gle or double instruction skip fault model has been
unclear. Similarly, electromagnetic fault injection
campaigns on an Arm Cortex-A9 processor have
been carried out in [6] to characterize the faults
at ISA level as well. The authors have explicitly
stated that some of the obtained faults remained
unexplained. In addition, [13] have described the
results of electromagnetic fault injection on two
modern processors: an Arm BCM2837, which
embeds an Arm Cortex-A53, and an Intel Core i3-
6100T CPU. They have also provided a character-
ization at ISA level to suggest general fault models
for different architectures, one being “random reg-
ister corruption”. Some of the faults they captured
have been left unexplained, with an unknown
fault model. Finally, in [7, 14, 15], the authors
have stated that, as a result of fault injection
attacks, alterations of the program counter are
code-dependent in terms of instructions, registers
and/or immediate values, providing no further
explanation.

The existing fault models in the literature
could not explain all behaviors in other ways
than resorting to random corruption, either in the
instructions or data. This actual work can now
unravel the rationale behind several of the inferred
fault models, thereby clarifying most of the previ-
ously unexplained faulty behaviors. The previous
studies have not considered whether the targeted
ISA could support variable-length instructions,
nor have they used this knowledge to explain

the results under fault injection. Specifically, they
have not regarded whether the instruction bits
fetched from the memory would correspond to
complete instructions, knowing that the fetch size
is always fixed whereas the ISA may support
variable-length instructions. How such informa-
tion could be exploited in a security application,
or taken into account when designing countermea-
sures, has not been part of previous research.

1.3 Contributions

In this article, which is an extended version of our
work in [16], we target a second 32-bit micro-
controller, which embeds a different processor and
has different flash memory access size. As a result,
we confirm the two new inferred fault models:
“skip” and “skip & repeat”, for a specific num-
ber of bits, applied on the binary encoding of the
instructions. These two models enable to explain
a wider range of the obtained faulty behaviors at
ISA level, regardless of the target instructions and
target device. A proper description of the effects
of the observed faulty behaviors is provided.

In addition, we extend the analysis of the clock
glitch injection to cover more levels of abstraction,
focusing particularly on hardware level. Here,
we give a detailed description of the propaga-
tion of the glitch injection from low to high levels
of abstraction. Starting from the post-synthesis
timing simulation of the clock glitch on an FPGA,
we progress through the RTL fault simulation
and description of the fault propagation to vari-
ous microarchitectural components. Finally, we
analyze the effect of the fault at the level of
binary encoding of instructions, before eventu-
ally detailing the monitored faulty behaviors at
ISA level. Such analysis helps in designing effi-
cient countermeasures at different levels: software
and hardware, taking into consideration their cost
and effects on performance.

We then give a real-life example of the use of
these presented fault models to perform vulnera-
bility analysis on three different implementations
of the Advanced Encryption Standard (AES) algo-
rithm.

1.4 Outline

This article is organized as follows: Section 2
provides the necessary background on variable-
length instruction sets. Section 3 describes the

3

experimental setup, then experimental results are
reported and discussed in Section 4. Section 5
relates the simulation experiments performed at
hardware level. These experiments are then com-
pared and analyzed in Section 6, which details
the cross-layer analysis. In Section 7, we carry
out a vulnerability analysis of three different AES
implementations, by applying the presented fault
models. The article is concluded along with future
research perspectives in Section 8.

2 Variable-length Instruction
Sets

Reducing code size is a well-known method to
reduce power consumption and memory usage. It
lowers the overall cost of an embedded system
highly affected by program coding and the fetch
stage in the pipeline [17]. Code size reduction,
targeting the highest possible code density, can
be achieved by using a variable-length instruction
set [17–20]. Additionally, less power is consumed
due to the smaller number of fetches [18].

A variable-length instruction set can be
defined as a combination of two instruction sets:
a first set of short instructions (with respect to
their encoding), providing the same functional-
ity as if possessing larger encoding; and a second
set composed of instructions with larger encod-
ing that cannot be compacted while giving the
same functionality. For this reason, the first set
can also be referred to as the compressed set.
High code density is achieved by the compressed
instructions, while the second set allows for the
preservation of high performance and expressive
power. An example of the effect of ISA on cost
and performance is the instruction cache: shorter
encodings need smaller caches for the same per-
formance [20, 21]. Therefore, having a shorter
encoding induces fewer cache misses, with a given
size, thus increasing the overall throughput of the
processor. On the other hand, dealing with differ-
ent length of encoding increases the complexity of
the instruction decoder [21].

Several different variable-length instruction
sets exist. The x86 [22] instruction set, supported
by Intel and AMD processors, offers various
lengths of encoding from 1 to 15 bytes. Another
example of a variable-length instruction set is

microMIPS [19], providing a set of 16-bit instruc-
tions that correspond to the most commonly used
ones, in addition to all the instructions from the
MIPS32/64 instruction sets [23, 24]. MicroMIPS
shows 35% smaller code size although almost
similar performance as MIPS32 [19]. In 2015, a
draft proposal [20] was published to procure 16-
bit encodings for some instructions in the RISC-V
instruction set. This new instruction set has been
known as RISC-V Compressed (RVC) and reduces
the code size by more than 25% [20]. Finally,
most Arm processors, including the Arm Cortex-
M4 and Cortex-A9 mentioned above, support a
dedicated variable-length instruction set as well,
known as Thumb2 instruction set [25]. It con-
sists of two sets of 16-bit and 32-bit instructions.
Thumb2 delivers 30% of code size reduction on
average [18].

In this article, we have chosen an Arm Cortex-
M3 and an Arm Cortex-M4 as target processors,
for their wide adoption in embedded systems.
Thumb2 is the target instruction set, but we
assume that it is straightforward to generalize our
findings to other variable-length instruction sets,
as the fetching mechanisms are similar in most
devices regardless of the alignment of the code in
memories. For example, Intel and AMD architec-
tures usually support fixed-size of caching blocks
called cache lines [26, 27]. Consequently, as these
cache lines have fixed size, Intel and AMD archi-
tectures allow splitting the instructions’ data over
the cache lines. This splitting may occur when an
instruction spans across two or more cache lines.
In such cases, the processor fetches the necessary
cache lines to obtain the complete instruction.

3 Experimental Setup

In order to investigate the effects of fault injec-
tion on a variable-length instruction set, we have
carried out several physical fault injection exper-
iments. This aims at providing better charac-
terization and description, at ISA level, for the
wide range of faulty behaviors obtained when
performing fault injection campaigns.

The following subsections present the fault
injection technique we have used, the target
devices, and target programs. The last subsection
describes the injection parameters and classifica-
tion categories for the experimental outcomes.

4

source
flip-flop

QD

destination
flip-flop

QD

clk

tlogic

tskew

tclk to Q

tsetup

thold

stable
D input

Fig. 2: Timing metrics in a simple digital design.

3.1 Clock glitch fault injection

Applying perturbations to the main clock signal
that is fed to the processor is a non-invasive and
effective fault injection technique. Clock glitch
is considered a low-cost fault injection technique
compared to other techniques such as laser or
electromagnetic pulses. Also, it can provide an
acceptable controllability with respect to tempo-
ral accuracy, and hence the modified instruction(s)
in the target program. However, since the glitch
is injected on the global clock, one cannot know
which microarchitectural element is affected as a
result of the injection.

When performing clock glitch fault injection, a
perturbation is injected just before or after the ris-
ing edge of the clock. This glitch is seen as a new,
shorter clock cycle by the microprocessor, disrupt-
ing the regular pattern of the clock signal. Thus,
a timing violation may occur, leading to various
kinds of faulty behaviors.

In order to ensure correct operation of a digi-
tal design, timing must satisfy the setup and hold
equations [28, 29], as presented in Equations (1)
and (2) and illustrated in Figure 2 above where:

• tclk is the clock period,
• t setup is the duration for which data on the D
input must be stable before the rising edge of
the clock signal [30],

• t hold is the duration for which data on the D
input must be stable after the rising edge of the
clock signal [30],

• t logic is the propagation delay in the combina-
tional logic between the source and destination
flip-flops,

• t skew is the time difference between the arrival
of the clock signal at source D flip-flop and
destination D flip-flop,

trigger

clk

width

shift

delay

Fig. 3: Clock glitch parameters (from [9]).

• t clk to Q is the delay from the rising edge of
the clock input to the Q output inside source D
flip-flop [31].

tclk to Q + tlogic + tsetup ≤ tclk + tskew (1)

tclk to Q + tlogic ≥ thold + tskew (2)

Performing clock glitch fault injection could
result in a violation of the inequalities found in
one or both of Equations (1) and (2), leading to
observe a faulty behavior.

In this work, the ChipWhisperer [32] environ-
ment has been used to perform the clock glitch
fault injection campaigns. In this setting, three
parameters must be tuned, as shown in Figure 3:

• delay: the time between the rising edge of the
trigger signal (used for synchronization) and the
rising edge of the target clock cycle.

• shift: the time between the rising edge of the
glitch and the rising edge of the target clock
cycle.

• width: the duration of the glitch itself.

It is worth mentioning that while this article
employs clock glitch using ChipWhisperer envi-
ronment for fault injection, the findings presented
can be extrapolated to other fault injection tech-
niques relying on timing violations. This encom-
passes techniques such as voltage glitch [33–35]
and electromagnetic fault injection [36, 37]. More-
over, recent studies [38–40] have demonstrated
the vulnerability of modern systems supporting
Dynamic Voltage and Frequency Scaling (DVFS)
to glitch attacks. These attacks can be executed
remotely through software, eliminating the need
for a dedicated glitch fault injection setup.

