PhD defense

Methods for protecting intellectual property
of IP core designers

Brice Colombier

Univ Lyon, UJM-Saint-Etienne, CNRS
Laboratoire Hubert Curien UMR 5516
F-42023, SAINT-ETIENNE, France

October 19th, 2017

Semiconductor industry:
current situation and issues

Current situation 2/51

The semiconductor market is highly competitive, must handle
increasing design complexity and market pull by customers.

In last two years:
© sales of almost $340 billion a year [1],

© front-end investment for manufacturing plants reaches tens of
billion dollars [2],

© merger and acquisitions made headlines (NXP by Qualcomm,
Altera by Intel, etc) and reached almost $100 billion a year [3].

[1] World Semiconductor Trade Statistics “Global Semiconductor Sales Reach $339 Billion in
2016”

[2] EETimes “Samsung Breaks Ground on $14 Billion Fab”
[3]IC Insights “2015-2016 deals dominate semiconductor M&A ranking”

Current situation 2/51

The semiconductor market is highly competitive, must handle
increasing design complexity and market pull by customers.

In last two years:
© sales of almost $340 billion a year [1],

© front-end investment for manufacturing plants reaches tens of
billion dollars [2],

© merger and acquisitions made headlines (NXP by Qualcomm,
Altera by Intel, etc) and reached almost $100 billion a year [3].

Transition from industrial economy to knowledge economy

[1] World Semiconductor Trade Statistics “Global Semiconductor Sales Reach $339 Billion in
2016”

[2] EETimes “Samsung Breaks Ground on $14 Billion Fab”
[3]IC Insights “2015-2016 deals dominate semiconductor M&A ranking”

Semiconductor industry in 1960’s: an industrial economy

Integrated device
manufacturer
(e.g. Intel)

Semiconductor industry in 1980’s: an economy in transition

Integrated device Fabless designer Foundry
manufacturer (e.g. Xilinx) (e.g. TSMC)
(e.g. Intel)

LN

8

Semiconductor industry in 2000’s: a knowledge economy

Integrated device Fabless designer Foundry IP core System
manufacturer (e.g. Xilinx) (e.g. TSMC) designer integrator
(e.g. Intel) (e.g. ARM)

Lk
n

I
i

8a

|
2
=k
@
4

I e

Semiconductor industry in 2000’s: a knowledge economy

IP core
designer
(e.g. ARM)

.I
.\

s‘..

e

i

i

é

System
integrator

= g
Ha——

Asymmetric design knowledge transfer 4/51

The IP core designer must give away all the P core System
designer integrator

intellectual property to the system integrator. (. o arm)

7

e

\" ==
» » BB

A=
= |

=
L

Asymmetric design knowledge transfer 4/51

The IP core designer must give away all the P core System
designer integrator

intellectual property to the system integrator. (. o arm)

The designer cannot know how many I I

times the IP core has been instantiated.

This asymmetric design transfer: _‘6’_
© inhibits fine-grained licensing schemes, =

FUIE
I

© prevents proper billing,
© leads to many cases of illegal copying.

e

A=
= |

=
L

Threat model and objective

Threat model 5/51

Attacker
(System integrator)

Objective

© Instantiate the IP core
without the consent
of the IP core designer.

Threat model 5/51

Attacker
(System integrator)

Objective

© Instantiate the IP core
without the consent
of the IP core designer.

Capabilities

© Can obtain a legitimate
copy of the IP core,

© Has all the technical
resources to instantiate
the IP core correctly.

Threat model 5/51

Attacker Defender
(System integrator) (IP core designer)
Objective Objectives
© Instantiate the IP core © Prevent under-reporting
without the consent of IP core instances,

of the IP core designer.

Capabilities

© Can obtain a legitimate
copy of the IP core,

© Has all the technical
resources to instantiate
the IP core correctly.

© Make illegal copies
unusable.

Threat model 5/51

Attacker Defender
(System integrator) (IP core designer)
Objective Objectives
© Instantiate the IP core © Prevent under-reporting
without the consent of IP core instances,

of the IP core designer.

Capabilities
© Can obtain a legitimate

© Make illegal copies
unusable.

copy of the IP core, © Keep the overall cost
© Has all the technical inferior to the financial
resources to instantiate losses on illegal copying.

the IP core correctly.

