Physical attacks on secure electronic devices

Brice Colombier

March 2, 2023

Who am I?

Brice Colombier Associate professor at Université Jean Monnet

Teaching

GEII department

Secure Embedded Systems and Hardware Architectures

Physical attacks on secure electronic devices

Physical attacks on secure electronic devices

Electronic devices:

- 💡 light bulb
- camera
- ob electric bike
 - smartphone

- headphones
- computer
- visa credit card
- **g** blender

Physical attacks on secure electronic devices

Electronic devices:

💡 light bulb 🗙

♠ headphones X

camera X

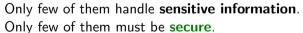
- computer
- vis₄ credit card ✓
- smartphone 🗸
- 📜 blender 🗙

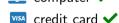
Only few of them handle **sensitive information**.

Only few of them must be secure.

Physical attacks on secure electronic devices

Electronic devices:



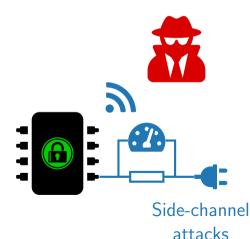

Physical attacks on secure electronic devices

Electronic devices:

light bulb 🗙

computer

camera X


- ob electric bike X
- blender X

neadphones X

smartphone 🗸

Only few of them handle sensitive information.

Only few of them must be secure.

Physical attacks on secure electronic devices

Electronic devices:

- 🅊 light bulb 🗙
- camera 🗙
- Ø electric bike

 X
 - smartphone 🗸

- neadphones ×
- computer
- visa credit card 🗸
- 📱 blender 🗙

Only few of them handle **sensitive information**.

Only few of them must be secure.

Side-channel attacks

Definition: measure a physical quantity while the device handles secret information.

Power consumption

Sound

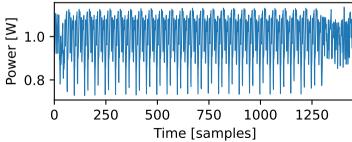
Electromagnetic radiation

Side-channel attacks

Definition: measure a **physical quantity** while the device handles secret information.

Power consumption

Sound



Electromagnetic radiation

Photons

Side-channel trace:

Hardware platform

ChipWhisperer

https://www.newae.com/chipwhisperer

Credit card example: check if a 4-digit PIN entered by the user is correct. If we want to **brute-force** it, how many trials will we need on average?

Credit card example: check if a 4-digit PIN entered by the user is correct. If we want to **brute-force** it, how many trials will we need on average? $\frac{10^4}{2} = 5000$

Credit card example: check if a 4-digit PIN entered by the user is correct. If we want to **brute-force** it, how many trials will we need on average? $\frac{10^4}{2} = 5000$

```
def verifyPIN(user_PIN):
       reference_PIN = "1234"
       for i in [0, 1, 2, 3]:
3
            if user PIN[i] != reference PIN[i]:
4
                return False
5
       return True
6
7
   print("Enter your PIN:")
   user_PIN = input()
   if VerifyPIN(user_PIN):
10
       print("CORRECT!")
11
   else:
12
       print("WRONG!")
13
```

Credit card example: check if a 4-digit PIN entered by the user is correct. If we want to **brute-force** it, how many trials will we need on average? $\frac{10^4}{2} = 5000$

```
def verifyPIN(user_PIN):
       reference_PIN = "1234"
       for i in [0, 1, 2, 3]:
           if user PIN[i] != reference PIN[i]:
4
                return False
5
       return True
   print("Enter your PIN:")
   user_PIN = input()
   if VerifyPIN(user_PIN):
10
       print("CORRECT!")
11
   else:
12
       print("WRONG!")
13
```

Enter your PIN:
1234
CORRECT!

Rewritten in C to run on the target micro-controller

> python3 verifyPIN.py

> python3 verifyPIN.py

Enter your PIN:

5874

WRONG!

Demo time

Target code with countermeasure

Countermeasure: defense against a known attack.

```
def verifyPIN_secure(user_PIN):
    reference_PIN = "1234"
    authenticated = True
    for i in [0, 1, 2, 3]:
        if user_PIN[i] != reference_PIN[i]:
            authenticated = False
    return authenticated
```

We want the implementation to be **constant-time**: the duration is the same for all input values.

Demo time again

Take-away messages

- An implementation might be correct but still not secure,
- Often, security is opposed to optimisations,
- It is a **cat-and-mouse** game between attackers and designers,

Take-away messages

- An implementation might be correct but still not secure,
- Often, security is opposed to optimisations,
- It is a cat-and-mouse game between attackers and designers,

Want to know more? https://bcolombier.fr

Take-away messages

- An implementation might be **correct** but still not **secure**,
- Often, security is opposed to optimisations,
- It is a cat-and-mouse game between attackers and designers,

Want to know more? https://bcolombier.fr

Questions