5

3.2 Target devices

The target devices are two 32-bit microcontrollers:
STM32F1, which embeds an Arm Cortex-M3 pro-
cessor, and STM32L4, which embeds an Arm
Cortex-M4 processor. The Arm Cortex-M3 and
Cortex-M4 cores both include a 3-stage pipeline:
fetch, decode, and execute. Both are based on
the ARMv7-M [41] architecture and support the
Thumb2 instruction set, consisting of variable-
length instructions as mentioned in the previous
section: 16-bit and 32-bit instructions.

In the Arm Cortex-M3 device, the fetch size
from the memory to the AHB (Advanced High-
performance Bus) is fixed and equal to 32 bits,
regardless of the size of the instruction. Hence,
as a result of having variable-length instructions,
the fetched 32 bits can belong to one of the cases
in Figure 4 or Figure 5. Figure 4 represents the
fetching cases when code is aligned in memory,
while Figure 5 represents the misaligned cases.

The Arm Cortex-M4 device supports cache
lines of 64 bits. Therefore, in this case the flash
memory access size is 64-bit wide. Consequently,
the fetched 64 bits from the memory to the cache
line can belong to two combined blocks of cases in
Figure 4 or Figure 5. How these different possibil-
ities affect the observed execution, as a reaction
of fault injection campaigns, will be addressed in
Section 4.

The processor detects whether the instruction
that is about to be executed is a 16-bit or 32-bit
one by analyzing the five most significant bits of
the half-word that arrives first [41]. If these five
bits have one of the following three values, then
the word contains a 32-bit instruction:

• 0b11101,
• 0b11110,
• 0b11111.

All the other values define a 16-bit instruction.
This understanding is central to unravel the mon-
itored faulty behaviors, as detailed in Section
4.

In the following sections, big-endian represen-
tation for the binary encoding of instructions is
used for readability. Thus, for a 32-bit instruc-
tion, the most significant 16 bits arrive first in the
pipeline.

I32

(a) Fetching one 32-bit instruction.

I16 I16

(b) Fetching two 16-bit instructions.

Fig. 4: Fetching aligned instructions.

I32 I32

(a) Fetching the bottom half of a 32-bit instruction
and the top half of another 32-bit instruction.

I16 I32

(b) Fetching one 16-bit instruction and the top half of
a 32-bit instruction.

I32 I16

(c) Fetching the bottom half of a 32-bit instruction
and one 16-bit instruction.

Fig. 5: Fetching misaligned instructions.

3.3 Target programs

Injection is performed into inline assembly instruc-
tions within a C program. To ease the process, the
program is divided into three parts separated by
NOP instructions:

• Prologue: instructions initialize the processor in
a known state ahead the fault injection.

• Target: instructions are targeted by the fault
injection as well as extra instructions which
would emphasize any propagation effect for
further monitoring.

• Epilogue: instructions read the value of the
registers, specifically the general purpose regis-
ters R0 to R12; values are then transferred to
the control computer through serial communi-
cation.

6

In the experiments, arithmetic instructions
have been used in the Target part as shown in List-
ings 1 and 2. Such arithmetic instructions make it
easier to characterize the fault effects.

Listing 1 shows an example of an aligned code.
In this case, when 32 bits are fetched, they are
either two full 16-bit instructions or one 32-bit
instruction as shown in Figure 4. The first two
instructions, MOV and LSLS, are 16-bit instructions.
All the ADD instructions are 32-bit instructions. At
the end of a normal execution, each register has
a different value from the others; Faults can be
more easily identified when they do occur. Var-
ious small immediate values are used with the
ADD instructions to assess whether one would be
replaced with a register number or vice versa, for
example whether R3 becomes 0x3, as detailed in
Section 4.

1 MOV R8, R4 // R8 = R4

2 LSLS R2, R0, 0x10 // R2 = R0 << 0x10

3 ADD R1, R1, 0x6 // R1 = R1 + 0x6

4 ADD R3, R3, 0xa // R3 = R3 + 0xa

5 ADD R4, R4, 0xb // R4 = R4 + 0xb

6 ADD R5, R6, R3 // R5 = R6 + R3

7 ADD R3, R3, 0xf // R3 = R3 + 0xf

Listing 1: Target part in the aligned code.

A misaligned code is illustrated in Listing 2.
It is similar to Listing 1 except that the first MOV
instruction has been removed. Only one 16-bit
instruction is now fetched. Therefore, the code is
misaligned. When 32 bits are fetched, they now
belong to either two different 32-bit instructions,
or one 16-bit instruction and half of a 32-bit
instruction, as shown in Figure 5. Section 4 will
develop how such a small modification of the Tar-
get code can greatly affect the observed faulty
behaviors at ISA level.

1 LSLS R2, R0, 0x10 // R2 = R0 << 0x10

2 ADD R1, R1, 0x6 // R1 = R1 + 0x6

3 ADD R3, R3, 0xa // R3 = R3 + 0xa

4 ADD R4, R4, 0xb // R4 = R4 + 0xb

5 ADD R5, R6, R3 // R5 = R6 + R3

6 ADD R3, R3, 0xf // R3 = R3 + 0xf

Listing 2: Target part in the misaligned code.

The Prologue is always aligned in the code
memory space and does not influence the over-
all code alignment, which only depends on the
instructions of the Target part.

3.4 Injection parameters and
classification

Each injection campaign involves repeating the
clock glitch fault injection 10 000 times for each
combination of glitch parameters to maximize the
number of captured faults. Thus, for each of the
presented examples in Section 4, 10 000 executions
are conducted. Table 1 illustrates the shift and
width values that allowed observing the presented
faulty behaviors, for each target device. The values
are expressed in percentage of one clock period.
The negative value of the shift means that the
glitch is injected before the rising edge of the tar-
geted clock cycle. These shift and width values
replicate comparable faulty behaviors when tar-
geting microcontrollers from the same manufac-
turer (i.e., other STM32F1 and STM32L4). This
confirmation further simplifies and substantiates
the reproducibility of the experiments presented.
The glitch is timed accordingly to target spe-
cific instructions. Thus, the delay value depends
on the target instructions, the number of instruc-
tions in the Prologue, and the number of NOP

instructions that precede the Target part. A single
glitch is injected during each program execution.
Three outcomes can occur in reaction to the fault
injection:

• Crash: the injection causes a crash, a reset, or
a failure when reading the final state in the
epilogue.

• Silent: outcome identical to normal state, i.e.,
without any injection.

• Fault: a fault has occurred and can be observed.

In the next section, we focus on an observ-
able subset of captured faults, discarding crashes
and silent cases. This subset is the largest sub-
set of the obtained faults, and our focus is on
the occurrence of these faults, not their proba-
bility. Nonetheless, Table 1 shows the percentage
of occurrence for each of the presented faulty
behaviors over 10 000 executions.

4 Experimental Results and
Analysis

Different faulty behaviors have been observed
after performing clock glitch fault injection cam-
paigns. In the following subsections, we only focus
on faulty behaviors related to two specific inferred

7

Table 1: Shift and width values used in Section
4 experiments, and percentage of occurrence of
each faulty behavior over 10 000 executions.

Cortex-M3 Cortex-M4
Section shift width occurrence shift width occurrence

4.1.1 -49 4 9.06% -14 10 92.68%

4.1.2 - - - -13 10 100%

4.1.3 -13 3 99.8% - - -

4.1.4 - - - -6 2 75.98%

4.2.1 -49 5 1.97% - - -

4.2.2 -12 3 99.51% -12 6 100%

4.2.3 - - - -13 10 100%

4.2.4 -13 3 99.98% - - -

4.2.5 - - - -6 2 65.34%

fault models: The ones referring to the encoding of
the instructions “skip” or “skip & repeat” a spe-
cific number of bits. It can either be 32 or 64 bits.
These fault models are related to the fetch stage
of the processor pipeline.

We will demonstrate how the outcomes of the
injection campaigns depend on the code alignment
in memory, whether it is aligned or misaligned,
although the inferred fault models at encoding
level, i.e., “skip” or “skip & repeat”, are always
the same in both cases. The last subsection pro-
vides further details about a specific behavior,
where a new instruction is executed as a result
of the clock glitch. All the occurrences of 32-
bit faulty behaviors in this section were observed
when targeting the Arm Cortex-M3 device. Some
of them were also observed when targeting the
Arm Cortex-M4 device, as shown in Table 1.
On the other hand, 64-bit faulty behaviors were
only obtained when targeting the Arm Cortex-M4
device. Their fetch size is the reason, as previously
detailed in Section 3.2.

4.1 Aligned code scenario

Listing 3 represents the binary encoding of the
target program previously shown in Listing 1.
Each line corresponds to one 32-bit instruction,
except line 1, which corresponds to the two 16-
bit instructions. Therefore, this code is aligned in
memory.

Assuming that i is the line number that points
to a 32-bit block of the target program binary

encoding, then “skip” and “skip & repeat ” fault
models can be defined as such:

• Skip 32 bits: the 32 bits at line i are skipped,
and the execution resumes from line i+ 1.

• Skip & repeat 32 bits: the 32 bits at line i+1 are
skipped and the 32 bits at line i are repeated.

• Skip 64 bits: the 32 bits at line i and the 32
bits at line i+1 are skipped, and the execution
resumes from line i+ 2.

• Skip & repeat 64 bits: the 32 bits at line i + 1
and the 32 bits at i + 2 are skipped, while the
32 bits at line i, and the 32 bits at line i− 1 are
repeated.