Objective 6/51

Objective: a licensing scheme for IP cores

% Before activation: The IP core does not operate correctly/at all.

© During activation: The IP core must be provided with the
correct, instance-specific activation word

« After activation: The IP core operates normally.

Hardware
© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © ID,

© Royalties. © Key management. © Security.

Objective 6/51

Objective: a licensing scheme for IP cores

% Before activation: The IP core does not operate correctly/at all.

© During activation: The IP core must be provided with the
correct, instance-specific activation word

« After activation: The IP core operates normally.

Hardware

© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © ID,
© Royalties. © Key management. © Security.

Objective

A secure remote activation scheme that is:

© Easy to use by legitimate parties,
© seamless integration into the standard design flow,

© low impact on the performances of the IP core,

© usable for any IP core (universal),

© Hard to circumvent for an adversary,
© impossibility to use illegal copies,

© security guaranteed by a cipher,

© instance-specific identifier.

Contributions and outline

Standard (and heavily simplified) design flow

oo 1°9-—(
* H
| Synthesis | Cl —
(=
v

| Manufacturing | .J D —
A= ;

| Sales | * — > $$$

Augmented design flow 9/51

0
N
| Design | -'- e Cl
| Logic modifications | Cl e G

| Synthesis | G —
¢ =

v
| Activiition | * e *
| Sales | ‘ e $$$

Augmented design flow 9/51

Logic modifications

Modify the combinational logic to
allow to controllably:

Logic modifications e
g | Cl G © Lock the outputs (logic locking),
© Alter the outputs (logic masking).

© Intrinsic identification of the
o
cHivaton l ‘ t instances of the IP core.

© Secure transfer of the
instance-specific activation word.

Outline 10/51

Outline:

1. Computationally-efficient selection heuristics for logic masking
2. Combinational logic locking for very large netlists
3. Lightweight error-correction module for PUF responses

4. Overall integration and demonstrator

Scalable logic masking
with centrality indicators

Logic masking: definition

The netlist is modified and an associated AW is obtained [4].

correct AW

in0] _/__ /T o outl0]
L]) QR WA T\ T ouf[1]
infn-11 "\ ——_/—_outm-1]

wrong AW

[4]). A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069-1074

Logic masking: definition

Insert XOR and XNOR gates at specific locations in the netlist

AW

Y

2

Original netlist Masked netlist

Logic masking: definition

Insert XOR and XNOR gates at specific locations in the netlist

AW

Y

2

Original netlist Masked netlist

Objective: masking efficiency

The outputs should be as different as possible if AW is wrong

Nodes selection heuristics 13/51

Several heuristics exist to select the place of insertion:

Selection Masking Computational
. . Year . . .

heuristic efficiency complexity

Random [4] 2008 b4 v

Fan-in/fan-out cones [5] 2009 X v

Fault analysis [6] 2015 v %

[4]). A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated Circuits”. DATE.
2008, pp. 1069-1074

[5] R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Systems 28.10 (2009),
pp. 1493-1502

[6] J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. |EEE Transactions on
Computers 64.2 (2015), pp. 410-424

Graph representation of a gate-level netlist 14/51

B2
e
&ro)
o0
|C)
2
)
I

G9
G3 G10
G4
G13
G5 G11
G6

Conversion rules

Wires — Vertices
Logic gates — Edges

Graph representation of a gate-level netlist

Conversion rules Logic masking heuristic

Wires — Vertices
Logic gates — Edges

Insert XOR/XNOR gates on vertices
that have the highest centrality.

Centrality indicators 15/51

[Centrality: Importance of a given vertex inside a graph]

Centrality indicators

Centrality: Importance of a given vertex inside a graph]

‘Social madia natwork connactions among Tiisr usars

Twitter network graph, Copyright Marc Smith on Flickr under license CC BY 2.0

Comparison of centrality indicators
Degree Betwenness Current-flow
betweenness
1 Closeness Current-flow closeness
0.5
0

Centrality

Masking efficiency VS computational complexity

100k * Centrality indicator
> Closeness A Current-flow betweenness
% < 10k <] Betweenness WV Current-flow closeness
'g % 1k Other heuristics
= g QO Random
) i -
E S 100 A Q Fan-in/Fan c'>ut cones
38 \4 % Fault-analysis
§ 2 10
>
1 T T T T O T O 1
0.0 0.2 04 0.6 0.8 1.0

Bitwise output correlation

Current-flow closeness

Bitwise correlation is almost as low as for the fault
analysis-based heuristic, for a 1000x shorter run-time.

