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Semiconductor industry:
current situation and issues



Current situation 2/51

The semiconductor market is highly competitive, must handle
increasing design complexity andmarket pull by customers.

In last two years:
	 sales of almost $340 billion a year [1],
	 front-end investment for manufacturing plants reaches tens of

billion dollars [2],
	 merger and acquisitionsmade headlines (NXP by Qualcomm,

Altera by Intel, etc) and reached almost $100 billion a year [3].

Main shift

Transition from industrial economy to knowledge economy

[1] World Semiconductor Trade Statistics “Global Semiconductor Sales Reach $339 Billion in
2016”
[2] EETimes “Samsung Breaks Ground on $14 Billion Fab”
[3] IC Insights “2015-2016 deals dominate semiconductor M&A ranking”
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Asymmetric design knowledge transfer 4/51

The IP core designermust give away all the
intellectual property to the system integrator.

Main issue

The designer cannot know how many
times the IP core has been instantiated.

This asymmetric design transfer:
	 inhibits fine-grained licensing schemes,
	 prevents proper billing,
	 leads to many cases of illegal copying.
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Attacker
(System integrator)

Objective

	 Instantiate the IP core
without the consent
of the IP core designer.

Capabilities

	 Can obtain a legitimate
copy of the IP core,

	 Has all the technical
resources to instantiate
the IP core correctly.

Defender
(IP core designer)

Objectives

	 Prevent under-reporting
of IP core instances,

	 Make illegal copies
unusable.

Constraint
	 Keep the overall cost

inferior to the financial
losses on illegal copying.
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Objective 6/51

Objective: a licensing scheme for IP cores

Ï Before activation: The IP core does not operate correctly/at all.
	 During activation: The IP core must be provided with the

correct, instance-specific activation word
± After activation: The IP core operates normally.

Business
	 Monetization,
	 Pay-per-use,
	 Royalties.

Software
	 Modified design flow,
	 Database,
	 Key management.

Hardware
	 Activation,
	 ID,
	 Security.
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Objective 7/51

A secure remote activation scheme that is:

	 Easy to use by legitimate parties,
	 seamless integration into the standard design flow,

	 low impact on the performances of the IP core,

	 usable for any IP core (universal),

	 Hard to circumvent for an adversary,
	 impossibility to use illegal copies,

	 security guaranteed by a cipher,

	 instance-specific identifier.



Contributions and outline
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Augmented design flow 9/51

Logic modifications

Modify the combinational logic to
allow to controllably:
	 Lock the outputs (logic locking),
	 Alter the outputs (logic masking).

Activation

	 Intrinsic identification of the
instances of the IP core.

	 Secure transfer of the
instance-specific activation word.
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Outline:

1. Computationally-efficient selection heuristics for logic masking

2. Combinational logic locking for very large netlists

3. Lightweight error-correction module for PUF responses

4. Overall integration and demonstrator



Scalable logic masking
with centrality indicators



Logic masking: definition 11/51

The netlist is modified and an associated AW is obtained [4].

[4] J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069–1074
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Principle

Insert XOR and XNOR gates at specific locations in the netlist

Original netlist Masked netlist

Objective: masking efficiency

The outputs should be as different as possible if AW is wrong
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Nodes selection heuristics 13/51

Several heuristics exist to select the place of insertion:

Selection Year Masking Computational
heuristic efficiency complexity

Random [4] 2008 Ï ±
Fan-in/fan-out cones [5] 2009 Ï ±
Fault analysis [6] 2015 ± Ï

[4] J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069–1074
[5] R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design

Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Systems 28.10 (2009),
pp. 1493–1502
[6] J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers 64.2 (2015), pp. 410–424
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Conversion rules

Wires Vertices
Logic gates Edges

Logic masking heuristic

Insert XOR/XNOR gates on vertices
that have the highest centrality.



Graph representation of a gate-level netlist 14/51

Conversion rules

Wires Vertices
Logic gates Edges

Logic masking heuristic

Insert XOR/XNOR gates on vertices
that have the highest centrality.



Centrality indicators 15/51

Centrality: Importance of a given vertex inside a graph

Twitter network graph, Copyright Marc Smith on Flickr under license CC BY 2.0
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Masking efficiency VS computational complexity 17/51

0.0 0.2 0.4 0.6 0.8 1.0
Bitwise output correlation

1

10

100

1k

10k

100k

Co
m

pu
ta

tio
n 

tim
e 

ra
tio

VS
 ra

nd
om

 se
le

ct
io

n
Centrality indicator

Closeness
Betweenness

Current-flow betweenness
Current-flow closeness

Other heuristics
Random
Fan-in/Fan-out cones
Fault-analysis

Current-flow closeness

Bitwise correlation is almost as low as for the fault
analysis-based heuristic, for a 1000x shorter run-time.



Current-flow closeness centrality 18/51

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Definition:
Inverse of the sum of effective resistance
between the vertex of interest and all the
other vertices of the graph.

