Optimizing Key Recovery in Classic McEliece:
Advanced Error Correction for Noisy Side-Channel
Measurements

Nicolas Vallet! ®, Pierre-Louis Cayrel' ®, Brice Colombier! ©,
Vlad-Florin Dragoi®?® ® and Vincent Grosso!

! Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire
Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
2 Faculty of Exact Sciences, Aurel Vlaicu University of Arad, Arad, Romania
3 LITIS, University of Rouen Normandie, Saint-Etienne du Rouvray, France

Abstract. Classic McEliece was one of the code-based Key Encapsulation Mechanism
finalists in the NIST post-quantum cryptography standardization process. Several
key-recovery side-channel attacks on the decapsulation algorithm have already been
published. However none of them discusses the feasibility and/or efficiency of the
attack in the case of noisy side-channel acquisitions. In this paper, we address this
issue by proposing two improvements on the recent key-recovery attack published
by Dragoi et al.. First, we introduce an error correction algorithm for the lists of
Hamming weights obtained by side-channel measurements, based on the assumption,
validated experimentally, that the error on a recovered Hamming weight is bounded
to +1. We then offer a comparison between two decoding efficiency metrics, the
theoretical minimal error correction capability and an empirical average correction
probability. We show that the minimal error correction capability, widely used for
linear codes, is not suitable for the (non-linear) code formed by the lists of Hamming
weights. Conversely, experimental results show that out of 1 million random erroneous
lists of 2t = 128 Hamming weights, only 2 could not be corrected by the proposed
algorithm. This shows that the probability of successfully decoding a list of erroneous
Hamming weights is very high, regardless of the error weight. In addition to this
algorithm, we describe how the secret Goppa polynomial g, recovered during the first
step of the attack, can be exploited to reduce both the time and space complexity of
recovering the secret permuted support L.

Keywords: Post-quantum cryptography - Code-based cryptography - Classic
McEliece - Side-channel attacks

1 Introduction

Since 2017, when the NIST call for PQC proposals was issued, a great deal of effort
has been expended in developing new post-quantum standards. In August 2024, four
algorithms have been selected:

e CRYSTALS-KYBER a solution based on structured lattices became the FIPS 203,
knwon as ML-KEM. [0ST24a]

E-mail: nicolas.vallet@univ-st-etienne.fr (Nicolas Vallet), pierre.louis.cayrel@univ-st-eti
enne. fr (Pierre-Louis Cayrel), b.colombier@univ-st-etienne.fr (Brice Colombier), vlad.dragoiQuav.ro
(Vlad-Florin Drégoi), vincent.grossoQuniv-st-etienne.fr (Vincent Grosso)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2025-09-25.

https://orcid.org/0009-0002-5282-7571
https://orcid.org/0000-0002-6708-868X
https://orcid.org/0000-0002-6028-3028
https://orcid.org/0000-0002-8673-9097
https://orcid.org/0000-0002-3874-7527
mailto:nicolas.vallet@univ-st-etienne.fr
mailto:pierre.louis.cayrel@univ-st-etienne.fr
mailto:pierre.louis.cayrel@univ-st-etienne.fr
mailto:b.colombier@univ-st-etienne.fr
mailto:vlad.dragoi@uav.ro
mailto:vincent.grosso@univ-st-etienne.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

e CRYSTALS-Dilithium, a digital signature based on structured lattices became FIPS
204 - ML-DSA. [0ST24b)]

e SPHINCS+, a conservative solution for digital signatures based on hash function
became FIPS 205 - SLH-DSA. [0ST24c¢]

o Falcon, a digital signature built on structured lattices will become FN-DSA. [PFH™22]

NIST wanted to have cryptosystems whose security is based on different hard problems.
The aim is to extend the study of other algorithms which are based on hard problems
from competing theories, error-correcting codes in this case. As such, three code-based
candidates were proposed for a fourth round of investigation: BIKE [ABBT22], Classic
McEliece [ABCT22] and HQC [AAB'22]. In March 2025 HQC was selected. Due to the
common features between BIKE and HQC, the two teams decided to merge and form
a single and strong group for HQC. Classic McFEliece was not selected at this stage, as
it is currently under review by the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC). Despite its exclusion from the
NIST competition, the scheme remains of significant interest due to its ongoing evaluation
by these international standardization bodies. Indeed, a joint technical committee was
created by these two organizations. As pointed out ISO/TEC expects to standardise the
key encapsulation mechanisms FrodoKEM [NAB*20] and Classic McEliece [ABCT22].
We notice that a significant factor in the ISO/IEC decision was the security of the two
aforementioned solutions, FrodoKEM and Classic McFEliece being more conservative than
their structured lattice-based analogue ML-KEM.

At this point in the process, particular attention is paid to the practical aspects,
especially implementation issues and vulnerability to physical attacks.