Current-flow closeness centrality

0.5

Centrality

Current-flow closeness centrality 18/51

1
ey
05 £
c
(]
O
0
Definition:
. H p— —1
Inverse of the sum of effective resistance C(V) TS Regr(vyy)
between the vertex of interest and all the yev effi™

other vertices of the graph.

Current-flow closeness centrality 18/51

1
ey
05 £
c
(]
O
0
Definition:
. H p— —1
Inverse of the sum of effective resistance C(V) TS Regr(vyy)
between the vertex of interest and all the yev effi™

other vertices of the graph.

Logic masking using centrality indicators: conclusion

Logic masking using centrality indicators:

v better trade-off than existing heuristics between masking
efficiency and computational complexity,

« only efficient masking selection heuristic for real-life netlists.

=== could be parallelized.

Associated publication:

[3 B. Colombier, L. Bossuet, and D. Hély. “Centrality Indicators for Efficient and Scalable Logic
Masking”. ISVLSI. 2017, pp. 98-103

Combinational logic locking

Logic locking: definition

The netlist is modified and an AW (activation word) is obtained.

T N W _UTU T outqg)

LU NS N oulf]

11—\ _—— outfm-1]
correct AW

inf0] ./~ /A out[0]

W]m out[1]

[n1]m _/ ‘ out[m-1]

wrong AW

Logic locking: definition 21/51

Insert AND and OR gates at specific locations in the netlist

AW

Y

2

Original netlist Locked netlist

Logic locking: definition 21/51

Insert AND and OR gates at specific locations in the netlist

2

Original netlist Locked netlist

Objective

The outputs should be forced to a fixed logic value.

Principle of combinational logic locking

Identify nodes inside the netlist that propagate a locking value.

I

|O

Principle of combinational logic locking

Identify nodes inside the netlist that propagate a locking value.

T D

|O

Principle of combinational logic locking

Identify nodes inside the netlist that propagate a locking value.

I

|O

Principle of combinational logic locking 22/51

Identify nodes inside the netlist that propagate a locking value.

_31_3}}

|O

Condition for propagating a locking value

The node is forced to the controlling value of the next gate.

Graph processing 23/51

Processing

Remove the incoming edges of vertices that are associated
with nodes that cannot propagate a locking value.

Selection of the nodes to lock 24/51

COOOG

Select the nodes that are as far as possible from
the outputs and lock as many outputs as possible.

Locking gates insertion 25/51

Choice of the type of locking gate

© Force to 0: insert an AND gate,
© Force to 1: insert an OR gate.

Experimental results: processing time 26/51

ITC'99 benchmarks: 1k to 200k gates.

& 1h
1000 S
o] e 3
g] s
S 100 7 T ' 1 E .
0] '—‘ F 1 min
[4 . -
= 1) L
e 10 ® e~ + L
< E)
] ® ? I
1 40— Fls
T T T T T T T T T T T T L
1k 10k 100k
#logic gates

Netlists of up to 20k gates are processed in less than a minute.

Netlists of up to 200k gates are processed in less than an hour.

Experimental results: area overhead 27/51

3 °
[— Average overheadﬂ
£ 4/ °
? e ®
£, ® ° o o
%J ° ® o 2.89
g 2 (€] @ (]
<
(%) (&)
1 T T T L | T T T T
1k 10k 100k
#logic gates

Locking all the outputs requires an area overhead below 3%.

Combinational logic locking: conclusion

Combinational logic locking:

« is the only method for logic modifications that can handle
very large netlists (200k logic gates in less than one hour),

+ has a low area overhead below 3%.
« offers obfuscation possibilities: interleaving, NAND/NOR gates.

