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Semiconductor industry:
current situation and issues
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The semiconductor market is highly competitive, must handle
increasing design complexity and market pull by customers.

In last two years:
© sales of almost $340 billion a year [1],

© front-end investment for manufacturing plants reaches tens of
billion dollars [2],

© merger and acquisitions made headlines (NXP by Qualcomm,
Altera by Intel, etc) and reached almost $100 billion a year [3].

[1] World Semiconductor Trade Statistics “Global Semiconductor Sales Reach $339 Billion in
2016”

[2] EETimes “Samsung Breaks Ground on $14 Billion Fab”
[3]IC Insights “2015-2016 deals dominate semiconductor M&A ranking”
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Transition from industrial economy to knowledge economy
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Semiconductor industry in 1960’s: an industrial economy

Integrated device
manufacturer
(e.g. Intel)




Semiconductor industry in 1980’s: an economy in transition

Integrated device Fabless designer Foundry
manufacturer (e.g. Xilinx) (e.g. TSMC)
(e.g. Intel)
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Semiconductor industry in 2000’s: a knowledge economy

Integrated device Fabless designer Foundry IP core System
manufacturer (e.g. Xilinx) (e.g. TSMC) designer integrator
(e.g. Intel) (e.g. ARM)

Lk
n

I
i

8a

|
2
=k
@
4

I e



Semiconductor industry in 2000’s: a knowledge economy

IP core
designer
(e.g. ARM)
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Asymmetric design knowledge transfer 4/51

The IP core designer must give away all the P core System
designer integrator

intellectual property to the system integrator. (. o arm)
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Asymmetric design knowledge transfer 4/51

The IP core designer must give away all the P core System
designer integrator

intellectual property to the system integrator. (. o arm)

The designer cannot know how many I I

times the IP core has been instantiated.

This asymmetric design transfer: _‘6’_
© inhibits fine-grained licensing schemes, =

FUIE
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© prevents proper billing,
© leads to many cases of illegal copying.
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Threat model and objective
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Attacker
(System integrator)

Objective

© Instantiate the IP core
without the consent
of the IP core designer.
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Attacker Defender
(System integrator) (IP core designer)
Objective Objectives
© Instantiate the IP core © Prevent under-reporting
without the consent of IP core instances,
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© Make illegal copies
unusable.
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Attacker Defender
(System integrator) (IP core designer)
Objective Objectives
© Instantiate the IP core © Prevent under-reporting
without the consent of IP core instances,

of the IP core designer.

Capabilities
© Can obtain a legitimate

© Make illegal copies
unusable.

copy of the IP core, © Keep the overall cost
© Has all the technical inferior to the financial
resources to instantiate losses on illegal copying.

the IP core correctly.
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Objective: a licensing scheme for IP cores

% Before activation: The IP core does not operate correctly/at all.

© During activation: The IP core must be provided with the
correct, instance-specific activation word

« After activation: The IP core operates normally.

Hardware
© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © ID,

© Royalties. © Key management. © Security.
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Objective

A secure remote activation scheme that is:

© Easy to use by legitimate parties,
© seamless integration into the standard design flow,

© low impact on the performances of the IP core,

© usable for any IP core (universal),

© Hard to circumvent for an adversary,
© impossibility to use illegal copies,

© security guaranteed by a cipher,

© instance-specific identifier.



Contributions and outline




Standard (and heavily simplified) design flow
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Augmented design flow 9/51
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Augmented design flow 9/51

Logic modifications

Modify the combinational logic to
allow to controllably:

Logic modifications e
g | Cl G © Lock the outputs (logic locking),
© Alter the outputs (logic masking).

© Intrinsic identification of the
o
cHivaton l ‘ t instances of the IP core.

© Secure transfer of the
instance-specific activation word.




Outline 10/51

Outline:

1. Computationally-efficient selection heuristics for logic masking
2. Combinational logic locking for very large netlists
3. Lightweight error-correction module for PUF responses

4. Overall integration and demonstrator



Scalable logic masking
with centrality indicators




Logic masking: definition

The netlist is modified and an associated AW is obtained [4].

correct AW

in0] _/\__ /T o outl0]
L] ) QR WA T\ T ouf[1]
infn-11 "\ ——\_/—\_outm-1]

wrong AW

[4] ). A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069-1074



Logic masking: definition

Insert XOR and XNOR gates at specific locations in the netlist

AW

Y
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Original netlist Masked netlist