1.1 Side-channel attacks on the Classic McFEliece KEM

Like all KEM cryptosystems, Classic McEliece is composed of three main algorithms:

KeyGen (detailed description in Algorithm 3): the key generation algorithm that
selects a random permuted support £ composed of n elements of Fom and an
irreducible monic polynomial g of degree ¢. The pair (g, £) forms the secret key sk
that will be used to compute the private parity-check matrix H . Then, H .y is
reduced into its systematic form H ,up = (Lt |pk).

Encap (detailed description in Algorithm 4): a random error vector e € F} of
Hamming weight ¢ is generated and the ciphertext is computed as the product
ct=H pubeT. The session key K is computed by hashing e and ct.

Decap (detailed description in Algorithm 5): e is recovered from the ciphertext ct
with the knowledge of g and £. The session key K is then computed by hashing e
and ct.

An attack on the cryptosystem has the potential to recover the long-term secret, which
is represented by the variable H i, in the KeyGen and Decap algorithms. Such an attack
can be used to eavesdrop on any conversation that occurs either before or after the key
recovery.

Several key-recovery side-channel attacks on the NIST reference implementation of
Classic McFEliece have been presented with different ways to handle the classifier accuracy
in the attack and different leakage models.

Brinkmann et al. [BCM™25] describe a full key-recovery attack on the key generation
algorithm. More preciselly, they attack the Gaussian elimination step which allows them
to recover the columns of the private key Hpyiv.

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 3

Seck et al. [SCDT23] proposed a partial key-recovery attack on the Decapsulation
algorithm where they recover the Goppa polynomial g by exploiting the Hamming weight
of its coefficients.

Guo et al. [GJJ22] present a full key-recovery attack on the decapsulation algorithm.
Their solution requires particular chosen plaintexts.

Colombier et al. [DCVT25] propose a full key-recovery attack on the syndrome compu-
tation step in the decapsulation algorithm.

In Table 1 we summarise all attacks targeting the decapsulation step and the attacks
scenarios, as well as our contribution.

Table 1: Comparison of side-channel key-recovery attacks on the Decapsulation step in the
Classic McEliece KEM for noisy scenarios. The ChipWhisperer hardware setup [OC14]
was used for all articles.

Feature [GJJ22] [SCDT23] [DCVT25] This article
Target op. FFT o(x) load(g) Syndrome comput. Syndrome comput.
Noise — — - Hamming weight +1
Accuracy 100 % 100 % > 94.5% > 81 %2

Implem. Ref. & optim. Optimized Reference Reference

Hardware FPGA & ARM ARM ARM ARM

@ The accuracy in this article is computed in the £1 error model.

1.2 Contributions

In this paper we improve the attack proposed in [DCV™25] on several aspects presented
below. Algorithm 1 highlights the changes done for the proposed improved attack in red.

Algorithm 1 Overview of the improved attack presented in this article.

Input: A noisy side-channel trace of the execution of the Classic McEliece Decapsulation
Output: The private key sk = (g, £)

1: Estimate the Hamming weight of (o/g_Q(a))?Z)l Va € [0;mt — 1]

2: Correct the erroneous lists of Hamming weights > Subsection 4.3

3: Recover t pairs («, g(@))

4: Recover polynomial g from t pairs («, g(«)) via interpolation

5: Recover the first mt pairs (o, g(«)) from a reduced Hamming weight Vandermonde
distinguisher > Subsection 5.1

6: Construct Hprivg[:, [0; mt — 1]] using g and the first mt s

7: Recover Hpm,g = Hprivy[:, [0; mt — 1]] H pup . > Subsection 5.2

. _ Hov, [an“(%‘))
8: Recover the full permuted support £ = Hpoiv 0] (7 9 T(0y)

Error correction on the estimated Hamming weight lists using the Hamming
weight Vandermonde distinguisher Once the Hamming weights have been estimated
in [DCVT25], no error correction is made on the, potentially wrong, lists of Hamming
weights. Line 2 of Algorithm 1, uses the Hamming weight Vandermonde-like matrix
BV, = (Wt(aiﬁ))ie[[o;%]] for (o, B € F3 x F3,), with wt(a) the Hamming weight of the
element o € Fam, defined in [DCVT25]; and applies a new error correction algorithm on
the estimated Hamming weights. The efficiency of this new error correction algorithm is
then analysed.

4 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Reduction of the required number of the Vandermonde matrix columns using
the recovered Goppa polynomial In [DCV'25], due to the lack of error correction
in the estimated Hamming weights as well as the probability of collisions between the lists
of Hamming weights of several pairs (a, g(a)), the authors need more than mt columns
of the Vandermonde matrix to recover the permuted support £ with a high probability.
As only the product of the ciphertext ct with the mt first columns of the Vandermonde
matrix is required for the syndrome computation, the authors propose to shorten the
Vandermonde matrix as a countermeasure to the attack. We show in line 5 of Algorithm 2
how the Goppa polynomial g, recovered with ¢ pairs (a, g()), can be exploited to reduce
the size of the Hamming weight Vandermonde-like matrix SV . This size reduction allows
to recover the pairs (a,g(«)) corresponding to the first mt columns of the Vandermonde
matrix with high probability, therefore, making the countermeasure useless.