Associated publications:

@ B. Colombier, L. Bossuet, and D. Hély. “From Secured Logic to IP Protection”. Elsevier
Microprocessors and Microsystems 47 (2016), pp. 44-54

[B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by Locking Gates
Insertion for IP Cores Design Protection”. ISVLSI. 2015, pp. 210-215

Attacks on combinational logic modifications 29/51

Efficient masking methods are vulnerable to attacks targetting AW:
© Hill-climbing [7] © SAT [8]

Not expose AW input, drive it with the output of a cipher.

key

[7] S. M. Plaza and I. L. Markov. “Solving the Third-Shift Problem in IC Piracy With Test-Aware
Logic Locking”. IEEE Trans. on CAD of Integrated Circuits and Systems 34.6 (2015), pp. 961-971

[8] P. Subramanyan, S. Ray, and S. Malik. “Evaluating the security of logic encryption
algorithms”. HOST. 2015, pp. 137-143

Key reconciliation protocol for
error correction in PUF responses

Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.

PUF
description

Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.

C

|
17
see - ¢

Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.

ro # It # I #* I

bt
eee o

Physical Unclonable Functions (PUFs) 30/51

PUFs are the fingerprints of integrated circuits.

ro # It # I #* I

bt
eee o

Uniqueness property

Because of random manufacturing process variations,
r is different from one PUF instance to the other.

The instability issue 31/51

Problem

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
© PUF architecture,
© Process node,
© Aging,
© Temperature,
© Environment,
© etc.

Error correction for PUF responses

Apply a technique of error correction to the PUF response

Error correction for PUF responses

Apply a technique of error correction to the PUF response

Error correction for PUF responses

Apply a technique of error correction to the PUF response

time
¢ (cy, 1q)
-+ C
0 1
r

ry—T

T) % T
e O——,

Similarities between two scenarios 33/51

Quantum key exchange PUF-based ID generation

Quantum channel
- QDA et -

Public discussion T * r Error-correction ‘rf
t
m \‘_\ ry
leakage leakage
m m re)
l Privacy amplification $ * l ID generation
key key ID

[ID] < |rel

|key| < [m]

CASCADE protocol 34/51

One pass

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

CASCADE protocol 34/51

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

Parameters

r
\

© Initial block size, © Block size multiplier.
© Number of passes,

CASCADE protocol 34/51

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

r
\

Parameters

© Initial block size, © Block size multiplier.
© Number of passes,

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
© Parity checks: n/k-bit leakage.
© Binary search: log,(k)-bit leakage.

CASCADE execution 34/51

Blocks of even

[o]1 BN 3][4]5]6]7][c |ENEY 22 |[r= FEYEEY 15] relative parity:
%]

Blocks of odd
relative parity:
%)

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

[o]1 BN 3][4]5]6]7][c |ENEY 22 |[r= FEYEEY 15] relative parity:
Correction %)

[oTx2 =][T5 s 7] IR] o R Blocks of odd

relative parity:
%)

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

[o]1 BN 3][4]5]6]7][c |ENEY 22 |[r= FEYEEY 15] relative parity:

Correction lo|1]2]3][4]5]6]7]
[o]xT2]5][45 6] 7][= IEERY 2] [z FERER 15| [8]9[10]11|[12]13]14]15]
Blocks of odd
relative parity:
%}

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (r’é:é"t[Bt[i]D

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even
[o]1 BN 3][4]5]6] 7] [Ny 12][x2 YRRy 15] relative parity:
Correction lo|1]2]3][4]5]6]7]

[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [8] 9[10]11][12]13]14]15]
Shuffling
149“13. 3[15]6[1] Blocks of odd

relative parity:
%)

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]

[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [8] 9[10]11][12]13]14]15]
Shuffling
149“13. 3[15]6[1] Blocks of odd

Correction relative parity:

2]« [7 N O JBY 5] 2 [so[s [5 ss[6] 1] o

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]

[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [8] 9[10]11][12]13]14]15]
Shuffling
H .00 » 0 - BH » IREEEN I BE0 B E0E

Correction |12|14|4|7|9|0|13|5|
e[TR B EREEL] poge ofosd

relative parity:
%]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]
|0|1|2|3||4|5|68|hZ1 5 [o [0 1z][2[13]14]5]
B0 0 BH » IREEon i BEDDEE0E