Logic masking: definition

Insert XOR and XNOR gates at specific locations in the netlist

AW

Y

2

Original netlist Masked netlist

Objective: masking efficiency

The outputs should be as different as possible if AW is wrong




Nodes selection heuristics 13/51

Several heuristics exist to select the place of insertion:

Selection Masking Computational
. . Year . . .

heuristic efficiency complexity

Random [4] 2008 b4 v

Fan-in/fan-out cones [5] 2009 X v

Fault analysis [6] 2015 v %

[4] ). A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069-1074

[5] R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Systems 28.10 (2009),
pp. 1493-1502

[6] J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. |EEE Transactions on
Computers 64.2 (2015), pp. 410-424



Graph representation of a gate-level netlist 14/51
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Logic gates — Edges




Graph representation of a gate-level netlist

Conversion rules Logic masking heuristic

Wires — Vertices
Logic gates — Edges

Insert XOR/XNOR gates on vertices
that have the highest centrality.




Centrality indicators 15/51

[ Centrality: Importance of a given vertex inside a graph ]




Centrality indicators

Centrality: Importance of a given vertex inside a graph ]

‘Social madia natwork connactions among Tiisr usars

Twitter network graph, Copyright Marc Smith on Flickr under license CC BY 2.0



Comparison of centrality indicators
Degree Betwenness Current-flow
betweenness
1 Closeness Current-flow closeness
0.5
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Centrality



Masking efficiency VS computational complexity

100k * Centrality indicator
> Closeness A Current-flow betweenness
% < 10k <] Betweenness WV Current-flow closeness
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Bitwise output correlation

Current-flow closeness

Bitwise correlation is almost as low as for the fault
analysis-based heuristic, for a 1000x shorter run-time.




Current-flow closeness centrality
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Current-flow closeness centrality 18/51
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Logic masking using centrality indicators: conclusion

Logic masking using centrality indicators:

v better trade-off than existing heuristics between masking
efficiency and computational complexity,

« only efficient masking selection heuristic for real-life netlists.

=== could be parallelized.

Associated publication:

[3 B. Colombier, L. Bossuet, and D. Hély. “Centrality Indicators for Efficient and Scalable Logic
Masking”. ISVLSI. 2017, pp. 98-103



Combinational logic locking




Logic locking: definition

The netlist is modified and an AW (activation word) is obtained.
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Logic locking: definition 21/51

Insert AND and OR gates at specific locations in the netlist

AW

Y

2

Original netlist Locked netlist



Logic locking: definition 21/51

Insert AND and OR gates at specific locations in the netlist

2

Original netlist Locked netlist

Objective

The outputs should be forced to a fixed logic value.




Principle of combinational logic locking

Identify nodes inside the netlist that propagate a locking value.
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Identify nodes inside the netlist that propagate a locking value.
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Principle of combinational logic locking

Identify nodes inside the netlist that propagate a locking value.

I

|O




Principle of combinational logic locking 22/51

Identify nodes inside the netlist that propagate a locking value.

_31_3}}

|O

Condition for propagating a locking value

The node is forced to the controlling value of the next gate.




Graph processing 23/51

Processing

Remove the incoming edges of vertices that are associated
with nodes that cannot propagate a locking value.




Selection of the nodes to lock 24/51

COOOG

Select the nodes that are as far as possible from
the outputs and lock as many outputs as possible.




Locking gates insertion 25/51

Choice of the type of locking gate

© Force to 0: insert an AND gate,
© Force to 1: insert an OR gate.




Experimental results: processing time 26/51

ITC'99 benchmarks: 1k to 200k gates.
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Netlists of up to 20k gates are processed in less than a minute.

Netlists of up to 200k gates are processed in less than an hour.



Experimental results: area overhead 27/51
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Locking all the outputs requires an area overhead below 3%.



Combinational logic locking: conclusion

Combinational logic locking:

« is the only method for logic modifications that can handle
very large netlists (200k logic gates in less than one hour),

+ has a low area overhead below 3%.
« offers obfuscation possibilities: interleaving, NAND/NOR gates.