C(v) = 1∑
y∈V

Reff(v,y)



Current-flow closeness centrality 18/51

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Definition:
Inverse of the sum of effective resistance
between the vertex of interest and all the
other vertices of the graph.

C(v) = 1∑
y∈V

Reff(v,y)



Current-flow closeness centrality 18/51

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Definition:
Inverse of the sum of effective resistance
between the vertex of interest and all the
other vertices of the graph.

C(v) = 1∑
y∈V

Reff(v,y)



Logic masking using centrality indicators: conclusion 19/51

Logic masking using centrality indicators:
± better trade-off than existing heuristics between masking

efficiency and computational complexity,
± only efficientmasking selection heuristic for real-life netlists.

5 could be parallelized.

Associated publication:

W B. Colombier, L. Bossuet, and D. Hély. “Centrality Indicators for Efficient and Scalable Logic
Masking”. ISVLSI. 2017, pp. 98–103



Combinational logic locking



Logic locking: definition 20/51

The netlist is modified and an AW (activation word) is obtained.



Logic locking: definition 21/51

Principle

Insert AND and OR gates at specific locations in the netlist

Original netlist Locked netlist

Objective

The outputs should be forced to a fixed logic value.
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Principle of combinational logic locking 22/51

Identify nodes inside the netlist that propagate a locking value.

Condition for propagating a locking value

The node is forced to the controlling value of the next gate.
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Graph processing 23/51

Processing

Remove the incoming edges of vertices that are associated
with nodes that cannot propagate a locking value.



Selection of the nodes to lock 24/51

Selection
Select the nodes that are as far as possible from
the outputs and lock as many outputs as possible.



Locking gates insertion 25/51

Choice of the type of locking gate

	 Force to 0: insert an AND gate,
	 Force to 1: insert an OR gate.



Experimental results: processing time 26/51

ITC’99 benchmarks: 1k to 200k gates.
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Netlists of up to 20k gates are processed in less than aminute.

Netlists of up to 200k gates are processed in less than an hour.



Experimental results: area overhead 27/51
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Locking all the outputs requires an area overhead below 3%.



Combinational logic locking: conclusion 28/51

Combinational logic locking:
± is the onlymethod for logic modifications that can handle

very large netlists (200k logic gates in less than one hour),
± has a low area overhead below 3%.
± offers obfuscation possibilities: interleaving, NAND/NOR gates.

Associated publications:

W B. Colombier, L. Bossuet, and D. Hély. “From Secured Logic to IP Protection”. Elsevier
Microprocessors and Microsystems 47 (2016), pp. 44–54

W B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by Locking Gates
Insertion for IP Cores Design Protection”. ISVLSI. 2015, pp. 210–215



Attacks on combinational logic modifications 29/51

Efficientmasking methods are vulnerable to attacks targetting AW:
	 Hill-climbing [7] 	 SAT [8]

Solution

Not expose AW input, drive it with the output of a cipher.

[7] S. M. Plaza and I. L. Markov. “Solving the Third-Shift Problem in IC Piracy With Test-Aware
Logic Locking”. IEEE Trans. on CAD of Integrated Circuits and Systems 34.6 (2015), pp. 961–971
[8] P. Subramanyan, S. Ray, and S. Malik. “Evaluating the security of logic encryption

algorithms”. HOST. 2015, pp. 137–143



Key reconciliation protocol for
error correction in PUF responses



Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.

Uniqueness property

Because of random manufacturing process variations,
r is different from one PUF instance to the other.
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The instability issue 31/51

Problem

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
	 PUF architecture,
	 Process node,
	 Aging,
	 Temperature,
	 Environment,
	 etc.



Error correction for PUF responses 32/51

Solution

Apply a technique of error correction to the PUF response
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Solution

Apply a technique of error correction to the PUF response



Similarities between two scenarios 33/51

Quantum key exchange

|key| < |m|

PUF-based ID generation

|ID| < |rt|



CASCADE protocol 34/51

One pass

	 Perform parity checks on blocks of the PUF response,
	 Isolate the errors using binary search and correct them,
	 Check current parity of blocks and backtrack,
	 Increase the block size and shuffle the response randomly.

Parameters

	 Initial block size,
	 Number of passes,

	 Block size multiplier.

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
	 Parity checks: n/k-bit leakage.
	 Binary search: log2(k)-bit leakage.
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PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 10-6.
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[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94–99
[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. IEEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291–1305
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Logic resources:
	 Spartan 3: 67 Slices
	 Spartan 6: 19 Slices
	 0 RAM bits

Logic resources:
	 Spartan 3: 3 Slices
	 Spartan 6: 1 Slice
	 256 RAM bits



Classical error-correcting codes for PUFs 37/51

Article Construction and code(s) Logic resources (Slices) Block
Spartan 3 Spartan 6 RAM bits

[11] Reed-Muller (4, 7) 179 0

[12] Reed-Muller (2, 6) 164 192

[13] Concatenated: Repetition and Reed Muller 168 0

[14] Differential Sequence Coding and Viterbi 75 27 10752

This work: CASCADE protocol logic only 67 19 0

with RAM 3 1 256

[11] M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143–148
[12] R. Maes, P. Tuyls, and I. Verbauwhede. “Low-Overhead Implementation of a Soft Decision
Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332–347
[13] C. Bösch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008, pp. 181–197
[14] M. Hiller, M. Yu, and G. Sigl. “Cherry-Picking Reliable PUF Bits With Differential Sequence
Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016), pp. 2065–2076
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First usage of a key reconciliation protocol for PUF responses:
± most lightweight error-correction solution of state-of-the-art,
± can reach very low failure rates (down to 10−8),
± leakage is limited and easy to estimate,
± parameterizable and can be changed on the fly.