Correction [12[14] 4|7][9]0 [13] 5|

12[14] 4| 7 0 o FE] 5][2|10 8 [11] 3 [15] 6] 1] Blocks of odd

relative parity:
%)

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]
[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [2]10]8]11]3]15] 6] 1]
Shuffling
149“13. 3[15]6[1] l12[14[a[7]9]0[13[5]
Correction Blocks of odd

N o B&) 5][2 [10]8]11[3 15[61| relative parity:

[8]9[10]11|[12]13]14]15]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]
[ofxT2]3][4]5 6] 7][c IEMERY 11 |[2o EEYERY 15 [2]10]8]11]3]15] 6] 1]
Shuffling
149“13. 3[15]6[1] l12[14[a[7]9]0[13[5]
Correction Blocks of odd
N o B&) 5][2 [10]8]11[3 15[61| relative parity:
Extra correction |8|9|10|11||12|13|14|15|

[12]14] 4] 7] o Jo B 5][2]20[811 325 6 [1]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]
[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [2]10]8]11]3]15] 6] 1]
Shuffling
149“13. 3[15]6[1] [12[14[a[7[9]0[13[5]
Correction Blocks of odd

N o B&) 5][2 [10]8]11[3 15[61| relative parity:

Extra correction m m
[12]14] 4] 7] o Jo B 5][2]20[811 325 6 [1] 2 [0 Jrojn]jazlza]aclas

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even

B : BABB0EEA ° oFF:: « 8 relative parity:

Correction lo|1]2]3][4]5]6]7]

|0|1|2|3||4|5|68|hZ1 5 9 [10[11]
B 0[O BH © IREEon i BEDDEEOE

Correction Blocks of odd

Gl 0 &l 5 |[2[10] 8 |u]3]15]6]1] relative parity:

Extra correction
[12]14] 4] 7] o Jo B 5][2]20[811 325 6 [1] [l a7 15 o [55]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even
[o]1 BN 3][4]5]6] 7] [Ny 12][x2 YRRy 15] relative parity:
Correction lo|1]2]3][4]5]6]7]

|0|1|2|3||4|5|68|hZ1 5 9 [10[11]
B 0[O BH © IREEon i BEDDEEOE

Correction Blocks of odd
) o &l 5][2]10[8[11]3[15]6]1] relative parity:
Extra correction
[12]14] 4] 7] o Jo B 5][2]20[811 325 6 [1]
Extra correction |12|14| 4 | ! | S | 0 |13| 5 |
[12[14] 4| 7] 90 [13]5][2 [10] 8 [11] 3 [15] 6] 1]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even
[o]1 BN 3][4]5]6] 7] [Ny 12][x2 YRRy 15] relative parity:
Correction lo|1]2]3][4]5]6]7]

|0|1|2|3||4|5|68|hZ1 5 9 [10[11]
B 0[O BH © IREEon i BEDDEEOE

Correction Blocks of odd
) o &l 5][2]10[8[11]3[15]6]1] relative parity:
Extra correction
[12]14] 4] 7] o Jo B 5][2]20[811 325 6 [1]
Extra correction |12|14| 4 | ! | S | 0 - 5 |
[12[14] 4| 7] 90 [13]5][2 [10] 8 [11] 3 [15] 6] 1]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

CASCADE execution 34/51

Blocks of even
[o]1 BN 3][4]5]6] 7] [Ny 12][x2 YRRy 15] relative parity:
Correction lo|1]2]3][4]5]6]7]

[ofxT2]s][4]5 6] 7][s IR 11|12 EERER 15 [8] 9[10]11][12]13]14]15]
Shuffling
H .00 » 0 - BH » IREEEN I BE0 B E0E

Correction |12|14|4|7|9|0|13|5|
TR B BRI poge of oud
Extra correction

[2[we[«]7]o [0 BB 5[z [10] s[5 [15] 6] 1] re'ativ‘;par‘ty:

Extra correction
[12[14] 4| 7] 90 [13]5][2 [10] 8 [11] 3 [15] 6] 1]

m—1

Relative parity: Pr(Bo, Bt) (@ro[Bo[']]) (@"t[Bt[i]D

i=0

Parity of B Parity of Bt

Real-life example 35/51

PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99
[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305

Real-life example 35/51

PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

> B> 4-bit initial blocks A=A 16-bit initial blocks = Security threshold
<< 8-bit initial blocks V=¥ 32-bit initial blocks Shannon bound

107t
1072
1073

Failure rate

1074
1075

<1076

Passes

[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99

[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305

Real-life example 3

PUFs based on oscillators have a typical error-rate of 2-3% [9] [10].
Keep 128 bits secret from a 256-bit response with failure rate < 107.