Associated publications:

@ B. Colombier, L. Bossuet, and D. Hély. “From Secured Logic to IP Protection”. Elsevier
Microprocessors and Microsystems 47 (2016), pp. 44-54

[ B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by Locking Gates
Insertion for IP Cores Design Protection”. ISVLSI. 2015, pp. 210-215



Attacks on combinational logic modifications 29/51

Efficient masking methods are vulnerable to attacks targetting AW:
© Hill-climbing [7] © SAT [8]

Not expose AW input, drive it with the output of a cipher.

key

[7] S. M. Plaza and I. L. Markov. “Solving the Third-Shift Problem in IC Piracy With Test-Aware
Logic Locking”. IEEE Trans. on CAD of Integrated Circuits and Systems 34.6 (2015), pp. 961-971

[8] P. Subramanyan, S. Ray, and S. Malik. “Evaluating the security of logic encryption
algorithms”. HOST. 2015, pp. 137-143



Key reconciliation protocol for
error correction in PUF responses
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PUFs are the fingerprints of integrated circuits.

PUF
description
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Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.
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Uniqueness property

Because of random manufacturing process variations,
r is different from one PUF instance to the other.




The instability issue 31/51

Problem

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
© PUF architecture,
© Process node,
© Aging,
© Temperature,
© Environment,
© etc.



Error correction for PUF responses

Apply a technique of error correction to the PUF response




Error correction for PUF responses

Apply a technique of error correction to the PUF response




Error correction for PUF responses

Apply a technique of error correction to the PUF response

time
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Similarities between two scenarios 33/51

Quantum key exchange PUF-based ID generation

Quantum channel
- QDA et -

Public discussion T * r Error-correction ‘rf
t
m \‘\_\ ry
leakage leakage
m m re )
l Privacy amplification $ * l ID generation
key key ID

[ID] < |rel

|key| < [m]




CASCADE protocol 34/51

One pass

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.
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CASCADE protocol 34/51

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

r
\

Parameters

© Initial block size, © Block size multiplier.
© Number of passes,

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
© Parity checks: n/k-bit leakage.
© Binary search: log,(k)-bit leakage.




CASCADE execution 34/51

Blocks of even

[o]1 BN 3][4]5]6]7][c |ENEY 22 |[r= FEYEEY 15] relative parity:
%]

Blocks of odd
relative parity:
%)

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt
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Real-life example 35/51

PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99
[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305
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PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

> B> 4-bit initial blocks A=A 16-bit initial blocks = Security threshold
<< 8-bit initial blocks V=¥ 32-bit initial blocks Shannon bound
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<1076
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[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99

[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305



Real-life example 3

PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

> B> 4-bit initial blocks A=A 16-bit initial blocks = Security threshold

<< 8-bit initial blocks V=¥ 32-bit initial blocks Shannon bound
1
- 256 BT T T
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g 321
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[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99
[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305



Hardware architectures for the parity computation module

) Logic resources:
parity
b Q © Spartan 3: 67 Slices
4 © Spartan 6: 19 Slices
© O RAM bits

e —
RAM . .
parity LOBIC resources:
data D Q . .
n/8 out © Spartan 3: 3 Slices
L © Spartan 6: 1Slice
e © 256 RAM bits

index Iogzl(n) +Iog2(n):3
7




Classical error-correcting codes for PUFs 3

Logic resources (Slices) Block

Article  Construction and code(s) Spartan3  Spartan6  RAM bits

[11] Reed-Muller (4, 7) 0
[12] Reed-Muller (2, 6) 164 192
[13] Concatenated: Repetition and Reed Muller 0
[14] Differential Sequence Coding and Viterbi 75 27 10752
logic only 67 19 0]

This work: CASCADE protocol

with RAM 3 1 256

[11] M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143-148

[12] R. Maes, P. Tuyls, and I. Verbauwhede. “Low-Overhead Implementation of a Soft Decision
Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332-347

[13] C. Bbsch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008, pp. 181-197
[14] M. Hiller, M. Yu, and G. Sigl. “Cherry-Picking Reliable PUF Bits With Differential Sequence
Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016), pp. 2065-2076



Key reconciliation protocol for PUF responses: conclusion

First usage of a key reconciliation protocol for PUF responses:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 10~8),
« leakage is limited and easy to estimate,

' parameterizable and can be changed on the fly.

Associated publication:

[ B. Colombier, L. Bossuet, D. Hély, and V. Fischer. “Key Reconciliation Protocols for Error
Correction of Silicon PUF Responses”. IEEE Transactions on Information Forensics and Security
12.8 (2017), pp. 1988-2002



Integration and demonstrator




Objective
A secure remote activation scheme that is:

© Easy to use by legitimate parties,
« seamless integration into the standard design flow,

+ low impact on the performances of the IP core,

« usable for any IP core (universal),

© Hard to circumvent for an adversary,
« impossibility to use illegal copies,

« instance-specific identifier,

« security guaranteed by a cipher [15].