1 46a00402 // MOV R8, R4 // LSLS R2, R0, 0x10

2 f1010106 // ADD R1, R1, 0x6

3 f103030a // ADD R3, R3, 0xa

4 f104040b // ADD R4, R4, 0xb

5 eb060503 // ADD R5, R6, R3

6 f103030f // ADD R3, R3, 0xf

Listing 3: Binary encoding for the aligned code in
hexadecimal format.

The following subsections display samples of
the observed “skip” and “skip & repeat” faulty
behaviors after performing the fault injection cam-
paigns.

Although we target a given instruction inside
the target part for our discussion in the follow-
ing subsections, the conclusions drawn from these
examples can also be applied to other locations of
the target program without any loss of general-
ity, as the corresponding faulty behaviors are also
observed.

For each subsection, faults are described at two
different abstraction levels: binary encoding and
ISA levels.

4.1.1 Skip 32 bits / single instruction
skip

Except line 1 related to the binary encoding of
two 16-bit instructions, skipping any line in List-
ing 3 has led to a single instruction skip. The
reason being that each line corresponds to a full
32-bit instruction. Skipping the ADD R4, R4, 0xb

instruction at line 4 in Listing 3 is an example;
the observed execution at ISA level is reported in
Listing 4.

8

Naturally, skipping line 1 in Listing 3 has
led to a double instruction skip, since this line
corresponds to two 16-bit instructions.

1 MOV R8, R4

2 LSLS R2, R0, 0x10

3 ADD R1, R1, 0x6

4 ADD R3, R3, 0xa

5 ADD R5, R6, R3

6 ADD R3, R3, 0xf

Listing 4: Observed execution for Skip 32 bits /
single instruction skip.

4.1.2 Skip 64 bits / double instruction
skip

Skipping line 2 and line 3 in Listing 3 has brought
a double instruction skip since these two lines con-
tain two 32-bit instructions. Listing 5 shows the
observed execution at ISA level for this sample.

1 MOV R8, R4

2 LSLS R2, R0, 0x10

3 ADD R4, R4, 0xb

4 ADD R5, R6, R3

5 ADD R3, R3, 0xf

Listing 5: Observed execution for Skip 64 bits /
double instruction skip.

4.1.3 Skip & repeat 32 bits / single
instruction skip & single
instruction repeat

Skipping the ADD R3, R3, 0xa instruction at line
3 in Listing 3 and repeating the ADD R1,R1, 0x6

instruction at line 2 is an illustration of this fault
model. The monitored execution at ISA level is
exposed in Listing 6.

4.1.4 Skip & repeat 64 bits / double
instruction skip and double
instruction repeat

Skipping line 4 and line 5, and repeating line 2 and
line 3 in Listing 3 is an example of this fault model.
The observed execution at ISA level is shown in
Listing 7.

1 MOV R8, R4

2 LSLS R2, R0, 0x10

3 ADD R1, R1, 0x6

4 ADD R1, R1, 0x6

5 ADD R4, R4, 0xb

6 ADD R5, R6, R3

7 ADD R3, R3, 0xf

Listing 6: Observed execution for Skip & repeat 32
bits / single instruction skip & single instruction
repeat.

1 MOV R8, R4

2 LSLS R2, R0, 0x10

3 ADD R1, R1, 0x6

4 ADD R3, R3, 0xa

5 ADD R1, R1, 0x6

6 ADD R3, R3, 0xa

7 ADD R3, R3, 0xf

Listing 7: Observed execution for Skip & repeat 64
bits / double instruction skip & double instruction
repeat.

4.2 Misaligned code scenario

The focus is now onmisaligned code. It is achieved
by removing the leading MOV instruction, a 16-bit
instruction, from the target part in the program as
displayed in Listing 2. Listing 8 shows the binary
encoding of the misaligned code.

Each line still contains 32 bits, but unlike the
previous case, it does not correspond to a sin-
gle 32-bit instruction. For the sake of clarity, each
instruction has been highlighted with a differ-
ent color: the reader will notice that each 32-bit
instruction is split in two consecutive lines.

1 0402f101

2 0106f103

3 030af104

4 040beb06

5 0503f103

6 030fbf00 // bf00: NOP.

Listing 8: Binary encoding for the misaligned code
in hexadecimal format.

There again, similar fault models are used on
32-bit or 64-bit data. However, as a line now con-
sists of two 16-bit blocks belonging to two separate

9

instructions, as previously shown in Figure 5, dif-
ferent faulty behaviors have been examined at ISA
level. The actual recorded faulty behaviors depend
on the target location of the glitch injection. The
following subsections provide various observations
of each model, i.e., different examples of “skip”
and “skip & repeat” models. It is interesting to
highlight that the monitored behaviors in this sce-
nario are significantly more complex than in the
aligned code scenario. Among several outcomes,
for instance, we have witnessed double instruction
corruption or even new instruction execution.

4.2.1 Skip 32 bits / single instruction
skip and single instruction
corruption

This case refers to Figure 5a, and happens when
skipping line 3 in Listing 8 for example. The
observed execution at ISA level is in Listing 9.

1 LSLS R2, R0, 0x10

2 ADD R1, R1, 0x6

3 ADD R4, R3, 0xb // f103040b

4 ADD R5, R6, R3

5 ADD R3, R3, 0xf

Listing 9: Observed execution for Skip 32 bits
/ single instruction skip and single instruction
corruption.

The ADD R4, R4, 0xb instruction is skipped
and the ADD R3, R3, 0xa instruction is cor-
rupted, replacing two of its operands by the corre-
sponding ones from the skipped instruction [16].

4.2.2 Skip 32 bits / double instruction
skip and new instruction
execution

Figure 5b illustrates this case; Line 1 in Listing 8
is skipped for example. As a result, 0x0106 arrives
first to the core and, since the five most significant
bits of 0x0106 are 0b00000, a 16-bit instruction
is executed, with the following encoding: 0x0106.
This instruction is LSLS R6, R0, 0x4. The other
instructions in the target program are not affected
and are executed normally.

Listing 10 displays the monitored execution
of this example at ISA level. The first instruc-
tion is painted blue since its encoding comes from
the original blue instruction. It is shown that
two instructions have been skipped: a 16-bit and

a 32-bit one; a new 16-bit instruction has been
executed instead.

To prove that the new LSLS instruction is not
related to the original LSLS instruction, section 4.3
supplies a variety of instructions that can be
executed as a result of this observed behavior.

1 LSLS R6, R0, 0x4 // 0106

2 ADD R3, R3, 0xa

3 ADD R4, R4, 0xb

4 ADD R5, R6, R3

5 ADD R3, R3, 0xf

Listing 10: Observed execution for Skip 32 bits
/ double instruction skip and new instruction
execution.

4.2.3 Skip 64 bits / single instruction
corruption, double instruction
skip and new instruction
execution

This case relates to two consecutive blocks of
Figure 5a, and happens when skipping lines 2 and
3 in Listing 8 for instance. Listing 11 shows its
observed execution at ISA level.

1 LSLS R2, R0, 0x10

2 ADD R0, R1, 0x0 // f1010000

3 LSLS R3, R1, 0x10 // 040b

4 ADD R5, R6, R3

5 ADD R3, R3, 0xf

Listing 11: Observed execution for Skip 64 bits
/ single instruction corruption, double instruction
skip and new instruction execution.

The ADD R1, R1, 0x6 is corrupted after skip-
ping its bottom half (0x0106). Since 0xf101

means a 32-bit instruction is about to be executed,
it should be padded with another 16-bit block.
However, in this case, it is not padded with 16
bits from an upcoming or skipped instruction, as
in Section 4.2.1. Instead, it is padded with zeros:
0x0000. This might be due to the unavailability
of another 16-bit block from the bus or in the
fetch unit, when the decision of executing a 32-
bit instruction is taken. The ADD R3, R3, 0xa

instruction is skipped as all of its bits had been

10

discarded. 0x040b, the remaining part of the orig-
inal ADD R4, R4, 0xb instruction, is executed as
a new 16-bit instruction, since the five most
significant bits, 0b00000, identify a valid 16-bit
instruction: LSLS R3, R1, 0x10. The skipped 32
bits (0x030af104) might also be replaced with
zeros. Here it is worth mentioning to say that the
encoding of 0x0000 belongs to a 16-bit dummy
instruction that has no effect: MOVS R0, R0. Thus,
executing 0x00000000 would have no effect.

This behavior is also observed in terms of 32
bits, not only 64 bits, when the code is misaligned
in memory.

4.2.4 Skip & repeat 32 bits / double
instruction corruption

Figure 5a as a reference; when two half instruc-
tions are affected. By way of illustration, in List-
ing 8 it happens when line 4 is skipped and line 3
is repeated.

1 LSLS R2, R0, 0x10

2 ADD R1, R1, 0x6

3 ADD R3, R3, 0xa

4 ADD R3, R4, 0xa // f104030a

5 ADD R5, R4, 0x3 // f1040503

6 ADD R3, R3, 0xf

Listing 12: Observed execution for Skip & repeat
32 bits / double instruction corruption.

As a consequence, two instructions are cor-
rupted, it shows in Listing 12. 0xf104 means that
the instruction to be implemented is a 32-bit one,
as the five most significant bits are 0b11110. The
repeated red section (0x030a) is part of the new
executed instruction.

In addition, since 0xf104 is repeated, another
new 32-bit instruction is performed. Its first half is
from the ADD R4, R4, 0xb instruction (0xf104)
and its second one is from the 16 bits that
remained from the ADD R5, R6, R3 instruction at
line 5 in Listing 8 (0x0503).