> B> 4-bit initial blocks A=A 16-bit initial blocks = Security threshold

<< 8-bit initial blocks V=¥ 32-bit initial blocks Shannon bound
1
- 256 BT T T
107t 3 [I I
. i = 206 1 — e
2 107 k) >
g 5 P > Ry
£ 10 % 128 5
£ 10 g
10 o 64
g 321
<1076 S0 T T
01 3 5 10 15 20
Passes Passes

[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. “A large scale characterization of
RO-PUF”. . HOST. 2010, pp. 94-99
[10] A. Cherkaoui, L. Bossuet, and C. Marchand. “Design, Evaluation and Optimization of
Physical Unclonable Functions based on Transient Effect Ring Oscillators”. |EEE Transactions on
Information Forensics and Security 11.6 (2016), pp. 1291-1305

Hardware architectures for the parity computation module

) Logic resources:
parity
b Q © Spartan 3: 67 Slices
4 © Spartan 6: 19 Slices
© O RAM bits

e —
RAM . .
parity LOBIC resources:
data D Q . .
n/8 out © Spartan 3: 3 Slices
L © Spartan 6: 1Slice
e © 256 RAM bits

index Iogzl(n) +Iog2(n):3
7

Classical error-correcting codes for PUFs 3

Logic resources (Slices) Block

Article Construction and code(s) Spartan3 Spartan6 RAM bits

[11] Reed-Muller (4, 7) 0
[12] Reed-Muller (2, 6) 164 192
[13] Concatenated: Repetition and Reed Muller 0
[14] Differential Sequence Coding and Viterbi 75 27 10752
logic only 67 19 0]

This work: CASCADE protocol

with RAM 3 1 256

[11] M. Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143-148

[12] R. Maes, P. Tuyls, and I. Verbauwhede. “Low-Overhead Implementation of a Soft Decision
Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332-347

[13] C. Bbsch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008, pp. 181-197
[14] M. Hiller, M. Yu, and G. Sigl. “Cherry-Picking Reliable PUF Bits With Differential Sequence
Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016), pp. 2065-2076

Key reconciliation protocol for PUF responses: conclusion

First usage of a key reconciliation protocol for PUF responses:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 10~8),
« leakage is limited and easy to estimate,

' parameterizable and can be changed on the fly.

Associated publication:

[B. Colombier, L. Bossuet, D. Hély, and V. Fischer. “Key Reconciliation Protocols for Error
Correction of Silicon PUF Responses”. IEEE Transactions on Information Forensics and Security
12.8 (2017), pp. 1988-2002

Integration and demonstrator

Objective
A secure remote activation scheme that is:

© Easy to use by legitimate parties,
« seamless integration into the standard design flow,

+ low impact on the performances of the IP core,

« usable for any IP core (universal),

© Hard to circumvent for an adversary,
« impossibility to use illegal copies,

« instance-specific identifier,

« security guaranteed by a cipher [15].

[15] C. Marchand, L. Bossuet, and K. Gaj. “Area-oriented comparison of lightweight block
ciphers implemented in hardware for the activation mechanism in the anti-counterfeiting
schemes”. International Journal of Circuit Theory and Applications 45.2 (2017), pp. 274-291

Hardware/software infrastructure 4

[/ []]
- R ala] -] T]

T TN

Hardware/software infrastructure

IP protection module overview 41/5

Protected IP 1 ’]
AW Combinational logic
| modifications
——
Lightweight
block cipher (" Interactive
1Py 0 error L PUF

correction

Intel Cyclone V Microsemi SF2

6-LUTs DFFs 4-LUTs DFFs

TERO-PUF 4841 160 2258 158
Response shift register 0 128 0 128
Communication 321 2560 2664 2478
MUX indexes 128x7:7 301 0 595 0