[15] C. Marchand, L. Bossuet, and K. Gaj. “Area-oriented comparison of lightweight block
ciphers implemented in hardware for the activation mechanism in the anti-counterfeiting
schemes”. International Journal of Circuit Theory and Applications 45.2 (2017), pp. 274-291



Hardware/software infrastructure 4
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IP protection module overview 41/5

Protected IP 1 ’]
AW Combinational logic
| modifications
——
Lightweight
block cipher (" Interactive
1Py 0 error L PUF

correction

Intel Cyclone V Microsemi SF2

6-LUTs  DFFs 4-LUTs  DFFs

TERO-PUF 4841 160 2258 158
Response shift register 0 128 0 128
Communication 321 2560 2664 2478
MUX indexes 128x7:7 301 0 595 0

IP protection module ~500 ~350 ~700 ~350
MUX response bits 128:1 67 0 85 0
AW storage 0 128 0 128
CASCADE module 1 1 1 1
Controller 104 90 101 69

Cipher [15] ~300 ~200 ~500 ~200



Typical use-case at design time 42/51

'—1’]l—‘

[

I

; Combinational logic
1 modifications
I

[

I

[

I

[

I

[

I

[

block cipher Interactive
error

correction

Lightweight
[ PUF

Typical use-case at design time

© Modify the ([combinational design to make it activable,

© Wrap the design with the additional components:
block cipher, (PUF), (CASCADE module’, etc.
© Store the associated activation word.




Typical use-case at enroliment time 43/51

PUF
fo

Ll

Typical use-case at enrollment time

© Get the PUF reference response,

© Optional: Characterize the PUF in operational conditions
to estimate the expected error-rate,

© Store the reference response on the server.




Typical use-case at activation time 44/51

; N
[ AW Combinational logic
1 | modifications
f —
[
[
: Lightweight
| block cipher | Interactive e [
[ error PUF
; correction
| 1 [AW] key reconciliation
protocol

-_—

_server |

e J

Typical use-case at activation time

© Re-generate a PUF response on the device,

© Perform reconciliation to correct the PUF response on the
server side,

© Encrypt the activation word with the response and send it.




IP protection module overview 45/51

Protected IP M— ’]
AW Combinational logic
’_l_‘ modifications
——
Lightweight
block cipher | - (Cinteractive .
1Py error PUF

correction

https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2


https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2
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Software at design time 47/51

Parse the netlist (multiple formats) into a graph G ﬁ

Modify the graph for logic locking/masking ﬁi; > %‘%
associated

Convert back into a netlist —>
associated associated
Add the AW decoder —>
associated formatted
AW AW
i '
Wrap with the extra components E .
formatted

formatted

AW AW



Software at enrolment/activation time 48/51
o
Get the PUF reference response and store it

. -
Perform the reconciliation . .
r‘ [AW]r( *
. —_
Encrypt the AW and send it .


https://gitlab.com/SALWARE/salware_app

Software at enrolment/activation time 48/51
o
Get the PUF reference response and store it

. -
Perform the reconciliation . .
r( [AW]r( *
. —_
Encrypt the AW and send it .

https://gitlab.com/SALWARE/salware_app
Associated publications:

[3) B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. HOST. 2017

[2 B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. FPL. 2017

[3 B. Colombier, L. Bossuet, and D. Hély. “A comprehensive hardware/software infrastructure
for IP cores design protection”. FPT. 2017
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Conclusion and perspectives




Conclusion 49/51

Summary of contributions:
© Two methods of logic modifications for IP protection:

© Logic locking: lightweight and scalable to very large netlists,
© Centrality-based logic masking: better trade-off between
computational complexity and masking efficiency,

© First use of the CASCADE key reconciliation protocol with PUFs,
10x more lightweight than existing ECCs,

© Full integration and demonstrator.

Publications:
© 4 journals (2x IEEE TIFS, MICPRO, IET-CDT),
© 4 international conferences (2x ISVLSI, FCCM, FPT).
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Possible research perspectives:
© Fine-grained licensing approaches (evaluation, premium, etc),
© Security evaluation of hardware IP protections,
© Trusted computing: (un)trusted mode «— (un)locked IP core,

© Solutions for analog IP cores (25% of counterfeited ICs).
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Possible industrial perspectives:

French ANR Project

Hardware

© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © 1D,
© Royalties. © Key management. © Security.
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— Questions ? —