To report the observed behaviors at ISA level
and generalise the obtained faults to other target
programs with similar structure, we explain the
corruption of two 32-bit instructions as follows:

• The ADD R4, R4, 0xb instruction: the destina-
tion operand and the second source operand are
replaced with the corresponding operands from
the previous instruction.

• The ADD R5, R6, R3 instruction: the first
source operand is replaced with the first
source operand from the previous instruction.
Its opcode (ADD with register) is as well
replaced with the previous opcode (ADD with

immediate). Therefore, register number R3 is
now considered as an immediate value: 0x3.

4.2.5 Skip & repeat 64 bits / double
instruction corruption, single
instruction skip and single
instruction repeat

This case concerns two consecutive blocks of
Figure 5a, when two 32-bit blocks are skipped and
two 32-bit blocks are repeated; it happens when
skipping lines 4 and 5 and repeating lines 2 and
3 in Listing 8 for example. Listing 13 displays its
recorded execution at ISA level.

1 LSLS R2, R0, 0x10

2 ADD R1, R1, 0x6

3 ADD R3, R3, 0xa

4 ADD R1, R4, 0x6 // f1040106

5 ADD R3, R3, 0xa

6 ADD R3, R4, 0xf // f104030f

Listing 13: Observed execution for Skip & repeat
64 bits / double instruction corruption, single
instruction skip and single instruction repeat.

The ADD R4, R4, 0xb instruction is cor-
rupted, as the bottom half of it (0x040b)
is replaced with the repeated part of the
blue instruction (0x0106). The ADD R5, R6, R3

instruction is skipped, and instead, the ADD R3,

R3, 0xa instruction is repeated, since all of
its 32 bits have been repeated. Finally, the
ADD R3, R3, 0xf instruction is corrupted as the
top half of it (0xf103) is replaced with the
repeated part of the ADD R4, R4, 0xb instruction
(0xf104).

4.3 More on the ability to execute a
new instruction

Since the encoding of the new Logical Shift Left
instruction in 4.2.2 is coming from the destination
register and the second source operand in the ADD
R1, R1, 0x6 instruction, then changing these two
operands to other values essentially enables to
“craft” new instructions.

11

Table 2: Possible 16-bit instructions coming from
different destination registers and/or immediate
value in the original 32-bit instruction.

Original Least-significant New
instruction 16 bits instruction

ADD R4, R1, 0x9 0x0409 LSLS R1, R1, 0x10

ADD R0, R1, 0x46c 0x406c EORS R4, R5

ADD R12, R1, 0x60c 0x6c0c LDR R4, [R1, 0x40]

ADD R0, R1, 0x161 0x1061 ASRS R1, R4, 0x1

ADD R0, R1, 0x205 0x2005 MOV R0, 0x5

ADD R3, R1, 0x416 0x4316 ORRS R6, R2

Table 2 shows examples of new instructions
when changing these two operands. They have all
been experimentally validated by clock glitch fault
injection campaigns on both the Arm Cortex-M3
and Cortex-M4 devices. In other words, replac-
ing the 0xf1010106 instruction from Listing 8
with an instruction from the first column of Table
2 enables to observe the execution of the cor-
responding instruction in the third column of
Table 2. The second column illustrates the encod-
ing of the new instruction, coming from the least
significant 16 bits of the original 32-bit instruc-
tion.

By generating all of the 65 536 possible 16-
bit combinations and disassembling them to check
whether they were valid Thumb2 instructions,
we have identified more than 58 000 valid 16-bit
instructions. Each of these can be executed as a
result of this specific fault model, regardless of
the opcode of the original 32-bit instruction in the
target program.

The consequences are particularly enlighten-
ing when it comes to previously observed fault
models left unexplained. Trouchkine et al. exam-
ined a corruption of R8 and R0 when targeting a
series of AND R8, R8, R8 instructions [13]. They
stated that corruption is sometimes a complete
reset of the register. This AND instruction has
the following encoding: 0xea080808. Thanks to
our analysis, we can fully explain the corruption
they observed on the Arm Cortex-A53 proces-
sor, supporting Thumb2 instruction set. The fault
injection leads to the creation and execution of
the 16-bit instruction 0x0808. It is the encoding
of LSRS R0, R1, 0x20. This operation brings a
reset of R0, since the value in R1 is shifted to
the right by 32 bits and its result, obviously 0, is
stored in R0.

Many instructions from Table 2 may lead to
violate various security properties. For instance,
executing an LDR (Load) instruction could reveal
some values in the memory, breaking the confiden-
tiality property. As another example, executing
the EORS (XOR) instruction may allow an attacker
to observe a collision in a cryptographic algorithm,
which could lead to recover secret data. Or mov-
ing an immediate value to a register could result
in corrupting a loop counter value if this register
is used as the counter itself. In our previous work
[16], we demonstrated how the program counter
could be modified to a value stored in one of the
registers by exploiting this specific behavior.

5 Hardware Fault Simulation

Clock glitch fault injection cannot controllably
target a specific microarchitectural component. A
cross-layer analysis approach is indispensable to
understand the propagation of faults and iden-
tify reliable fault models. By following the cross-
layer analysis methodology, to better understand
and pinpoint the origin of the faulty behaviors
described above, RTL fault simulation experi-
ments have been performed on the same target
programs in Listing 1 and Listing 2. This should
confirm the observations regarding the executed
instructions. The RTL description used in the sim-
ulation is related to the Arm Cortex-M3 processor.
Access to this description is provided under the
Arm Academic Access Agreement (AAA). Questa
simulator (version 2021.3 2) has been used to
perform the RTL fault simulation.

The following subsections provide the chosen
methodology of RTL fault simulation, the RTL
fault models permitting to observe the same faulty
behaviors at higher levels, and explanations of
these fault models using post-synthesis clock glitch
simulation.

5.1 RTL fault simulation
methodology

With RTL fault simulation, the goal is to find
the signals or internal registers1 that, when faulty,
lead to the erroneous behaviors described in the

1The word “register” here does not refer to a purpose reg-
ister, but to one or multiple D-flip flops that store an internal
value.

12

previous sections, and hence, to reveal their ori-
gin and better understand their propagation at
lower levels of abstraction. However, since there
are thousands of registers in the RTL description
of a processor such as the Arm Cortex-M3, a spe-
cific methodology is necessary to accelerate the
analysis and find the targeted registers in reason-
able time. To this end, path delay analysis within
specific architectural components or modules has
been set up. Clock glitch being likely to cause tim-
ing errors, then critical or almost critical paths
are more inclined to be faulty [34, 42, 43]. Conse-
quently, the registers involved in such paths have
more chance to capture faulty values as a result of
path timing violations.

Based on the above, our methodology con-
sists in faulting the involved registers in the paths
that come first, according to the maximum paths
delays, when generating a timing analysis report
for specific architectural components or RTL mod-
ules. The destination and source registers, of these
paths, are the involved registers. The fault models
detailed below are then applied on them. Vivado
2019.2 simulator has been used to generate the
timing analysis reports.

5.2 RTL fault models

The aforementioned methodology has been
applied to the RTL modules that are relevant to
the fetch stage of the processor, in order to con-
firm our assumption regarding the origin of the
observed faulty behaviors.

To implement RTL fault simulation, two fault
models have been introduced. They follow the
intuition behind timing violations, being that the
value of a register might not be correctly updated.

The first RTL fault model consists in prevent-
ing the update of a register value at a given clock
cycle. Therefore, the register keeps its previous
value. This RTL fault model has validated the
“skip & repeat 32 bits” faulty behavior at binary
encoding level. All the registers located in the fault
propagation path, shown in Figure 6, have gener-
ated the same faulty behavior; meaning the faulty
register can either be in the interface between the
fetch unit and the AHB, in the AHB component,
or in the interface between the AHB and the flash
memory. The propagation starts from the interface
between the fetch unit and the AHB: This inter-
face and the fetch unit are parts of the core itself.

Flash
memory Interface AHB Interface

E
Fetch
unit

Core

Fig. 6: Fault propagation path for Skip 32 bits or
Skip & repeat 32 bits fault models.

Here, the fault propagation follows the opposite
direction of the instruction data path from the
flash memory to the processor core, i.e., the fetch
path. Then, the fault propagation continues from
the flash memory to the fetch unit. Thus, the ori-
gin faulty register could be in the opposite path
of the fetch, or in the same path as the fetch.

The second fault model involves anticipating
the update of the value of a register at a given
clock cycle; at clock cycle i, the value that the reg-
ister would actually store at clock cycle i + 1 is
loaded. This RTL fault model leads to the “Skip
32 bits” behavior at binary encoding level. Fewer
registers, when targeted, generate the “Skip 32
bits” behavior, and all are located in the interface
between the fetch unit and the AHB as shown in
Figure 6.

It is noteworthy that there can be tens of reg-
isters present within a single microarchitectural
component. However, the count of susceptible reg-
isters (i.e., the ones we applied the fault simula-
tion on) varies based on the specific microarchitec-
tural component being targeted, typically falling
between 2 and 6. The reason not to explicitly spec-
ify the registers is tied to the confidentiality of
this information, governed by our AAA agreement
with Arm.

5.3 Post-synthesis timing simulation

In order to explain how the aforementioned RTL
fault models have validated the same faulty behav-
iors observed at higher levels of abstraction,
another layer has been taken into account: per-
forming post-synthesis clock glitch simulation on
an Artix-7 FPGA using Vivado 2019.2. There
again, the implementation of this simulation has
targeted modules related to the “fetch” stage of
the processor. The objective of this test has been
to investigate on the effects of the clock glitch over
specific registers within these modules from the
architectural perspective.