Associated publication:

W B. Colombier, L. Bossuet, D. Hély, and V. Fischer. “Key Reconciliation Protocols for Error
Correction of Silicon PUF Responses”. IEEE Transactions on Information Forensics and Security
12.8 (2017), pp. 1988–2002



Integration and demonstrator
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A secure remote activation scheme that is:

	 Easy to use by legitimate parties,
± seamless integration into the standard design flow,

± low impact on the performances of the IP core,

± usable for any IP core (universal),

	 Hard to circumvent for an adversary,
± impossibility to use illegal copies,

± instance-specific identifier,

± security guaranteed by a cipher [15].

[15] C. Marchand, L. Bossuet, and K. Gaj. “Area-oriented comparison of lightweight block
ciphers implemented in hardware for the activation mechanism in the anti-counterfeiting
schemes”. International Journal of Circuit Theory and Applications 45.2 (2017), pp. 274–291
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IP protection module overview 41/51

Intel Cyclone V Microsemi SF2

6-LUTs DFFs 4-LUTs DFFs

TERO-PUF 4841 160 2258 158
Response shift register 0 128 0 128

Communication 321 2560 2664 2478
MUX indexes 128x7:7 301 0 595 0

IP protection module ∼500 ∼350 ∼700 ∼350
MUX response bits 128:1 67 0 85 0
AW storage 0 128 0 128
CASCADEmodule 1 1 1 1
Controller 104 90 101 69
Cipher [15] ∼300 ∼200 ∼500 ∼200
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Typical use-case at design time

	 Modify the combinational design to make it activable,
	 Wrap the design with the additional components:

block cipher , PUF , CASCADE module , etc.
	 Store the associated activation word.



Typical use-case at enrollment time 43/51

Typical use-case at enrollment time

	 Get the PUF reference response,
	 Optional: Characterize the PUF in operational conditions

to estimate the expected error-rate,
	 Store the reference response on the server.



Typical use-case at activation time 44/51

Typical use-case at activation time

	 Re-generate a PUF response on the device,
	 Perform reconciliation to correct the PUF response on the

server side,
	 Encrypt the activation word with the response and send it.
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https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2

https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2
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Parse the netlist (multiple formats) into a graph

Modify the graph for logic locking/masking

Convert back into a netlist

Add the AW decoder

Wrap with the extra components



Software at enrolment/activation time 48/51

Get the PUF reference response and store it

Perform the reconciliation

Encrypt the AW and send it

https://gitlab.com/SALWARE/salware_app
Associated publications:

W B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. HOST. 2017
W B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. FPL. 2017
W B. Colombier, L. Bossuet, and D. Hély. “A comprehensive hardware/software infrastructure
for IP cores design protection”. FPT. 2017

https://gitlab.com/SALWARE/salware_app


Software at enrolment/activation time 48/51

Get the PUF reference response and store it

Perform the reconciliation

Encrypt the AW and send it

https://gitlab.com/SALWARE/salware_app
Associated publications:

W B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. HOST. 2017
W B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. FPL. 2017
W B. Colombier, L. Bossuet, and D. Hély. “A comprehensive hardware/software infrastructure
for IP cores design protection”. FPT. 2017

https://gitlab.com/SALWARE/salware_app
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³
Summary of contributions:
	 Two methods of logic modifications for IP protection:

	 Logic locking: lightweight and scalable to very large netlists,
	 Centrality-based logic masking: better trade-off between

computational complexity and masking efficiency,

	 First use of the CASCADE key reconciliation protocol with PUFs,
10x more lightweight than existing ECCs,

	 Full integration and demonstrator.

Publications:
	 4 journals (2x IEEE TIFS, MICPRO, IET-CDT),
	 4 international conferences (2x ISVLSI, FCCM, FPT).
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f
Possible research perspectives:
	 Fine-grained licensing approaches (evaluation, premium, etc),
	 Security evaluation of hardware IP protections,
	 Trusted computing: (un)trusted mode (un)locked IP core,
	 Solutions for analog IP cores (25% of counterfeited ICs).
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Possible industrial perspectives:

︷ ︸︸ ︷
Business
	 Monetization,
	 Pay-per-use,
	 Royalties.

Software
	 Modified design flow,
	 Database,
	 Key management.

Hardware
	 Activation,
	 ID,
	 Security.︸ ︷︷ ︸

—Questions ? —
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