IP protection module ~500 ~350 ~700 ~350
MUX response bits 128:1 67 0 85 0
AW storage 0 128 0 128
CASCADE module 1 1 1 1
Controller 104 90 101 69

Cipher [15] ~300 ~200 ~500 ~200

Typical use-case at design time 42/51

'—1’]l—‘

[

I

; Combinational logic
1 modifications
I

[

I

[

I

[

I

[

I

[

block cipher Interactive
error

correction

Lightweight
[PUF

Typical use-case at design time

© Modify the ([combinational design to make it activable,

© Wrap the design with the additional components:
block cipher, (PUF), (CASCADE module’, etc.
© Store the associated activation word.

Typical use-case at enroliment time 43/51

PUF
fo

Ll

Typical use-case at enrollment time

© Get the PUF reference response,

© Optional: Characterize the PUF in operational conditions
to estimate the expected error-rate,

© Store the reference response on the server.

Typical use-case at activation time 44/51

; N
[AW Combinational logic
1 | modifications
f —
[
[
: Lightweight
| block cipher | Interactive e [
[error PUF
; correction
| 1 [AW] key reconciliation
protocol

-_—

_server |

e J

Typical use-case at activation time

© Re-generate a PUF response on the device,

© Perform reconciliation to correct the PUF response on the
server side,

© Encrypt the activation word with the response and send it.

IP protection module overview 45/51

Protected IP M— ’]
AW Combinational logic
’_l_‘ modifications
——
Lightweight
block cipher | - (Cinteractive .
1Py error PUF

correction

https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2

https://gitlab.com/SALWARE/salware_hector_mb
https://gitlab.com/SALWARE/salware_db_sf2

Hardware/software infrastructure 46/51

Software at design time 47/51

Parse the netlist (multiple formats) into a graph G ﬁ

Modify the graph for logic locking/masking ﬁi; > %‘%
associated

Convert back into a netlist —>
associated associated
Add the AW decoder —>
associated formatted
AW AW
i '
Wrap with the extra components E .
formatted

formatted

AW AW

Software at enrolment/activation time 48/51
o
Get the PUF reference response and store it

. -
Perform the reconciliation . .
r‘ [AW]r(*
. —_
Encrypt the AW and send it .

https://gitlab.com/SALWARE/salware_app

Software at enrolment/activation time 48/51
o
Get the PUF reference response and store it

. -
Perform the reconciliation . .
r([AW]r(*
. —_
Encrypt the AW and send it .

https://gitlab.com/SALWARE/salware_app
Associated publications:

[3) B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. HOST. 2017

[2 B. Colombier et al. “Hardware Demo: Complete Activation Scheme for IP Design
Protection”. FPL. 2017

[3 B. Colombier, L. Bossuet, and D. Hély. “A comprehensive hardware/software infrastructure
for IP cores design protection”. FPT. 2017

https://gitlab.com/SALWARE/salware_app

Conclusion and perspectives

Conclusion 49/51

Summary of contributions:
© Two methods of logic modifications for IP protection:

© Logic locking: lightweight and scalable to very large netlists,
© Centrality-based logic masking: better trade-off between
computational complexity and masking efficiency,

© First use of the CASCADE key reconciliation protocol with PUFs,
10x more lightweight than existing ECCs,

© Full integration and demonstrator.

Publications:
© 4 journals (2x IEEE TIFS, MICPRO, IET-CDT),
© 4 international conferences (2x ISVLSI, FCCM, FPT).

Research perspectives 50/51

Possible research perspectives:
© Fine-grained licensing approaches (evaluation, premium, etc),
© Security evaluation of hardware IP protections,
© Trusted computing: (un)trusted mode «— (un)locked IP core,

© Solutions for analog IP cores (25% of counterfeited ICs).

Industrial perspectives 51/51
Possible industrial perspectives:

French ANR Project

Hardware

© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © 1D,
© Royalties. © Key management. © Security.

algodene

Industrial perspectives 51/51
Possible industrial perspectives:

French ANR Project

Hardware

© Monetization, © Modified design flow, © Activation,
© Pay-per-use, © Database, © 1D,
© Royalties. © Key management. © Security.

algodone
— Questions ? —