13

Normal clk

R 0 1 2 3 4 5

Glitched clk

Additional cycle 0 1 2 3 4 5 6

Silent 0 1 2 3 4 5

Fault 0 1 2 3 4 7 8

shift

Fig. 7: Possible effects of post-synthesis clock
glitch simulation on register R.

These simulation experiments consist of
employing a VHDL file that represents the test-
bench. It is used to initialize the input signals and
to generate the glitch over the main clock signal.
The output of the simulation is analyzed using
the resulting waveform. Each simulation execution
takes a few seconds, as the post-synthesis simu-
lation is done only on a few RTL modules. The
simulation is repeated hundreds of times while
changing the glitch parameters and the targeted
clock cycle.

As a result, three cases have emerged, as
presented in Figure 7:

• Additional cycle: the glitch acts as an extra
clock cycle. In other words, register R is nor-
mally updated because of the glitch.

• Silent : the glitch has no effect on the values of R.
However, it has been observed that R is updated
at the rising edge of the glitch and not at the
rising edge of the following clock cycle. Hence,
the final value is not affected.

• Fault : faulty values have been monitored at
the rising edge of the clock cycles following
the glitch, either the first rising edge or the
ones after, as a result of a timing violation.
Various faulty values are captured based on fine-
tuning of the glitch parameters. Among them,
we could observe that the same value occurs two
clock cycles earlier, some values occur two cycles
later, some are incoherent values. And more.

The glitch parameters are the reason behind
these three different effects. It has to be remem-
bered that the effect of the glitch, with given
parameters, might not be the same for all the reg-
isters within the same module; the reason being
that not all paths between registers have the same
delay. Based on that, it’s possible to observe faulty

Glitched clk

Source reg. 0 1 2 3 4 5 6

Intermediate reg. ? 0 1 2 4 5

Destination reg. ? ? 0 1 2 4

Fig. 8: “Skip” behavior description with post-
synthesis timing simulation: Skip 3.

Glitched clk

Source reg. 0 1 2 3 4 5 6

Intermediate reg. ? 0 1 2 4 5

Destination reg. ? ? 0 1 2 2 4

Fig. 9: “Skip & repeat” behavior description
with post-synthesis timing simulation: Skip 3 and
repeat 2.

behaviors due to the various effects on the reg-
isters. Therefore, by considering the glitch effect
on the output of source and destination regis-
ters, Figure 8 and Figure 9 report how the “Skip”
and “Skip & repeat” behaviors can come up. The
effect of the glitch is similar on the source and the
intermediate register in both figures: the source
register is subject to Additional cycle effect, while
the intermediate undergoes Silent effect. However,
in the second clock cycle that follows the glitch,
the intermediate register captures the faulty value
4, the one available at that time. Thus, the
glitch effect on the destination register determines
whether the resulting erroneous behavior would be
a Skip or Skip & repeat. In Figure 8, the destina-
tion register is subject to Silent effect, and hence,
no value is repeated. Therefore, the obtained effect
is Skip. On the other hand, in Figure 9, the desti-
nation register takes Additional cycle effect, which
leads to capture the value 2 twice. Thus, in this
case, a Skip & repeat behavior is procured. All
these detailed observations validate the use of the
aforementioned RTL fault models.

Figure 10 shows the result of applying RTL
fault models on registers. In order to model Skip
& repeat at RTL level, preventing the update
fault model is applied to either the intermediate
or the destination register or even any further
destination register; this results in getting two
consecutive 2s instead of 2 then 3. On the other
hand, aiming for Skip requires anticipating the

14

update fault model applied at the source register;
thus 4 appears instead of 3 after 2.

clk

preventing 0 1 2 2 4 5

anticipating 0 1 2 4 5 6

Fig. 10: Result of applying RTL fault models.

5.4 Summary

These simulation experiments have confirmed our
observations on executed instructions in the pre-
vious clock glitch tests. Therefore, they validate
the inferred 32-bit fault models at binary encod-
ing level, i.e., “Skip 32 bits” and “Skip & repeat
32 bits”. They also corroborate our assumption
on the origin of such faulty behaviors: the fetch
stage in the pipeline. In particular, we successfully
pinpointed not only the vulnerable registers, but
also the entire fault propagation path between the
Decode stage and the Flash memory. Additionally,
they have unfolded the discriminating rationale
behind the Skip and Skip & repeat fault models.
We are confident that performing identical simu-
lations on RTL description with 64-bit cache line
size would unravel the corresponding 64-bit fault
models as well.

Furthermore, it has been shown that the same
effect at hardware level could lead to different
effects at software level, as the effect at software
level varies based on the alignment of instructions.
This is very relevant because, before that, these
behaviours were considered random.

It is worth mentioning that clock glitch can
cause other faulty behaviors than “skip” and
“skip & repeat” while fetching instructions, as
detailed in [44]. In which, a glitch affects a part of
a register, not all of its flip-flops as described in
previous sections. However, observing such faulty
behaviors is less probable than observing “skip”
and “skip & repeat”. Additionally, Section 5 helps
in explaining the origin of the observed faulty
behaviors in [44], at the hardware level, in a
precise way.

It should be mentioned that in order for the
presented hardware approach to work, it requires
simulations to be performed at different levels,

which means that the corresponding descriptions
should be available. For instance, our test case
was based on an Arm architecture, where we had
actual devices available for our experiments and
RTL descriptions (thanks to AAA) of the same
architecture. This has a few consequences: first
of all, this methodology cannot be fully applied
on designs where descriptions are not available
(for instance, Intel or AMD architectures), as it
would not be possible to delve into levels lower
than ISA. Secondly, it means also that the more
information we have, the more precise and effec-
tive the methodology would be. Using our test
case again as a reference, we were able to cross
several levels (ISA, RTL, and post-synthesis), but
our analysis based on critical paths is an approx-
imation of the final device, as the layout of the
actual microcontrollers that we used was not
available. Nonetheless, we can consider that post-
synthesis analysis can give results close enough to
post-layout analysis: the loss of accuracy can be
mitigated by slightly increasing the search space
at the higher level.

6 Cross-layer analysis:
bottom-up summary

The previous sections have illustrated how the
effects of clock glitch injection can be modeled
from low to high levels of abstraction. In this cross-
layer analysis process, an inferred fault model at a
specific level is validated and explained by faulty
behaviors and effects observed at other levels of
abstraction.

Firstly, by performing post-synthesis clock
glitch simulation, three different effects have been
monitored: Additional cycle, Silent, and Fault.
They validate the use of two fault models at
higher RTL level: preventing the update or antic-
ipating the update of a register using the next
value instead of the current one. These two mod-
els, when they become erroneous behaviors with
respect to binary encoding level, confirm the use
of Skip and Skip and repeat fault models. Simi-
larly, the two fault models at binary encoding level
can be translated into two faulty behaviors at ISA
level, and hence, provide the validation of large set
of fault models at such higher abstraction level.

15

This would include “single instruction corrup-
tion”, “single instruction skip”, “single instruction
repeat”, “new instruction execution”, etc.

A notable contribution of this work is that
fault models at ISA level, looking like random
behaviors at first sight, can be clearly explained
by studying the fault at a lower level of abstrac-
tion. Previous works [7, 13, 45, 46] tried to explain
“instruction skip” and/or “instruction corrup-
tion” as random bit flips at binary encoding or
RTL levels; we have now proved that these faulty
behaviors are not simply random bit flips.

It is to be remembered that more ISA fault
models can arise by combining different blocks of
the fetching cases shown in Figure 4 and Figure 5.
There, block combination takes into account dif-
ferent sizes of flash memory access or instruction
cache, such as 64-bit as already detailed in 4.1.2,
4.1.4, 4.2.3 and 4.2.5. In addition, some more cache
sizes may be found in other microcontrollers, such
as 128-bit widths.

Table 3: Fault models description at three different
abstraction levels: RTL, binary encoding, and ISA
levels.

RTL Binary encoding ISA

• preventing • skip & repeat • single instruction skip &
the update. 32 bits. single instruction repeat,

• double instruction
corruption.

• anticipating • skip 32 bits. • single instruction skip,
the update. • double instruction skip,

• single instruction skip
and single instruction
corruption,
• double instruction skip
and new instruction
execution.

7 Vulnerability analysis on
AES

In their work [47], the authors showed, through
static analysis, that flipping some bits of variable-
length instructions encoding could realign the
code, resulting in dangerous erroneous behav-
iors. In addition, it was claimed in another paper
[48] that variable-length instructions might bring

more return-oriented programming attacks (spe-
cific attacks detailed in [49]).

This section presents a vulnerability analysis
of AES encryption algorithm using the preced-
ing fault models, specifically when the code is
misaligned in memory. The study focuses around
three different AES implementations: BroAES2,
TinyAES1283 and MbedTLS-AES4. Such tests
illustrate real-life applicability of misaligned
faults. First, we concentrate on an exploitable
branch logic error within BroAES, experimentally
validated by clock glitch fault injection. Then, we
cover two general observations with examples from
TinyAES128, then MbedTLS-AES.

AES is a round-based symmetric encryp-
tion algorithm [50]. It iteratively transforms an
input plaintext into a ciphertext. The last round
slightly differs from the previous ones, omitting
MixColumns transformation and adds an extra
AddRoundKey. Consequently, software implemen-
tations of the algorithm usually loop over the
iterations, while making an exception for the last
round. The first section targets this branch logic.

7.1 Branch logic error on BroAES

A clock glitch attack on BroAES is depicted here,
exposing the key in a known plaintext scenario
with the use of the described fault models.

In BroAES, all rounds are encapsulated in a
for loop. Depending on the round, some trans-
formations are excluded. Listing 14 shows the
instructions initializing the memory, used to keep
track of iterations and branching.

Before the instructions at line 8, checking the
loop condition and branch to the transformations,
there are three STR instructions storing values onto
the stack. Line 3 causes [SP+4] to contain the
value of num rounds. Later instructions use it to
verify the loop condition and determine whether
to perform SubBytes and ShiftRows transforma-
tions. Line 4 causes [SP+8] to contain the value
of num rounds - 1. Later, the loop body uses it
to assess whether to perform MixColumns trans-
formation. Line 6 makes [SP+0] contain the loop
iteration value.

2https://github.com/brobwind/bro aes
3https://github.com/kokke/tiny-AES-c
4https://github.com/Mbed-TLS/mbedtls

16

https://github.com/brobwind/bro_aes
https://github.com/kokke/tiny-AES-c
https://github.com/Mbed-TLS/mbedtls

1 |b087|e9d0 // SUB SP, 0x1c

// LDRD R7, R8,[R0,0x8]

2 7802|f8d2 // LDR.W R0, [R2, 0xb0]

3 00b0|9001| // STR R0, [SP, 0x4]

// [SP+4] = num rounds

4 |3801|9002| // SUBS R0, 0x1

// STR R0, [SP, 0x8]

// [SP+8] = num rounds-1

5 |2000|f102 // MOVS R0, 0x0

// ADD.W R4, R2, 0xb4

6 04b4|9000| // STR R0, [SP, 0x0]

// [SP+0] = iteration
count

7 |e9dd c000| // LDRD R12, R0, [SP]

8 |4560|da06| // CMP R0, R12

// BGE.N <...>

Listing 14: Initialization of memory used for
iteration.

Targeting the instruction LDR.W R0, [R2,

0xb0] at line 2, with the fault model described
in Section 4.2.1 in order to skip 32 bits at line 3,
leads to what is reported in Listing 15:

The value of [SP+4] not being set, it is there-
fore an arbitrary value. Since no earlier instruc-
tions touch this part of the stack, one can reason-
ably assume that in the first round [SP+4] is set
to 0. The value of [SP+8] is set to R0 which is
initially a pointer to a stack value. The value of
[SP+0] is normally handled and set to 0. Then,
after executing the LDRD instruction at line 6, R12
is set to [SP+0], which is 0 and R0 is set to [SP+4],
which is also 0. This causes the CMP instruction at
line 7 to compare 0 with 0. As a result, the loop
only runs once. The flags set by the CMP instruc-
tion are reused within the loop body to select
transformations.

At a higher level, the effect is a such: First, the
loop body performs AddRoundKey transforma-
tion, then it skips SubBytes and ShiftRows trans-
formations because the flags set by CMP are reused;
lastly, it performs MixColumns transformation.
However, since the loop is not executed anymore,
the resulting value of this transformation is never
used again.

In the end, only the AddRoundKey transforms
the output ciphertext. Therefore, in a known
plaintext scenario, Equation (3) holds and enables

1 |b087|e9d0 // SUB SP, 0x1c

// LDRD R7, R8,[R0,0x8]

2 7802|f8d2 // LDR.W R3, [R2, 0x801]

3 3801|9002| // STR R0, [SP, 0x8]

4 |2000|f102 // MOVS R0, 0x0

// ADD.W R4, R2, 0xb4

5 04b4|9000| // STR R0, [SP, 0x0]

6 |e9dd c000| // LDRD R12, R0, [SP]

7 |4560|da06| // CMP R0, R12

// BGE.N <...>

Listing 15: Observed execution for Skip 32 bits
/ single instruction skip and single instruction
corruption when targeting line 3 in Listing 14.

to recover the secret key.

ciphertext = plaintext⊕ key

key = ciphertext⊕ plaintext (3)

Clock glitch campaigns on Arm Cortex-M3
and Cortex-M4 devices have confirmed the pres-
ence of this behavior beyond theoretical analysis.
It should be mentioned that skip 64 bits fault
model would also lead to the same described
exploitation.

7.2 Early return on TinyAES128

This section illustrates a possible future attack
vector with the described fault models, allow-
ing for an Early Return from a function. An
excerpt from TinyAES128 containing the neces-
sary instruction pattern is detailed here.

The new fault models enable the exploita-
tion of consecutive branch instructions. In
TinyAES128, the encryption function utilizes sep-
arate functions to perform various encryption
transformations. The encryption function then
calls these functions sequentially. Listing 16 high-
lights a part of the resulting instructions. When
these calls use misaligned 32-bit B or BL instruc-
tions, the fault models allow attackers to turn
branches into Early Returns, giving way to return
from the encryption function.

After an Early Return, the memory for the
resulting ciphertext contains an internal state used
during encryption process. A similar attack to the
one described in Section 7.1 can then be mounted.

17

1|f7ff // BL <SubBytes>

2 ffd1|f7ff // BL <ShiftRows>

3 ff9d|....

Listing 16: Misaligned consecutive branch
instructions within TinyAES128.

Thumb2 branch instructions use a relative
instruction offset. The 32-bit branch instruction
encoding stores the 12 least significant bits of this
offset in the second-half (16 bits) of the encod-
ing [41]. Because of these two points, applying the
model described in Section 4.2.1 on the first of two
consecutive misaligned 32-bit branch instructions
effectively ignores the first branch and executes
the second branch offset by −32 bits as shown in
Listing 17.

Usually, 32 bits before a function is the
POP/return instruction of the calling function.
Since no PUSH instruction was given beforehand,
the result is an Early Return from the calling func-
tion, which is the whole encryption function in our
case.

Conditions apply on functions to witness this
behavior: For example, the position of the function
declarations, the similarity of function parame-
ter types, and the usage of the link register. It is
also important to consider that not all registers
might be properly restored when returning. This
is especially the case for the BL instruction.

1|f7ff // BL <ShiftRows-0x4>

2 ff9d|....

Listing 17: Observed execution for Skip 32 bits
/ single instruction skip and single instruction
corruption when targeting line 2 in Listing 16.

7.3 Hint and control instructions in
MbedTLS-AES

This section describes the usage of hint and con-
trol instructions to mimic instruction skips. As
a result, it would simplify performing differential
fault analysis attacks on this implementation of
AES.

Thumb2 instruction set contains hint and mis-
cellaneous control instructions [41]. They detail a
requested internal behavior to the processor con-
cerning memory usage (e.g., PLD), system events

(e.g., WFI), speculative execution (e.g., CSDB)
and pipelining (e.g., ISB). In most places, these
instructions have no impact on execution and
behave like a NOP within the execution flow. This
makes them of special interest when exploiting the
portrayed instruction corruption fault models.

Within the explored targets, instruction cor-
ruption only ever yields a PLD hint instruction.
Within TinyAES128, the PLD instruction has
undefined arguments and is therefore unusable.
In MbedTLS-AES, both the O1 and O2 compiler
optimization levels yield corrupted instructions to
precise PLD instructions. Listing 18 and Listing 19
show how LDRB.W instruction has been corrupted
to a PLD one.

1|fa53 // UXTAB LR, R3, LR

2 fe8e|f89e // LDRB.W R2, [LR, #40]

3 2028|69f6| // LDR R6, [R6, #28]

4 |4072|.... // EORS R2, R6

Listing 18: Selection of MbedTLS-AES encryption
instructions.

1|fa53 // UXTAB LR, R3, LR

2 fe8e|f89e // PLD [LR, #3726]

3 fe8e|f89e // LDRB.W R4, [LR, #114]

4 4072|....

Listing 19: Observed execution for Skip & repeat
32 bits / double instruction corruption when
skipping line 3 and repeating line 2 in Listing 18 .

7.4 Further remarks

To summarize, our primary focus in this section
was not on introducing novel attacks against
AES. Instead, our objective was to showcase the
practical utility of the proposed fault models.
These models effectively identified new vulnerabil-
ities in such AES implementations. Consequently,
this empowers developers to opt for alternative
implementation choices or explore adequate coun-
termeasures. Additionally, it is noteworthy that
developers commonly lean towards software coun-
termeasures in response to fault attacks, like
duplicating instructions. However, in the case we
present here, such countermeasures would inad-
vertently broaden the attack surface, potentially
simplifying the exploitation.

An important point to be noticed is that any
exploitation using the described fault models is

18

Table 4: Number of possible fault insertions
with 32-bit misaligned instruction corruptions
within the encryption function and the number
of created undefined instructions for the explored
target codes at several optimization levels.

Target Optimization Inserted Undefined
code level faults instructions

BroAES -O0 29 10 (34.5%)
-O1 59 16 (27.1%)
-O2 87 31 (35.6%)
-Os 85 19 (22.4%)

TinyAES128 -O0 33 11 (33.3%)
-O1 44 21 (47.7%)
-O2 106 17 (16.0%)
-Os 52 26 (50.0%)

MBedTLS-AES -O0 69 35 (50.7%)
-O1 293 84 (28.7%)
-O2 283 60 (21.2%)
-Os 193 52 (26.9%)

extremely dependent on minor choices made by
the compiler and linker. The optimization lev-
els, positions of functions and chosen instructions
encoding play a major role in deciding whether
these fault models would produce exploitable
behaviors. Furthermore, many applications of the
misaligned instruction corruption fault models
lead to undefined instructions which would cause
a crash or a fault handler to trigger. An indication
of the frequency of these undefined instructions for
the different targets of AES is reported in Table 4.

Other applications can create unpredictable
instructions which may behave differently across
various architectures and activate fault handlers
too.

Even after considering all these comments,
every target and optimization level still creates
numerous possible injection points. Therefore, it is
common to find multiple injection points that exe-
cute without crashing and where changes to the
output or control flow of the program can be wit-
nessed. Whether these injection points are fully
exploitable depends on the target program and
target architecture.

8 Conclusion and Perspectives

In this article, we have exposed how the observed
faulty behaviors at ISA level could dramatically

change depending on the code alignment in mem-
ory; this is due to Thumb2 instruction set support-
ing variable-length instructions, which can lead to
aligned or misaligned code in memory. We have
also shown that all these behaviors could be fully
explained at binary encoding level with the two
fault models: Skip and Skip & repeat. The pro-
vided detailed description at ISA level can now
clear up many faulty behaviors mentioned in the
literature. Also, the obtained results could be gen-
eralized to other cases of memory access size than
32 or 64 bits present in this work. In addition, RTL
fault simulation experiments have been depicted
and reveal the origin of such erroneous behav-
iors, validating the inferred fault models. Finally,
examples have been produced on how these behav-
iors may be exploited in various security contexts.
Actual clock glitch fault injection experiments
confirm all these statements.

The portrayed cross-layer analysis will help to
design countermeasures to such faults at lower
levels of abstraction, i.e., RTL and/or microarchi-
tecture. It could also be helpful at software level,
where countermeasures are usually less expensive
to implement.

In terms of perspectives, looking for counter-
measures against different faulty behaviors while
keeping the best performance possible will be very
important and necessary. These countermeasures
could be investigated both at software and hard-
ware levels. At software level, this may include:
adding dummy instructions to avoid aligned or
misaligned vulnerable instruction, or replacing
operand register with another, if specific register
could lead to vulnerable encoding. At hardware
level, duplicate the vulnerable registers, adding
parallel delay lines, as glitch detectors, to the
input of the vulnerable flip-flops, or even split-
ting the critical paths might be possible solutions.
Moreover, the effect of such countermeasures
in terms of cost, performance and effectiveness
should be studied carefully. As an additional per-
spective, this work opens the door to research on
the effect of fault injection on various architec-
tures, keeping in mind that the supported ISA
can provide variable-length instructions. Finally,
(re)engineering novel compressed instruction sets
could come up, designed to be immune to such
vulnerabilities, even in the presence of faults.

19

Acknowledgments

This work has been supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) and
the French National Research Agency in the
framework of the “Investissements d’avenir” pro-
gram (ANR-15-IDEX-02).

References

[1] Bar-El, H., Choukri, H., Naccache, D., Tun-
stall, M., Whelan, C.: The sorcerer’s appren-
tice guide to fault attacks. Proceedings of the
IEEE 94(2), 370–382 (2006)

[2] Baumann, R.C.: Radiation-induced soft
errors in advanced semiconductor technolo-
gies. IEEE Transactions on Device and
Materials Reliability 5(3), 305–316 (2005)

[3] Colombier, B., Menu, A., Dutertre, J.-M.,
Moëllic, P.-A., Rigaud, J.-B., Danger, J.-
L.: Laser-induced Single-bit Faults in Flash
Memory: Instructions Corruption on a 32-bit
Microcontroller. In: 2019 IEEE International
Symposium on Hardware Oriented Security
and Trust (HOST), pp. 1–10. IEEE, McLean,
United States (2019)

[4] Werner, V., Maingault, L., Potet, M.: An end-
to-end approach for multi-fault attack vul-
nerability assessment. In: Workshop on Fault
Detection and Tolerance in Cryptography,
pp. 10–17. IEEE, Milan, Italy (2020)

[5] Rivière, L., Najm, Z., Rauzy, P., Danger,
J.-L., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache
of ARMv7-M architectures. In: 2015 IEEE
International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 62–67
(2015)

[6] Proy, J., Heydemann, K., Berzati, A.,
Majéric, F., Cohen, A.: A first ISA-level
characterization of EM pulse effects on super-
scalar microarchitectures: A secure software
perspective. In: Proceedings of the 14th Inter-
national Conference on Availability, Reliabil-
ity and Security, ARES 2019, Canterbury,
UK, August 26-29, 2019, pp. 7–1710. ACM

[7] Timmers, N., Spruyt, A., Witteman, M.:
Controlling PC on ARM using fault injec-
tion. In: 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pp.
25–35 (2016)

[8] Yuce, B., Ghalaty, N.F., Santapuri, H., Desh-
pande, C., Patrick, C., Schaumont, P.: Soft-
ware fault resistance is futile: Effective single-
glitch attacks. In: 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography
(FDTC), pp. 47–58 (2016)

[9] Alshaer, I., Colombier, B., Deleuze, C.,
Beroulle, V., Maistri, P.: Microarchitecture-
aware fault models: Experimental evidence
and cross-layer inference methodology. In:
2021 16th International Conference on
Design Technology of Integrated Systems in
Nanoscale Era (DTIS), pp. 1–6 (2021)

[10] Skorobogatov, S.: Local heating attacks on
flash memory devices. In: 2009 IEEE Interna-
tional Workshop on Hardware-Oriented Secu-
rity and Trust, pp. 1–6 (2009)

[11] Alshaer, I., Colombier, B., Deleuze, C.,
Maistri, P., Beroulle, V.: Cross-layer infer-
ence methodology for microarchitecture-
aware fault models. Microelectronics Reliabil-
ity 139, 114841 (2022)

[12] Menu, A., Dutertre, J.-M., Potin, O., Rigaud,
J.-B., Danger, J.-L.: Experimental analysis
of the electromagnetic instruction skip fault
model. In: 2020 15th Design Technology of
Integrated Systems in Nanoscale Era (DTIS),
pp. 1–7 (2020)

[13] Trouchkine, T., Bouffard, G., Clédière, J.:
EM fault model characterization on SoCs:
From different architectures to the same fault
model. In: 2021 Workshop on Fault Detection
and Tolerance in Cryptography (FDTC), pp.
31–38 (2021). IEEE

[14] Timmers, N., Mune, C.: Escalating privileges
in linux using voltage fault injection. In: 2017
Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 1–8 (2017)

[15] Gratchoff, J., Timmers, N., Spruyt, A.,

20

Chmielewski, L.: Proving the wild jungle
jump. Technical report, Technical report,
University of Amsterdam (2015)

[16] Alshaer, I., Colombier, B., Deleuze, C.,
Beroulle, V., Maistri, P.: Variable-length
instruction set: Feature or bug? In: 25th
Euromicro Conference on Digital System
Design, DSD 2022, Maspalomas, Spain,
August 31 - Sept. 2, 2022, pp. 464–471. IEEE

[17] Pan, H.: High performance, variable-length
instruction encodings. PhD thesis, Mas-
sachusetts Institute of Technology (2002)

[18] Prasad Kulkarni: 16/32-Bit ARM-
Thumb Architecture and AX Extensions.
http://www.ittc.ku.edu/ kulkarni/re-
search/thumb ax.pdf. [Accessed: March 2,
2022]

[19] MIPS Technologies, Inc.: microMIPSTM
Instruction Set Architecture Uncompro-
mised Performance, Minimum System
Cost . [Accessed: March 2, 2022].
https://s3-eu-west-1.amazonaws.com/
downloads-mips/mips-documentation/
login-required/micromips instruction set
architecture.pdf

[20] Waterman, A., Lee, Y., Patterson, D.A.,
Asanović, K.: The RISC-V compressed
instruction set manual, version 1.7. EECS
Department, University of California, Berke-
ley, UCB/EECS-2015-157 (2015)

[21] informIT: Understanding ARM Archi-
tectures. [Accessed: March 1, 2022].
https://www.informit.com/articles/article.
aspx?p=1620207&seqNum=3

[22] Tom Shanley —Mindshare, Inc.: x86 Instruc-
tion Set Architecture. [Accessed: March
2, 2022]. https://www.mindshare.com/
files/ebooks/x86%20Instruction%20Set%
20Architecture.pdf

[23] MIPS Technologies, Inc.: MIPS32™ Archi-
tecture For Programmers Volume II: The
MIPS32™ Instruction Set . [Accessed:
March 2, 2022]. https://www.cs.cornell.edu/
courses/cs3410/2008fa/MIPS Vol2.pdf

[24] MIPS Technologies, Inc.: MIPS64™
Architecture For Programmers Vol-
ume II: The MIPS64™ Instruction
Set. [Accessed: March 2, 2022].
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/
W020100308600769158777.pdf

[25] ARM Limited: ARM Architecture Reference
Manual Thumb-2 Supplement. [Accessed:
February 22, 2022]. https://developer.arm.
com/documentation/ddi0308/d

[26] Intel Corporation: Intel®64 and IA-32
Architectures Software Developer Manuals,
Volume 3A: System Programming Guide,
Part 1. Intel Corporation, Santa Clara, CA
(2016)

[27] Advanced Micro Devices, Inc.: AMD64 Archi-
tecture Programmer’s Manual Volumes 1–5.
Advanced Micro Devices, Inc., Santa Clara,
CA (2023). https://www.amd.com/system/
files/TechDocs/40332.pdf

[28] Harris, S.L., Harris, D.M.: 3 - sequential
logic design. In: Harris, S.L., Harris, D.M.
(eds.) Digital Design and Computer Archi-
tecture, pp. 108–171. Morgan Kaufmann,
Boston (2016)

[29] Ankit Mahajan: Relation between
clock skew and frequency of operation.
https://www.linkedin.com/pulse/relation-
between-skew-frequency-operation-
ankit-mahajan/. [Accessed: July 3,
2022]

[30] Texas Instruments: Basics of SPI: Timing
Requirements and Switching Character-
istics. [Accessed: July 3, 2022]. https:
//training.ti.com/sites/default/files/docs/
adcs-spi-communications-timing-presentation.
pdf

[31] Markovic, D., Nikolic, B., Brodersen, R.:
Analysis and design of low-energy flip-flops.
In: Proceedings of the 2001 International
Symposium on Low Power Electronics and
Design, pp. 52–55 (2001)

[32] O’Flynn, C., Chen, Z.D.: Chipwhisperer: An
open-source platform for hardware embedded

21

https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips_instruction _set_architecture.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips_instruction _set_architecture.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips_instruction _set_architecture.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-documentation/login-required/micromips_instruction _set_architecture.pdf
https://www.informit.com/articles/article.aspx?p=1620207&seq Num=3
https://www.informit.com/articles/article.aspx?p=1620207&seq Num=3
https://www.mindshare.com/files/ebooks/x86%20Instruction%20Set%20Architecture.pdf
https://www.mindshare.com/files/ebooks/x86%20Instruction%20Set%20Architecture.pdf
https://www.mindshare.com/files/ebooks/x86%20Instruction%20Set%20Architecture.pdf
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS _Vol2.pdf
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS _Vol2.pdf
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/ W020100308600769158777 .pdf
https://scc.ustc.edu.cn/zlsc/lxwycj/200910/ W020100308600769158777 .pdf
https://developer.arm.com/documentation/ddi0308/d
https://developer.arm.com/documentation/ddi0308/d
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf
https://training.ti.com/sites/default/files/docs/adcs-spi-communications-timing-presentation.pdf
https://training.ti.com/sites/default/files/docs/adcs-spi-communications-timing-presentation.pdf
https://training.ti.com/sites/default/files/docs/adcs-spi-communications-timing-presentation.pdf
https://training.ti.com/sites/default/files/docs/adcs-spi-communications-timing-presentation.pdf

security research. In: Prouff, E. (ed.) Inter-
national Workshop on Constructive Side-
Channel Analysis and Secure Design. Lecture
Notes in Computer Science, vol. 8622, pp.
243–260. Springer, Paris, France (2014)

[33] Zussa, L., Dutertre, J.-M., Clédière, J.,
Robisson, B., Tria, A.: Investigation of tim-
ing constraints violation as a fault injection
means. In: 27th Conference on Design of
Circuits and Integrated Systems (DCIS), Avi-
gnon, France, p. (2012)

[34] Zussa, L., Dutertre, J.-M., Clédière, J., Tria,
A.: Power supply glitch induced faults on
fpga: An in-depth analysis of the injection
mechanism. In: 2013 IEEE 19th International
On-Line Testing Symposium (IOLTS), pp.
110–115 (2013)

[35] Selmane, N., Bhasin, S., Guilley, S., Danger,
J.: Security evaluation of application-specific
integrated circuits and field programmable
gate arrays against setup time violation
attacks. IET Inf. Secur. 5(4), 181–190 (2011)

[36] Bayon, P., Bossuet, L., Aubert, A., Fischer,
V., Poucheret, F., Robisson, B., Maurine,
P.: Contactless electromagnetic active attack
on ring oscillator based true random num-
ber generator. In: Schindler, W., Huss, S.A.
(eds.) Constructive Side-Channel Analysis
and Secure Design, pp. 151–166 (2012)

[37] Ghodrati, M., Yuce, B., Gujar, S., Desh-
pande, C., Nazhandali, L., Schaumont, P.:
Inducing local timing fault through EM injec-
tion. In: Proceedings of the 55th Annual
Design Automation Conference, DAC 2018,
San Francisco, CA, USA, June 24-29, 2018,
pp. 142–11426. ACM

[38] Tang, A., Sethumadhavan, S., Stolfo, S.J.:
CLKSCREW: exposing the perils of security-
oblivious energy management. In: Kirda, E.,
Ristenpart, T. (eds.) 26th USENIX Security
Symposium, USENIX Security 2017, Vancou-
ver, BC, Canada, August 16-18, 2017, pp.
1057–1074. USENIX Association

[39] Murdock, K., Oswald, D.F., Garcia, F.D.,

Bulck, J.V., Piessens, F., Gruss, D.: Plun-
dervolt: How a little bit of undervolting can
create a lot of trouble. IEEE Secur. Priv.
18(5), 28–37 (2020)

[40] Qiu, P., Wang, D., Lyu, Y., Tian, R., Wang,
C., Qu, G.: Voltjockey: A new dynamic
voltage scaling-based fault injection attack
on intel SGX. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 40(6), 1130–1143
(2021)

[41] ARM Limited: ARMv7-M Architecture
Reference Manual. [Accessed: February
22, 2022]. https://developer.arm.com/
documentation/ddi0403/latest

[42] Agoyan, M., Dutertre, J.-M., Naccache, D.,
Robisson, B., Tria, A.: When clocks fail:
On critical paths and clock faults. In: Goll-
mann, D., Lanet, J.-L., Iguchi-Cartigny, J.
(eds.) Smart Card Research and Advanced
Application, pp. 182–193. Springer, Berlin,
Heidelberg (2010)

[43] Li, Y., Ohta, K., Sakiyama, K.: New fault-
based side-channel attack using fault sen-
sitivity. IEEE Transactions on Information
Forensics and Security 7(1), 88–97 (2012)

[44] Alshaer, I., Colombier, B., Deleuze, C.,
Beroulle, V., Maistri, P.: Microarchitec-
tural Insights into Unexplained Behaviors
under Clock Glitch Fault Injection. In:
Springer (ed.) 22nd Smart Card Research and
Advanced Application Conference (CARDIS
2023). Lecture Notes in Computer Sci-
ence (LNCS), pp. 1–20. Springer, Ams-
terdam, Netherlands (2023). https://hal.
science/hal-04273995

[45] Moro, N., Dehbaoui, A., Heydemann, K.,
Robisson, B., Encrenaz, E.: Electromagnetic
fault injection: Towards a fault model on
a 32-bit microcontroller. In: Fischer, W.,
Schmidt, J. (eds.) Workshop on Fault Diag-
nosis and Tolerance in Cryptography3, pp.
77–88. IEEE Computer Society, Los Alami-
tos, CA, USA (2013)

[46] Spensky, C., Machiry, A., Burow, N.,
Okhravi, H., Housley, R., Gu, Z., Jamjoom,

22

https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/documentation/ddi0403/latest
https://hal.science/hal-04273995
https://hal.science/hal-04273995

H., Kruegel, C., Vigna, G.: Glitching demys-
tified: analyzing control-flow-based glitch-
ing attacks and defenses. In: 2021 51st
Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks
(DSN), pp. 400–412 (2021). IEEE

[47] Benso, A., Di Carlo, S., Di Natale, G.,
Prinetto, P.: Static analysis of seu effects on
software applications. In: Proceedings. Inter-
national Test Conference, pp. 500–508 (2002)

[48] Escouteloup, M., Lashermes, R., Lanet,
J.-L., Fournier, J.J.-A.: Recommendations
for a radically secure ISA. In: CARRV
2020 - Workshop on Computer Architec-
ture Research with RISC-V, pp. 1–22. ACM,
Valence (virtual), Spain (2020). https://hal.
archives-ouvertes.fr/hal-03128242

[49] Roemer, R., Buchanan, E., Shacham, H.,
Savage, S.: Return-oriented programming:
Systems, languages, and applications. ACM
Transactions on Information and System
Security (TISSEC) 15(1), 1–34 (2012)

[50] Daemen, J., Rijmen, V.: Rijndael for AES. In:
The Third Advanced Encryption Standard
Candidate Conference, pp. 343–348. National
Institute of Standards and Technology,, New
York, USA (2000)

23

https://hal.archives-ouvertes.fr/hal-03128242
https://hal.archives-ouvertes.fr/hal-03128242

	Introduction
	Cross-layer analysis
	Fault effect characterization at ISA level
	Contributions
	Outline

	Variable-length Instruction Sets
	Experimental Setup
	Clock glitch fault injection
	Target devices
	Target programs
	Injection parameters and classification

	Experimental Results and Analysis
	Aligned code scenario
	Skip 32 bits / single instruction skip
	Skip 64 bits / double instruction skip
	Skip & repeat 32 bits / single instruction skip & single instruction repeat
	Skip & repeat 64 bits / double instruction skip and double instruction repeat

	Misaligned code scenario
	Skip 32 bits / single instruction skip and single instruction corruption
	Skip 32 bits / double instruction skip and new instruction execution
	Skip 64 bits / single instruction corruption, double instruction skip and new instruction execution
	Skip & repeat 32 bits / double instruction corruption
	Skip & repeat 64 bits / double instruction corruption, single instruction skip and single instruction repeat

	More on the ability to execute a new instruction

	Hardware Fault Simulation
	RTL fault simulation methodology
	RTL fault models
	Post-synthesis timing simulation
	Summary

	Cross-layer analysis: bottom-up summary
	Vulnerability analysis on AES
	Branch logic error on BroAES
	Early return on TinyAES128
	Hint and control instructions in MbedTLS-AES
	Further remarks

	Conclusion and Perspectives