Organization This article is organized as follows: In Section 2, we introduce the
notations and the necessary background in coding theory and code-based cryptography.
We also introduce template attacks and a detailed presentation of the Classic McFEliece
KEM. In Section 3, we present the existing side-channel key recovery attacks on the Classic
McFEliece KEM and the way they deal with their classifier’s accuracy. In Section 4, we
first define the attacker model and the error model. We then present our error correction
algorithm and finally propose different metrics to characterize its correcting efficiency. In
Section 5, we describe how the Goppa polynomial g recovered during the attack can be
exploited to improve the recovery of the permuted support £. In Section 6, we show the
experimental results. Finally, in Section 7, we conclude this paper and discuss possible
future works.

Reproducibility To allow the reproducibility of our results, the source codes of the
proposed attack is available on the following GitLab repository: https://gitlab.univ-s
t-etienne.fr/sesam/cic-2025-2-optimizing-key-recovery-in-classic-mceliec
e-advanced-error-correction-for-noisy-side-channel-measurements

2 Background

2.1 Linear algebra, norms and distances

Some of the notations used in this article are extracted from the design document of
round-4 Classic McEliece [ABCT22].

Notations Lowercase letters are used to denote integers and intervals of integers are
denoted by [a;b]. Sets are denoted using caligraphic capital letters, e.g., A, and by #.A4
we denote the cardinality of the set A. An algebraic structure will be denoted by K, in
particular K = Z denotes the ring of integers and K = [F, denotes the finite field of order
q. Elements of the finite field F, are represented with lower Greek letters. Bold lowercase
letters are used to denote vectors, e.g. v, while bold uppercase letters are used for matrices.

Let v be a vector in row notation, its i*" coordinate is denoted by v; and the transpose
of the vector is denoted by v”. Let H be a matrix, we denote by h;; the coefficient of
H located at the i'" row and j* column. We denote a row or a column of H by HTi,]
and H{:, j] respectively. Also, a sub-matrix of H indexed by a set of rows Z and a set of
columns J is denoted by HI[Z, J].

Here, we will deal with objects defined over Fom, which is constructed as an extension
of Fy using an irreducible polynomial f(z) € Falz], with deg(f) = m, defined in the
specification of Classic McEliece [ABCT22], such that Fom = Fy/f(z) = Fa()\) where

https://gitlab.univ-st-etienne.fr/sesam/cic-2025-2-optimizing-key-recovery-in-classic-mceliece-advanced-error-correction-for-noisy-side-channel-measurements
https://gitlab.univ-st-etienne.fr/sesam/cic-2025-2-optimizing-key-recovery-in-classic-mceliece-advanced-error-correction-for-noisy-side-channel-measurements
https://gitlab.univ-st-etienne.fr/sesam/cic-2025-2-optimizing-key-recovery-in-classic-mceliece-advanced-error-correction-for-noisy-side-channel-measurements

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 5

A is the root of f(z). Also, one can rewrite a = a - (A%, AL, ..., A" 1T where a =
(g, .-+, m—1) € FT'. We call o the binary extension of «.

Definition 1 (Hamming weight). Let ¢ € K”. Its Hamming weight is wt(c) = #{i €
[0 = 1] [e # O}

For a € Fam we define its Hamming weight by wt(a) & wt(a), where a € (o)™ is
the binary extension of a.

Notice that for any ¢ € K™ we have wt(c) € Z, more exactly wt(c) € [0;n], while
wt(a) € [0;m] for any « € Fom.

Definition 2 (Hamming distance). Let (¢, ¢’) € (K")2. The Hamming distance between
c and ¢’ is defined as dy(¢, ¢') = wt(e — ¢).

For (o, B) € (Fam)? we define the Hamming distance between o and 3 by do(a, 3) def
do(aa IB)

Definition 3 (Infinite distance). Let (¢, ¢’) € (Z™)2. The infinite distance between ¢
and ¢’ is defined as d(c, ') = max;cjo;n—1] |ci — ¢;l-

In this article, we deal with objects called lists of Hamming weights, which are vectors
of the form & = (wt(aq),...,wt(ay,)) € Z™ where for all i € [1;n],a; € Fam. These
should not be confused with Hamming weight of vectors from the extension field, i.e.,
wt(ag,...,a,) € Z.

2.2 Code-based cryptography and the Classic McFEliece KEM

Classic McFEliece is a code-based cryptosystem that uses a Goppa code. The following
section presents the fundamental definitions that are essential for an understanding of the
Classic McFEliece algorithms.

Definition 4 (Code). A code ¥ of length n is a subset of Fj!. An element ¢ =
(coye - yCn—1) € € is called a codeword. If € is a vector subspace of dimensions k of
the vector space Fy, then ¢ is a linear code of length n and dimension k. Such a linear
code is called an [n, k], code.

Definition 5 (Parity-check matrix). Let € be a [n, k], linear code and H be an
(n — k) X n matrix such that
Vee € < He' =0.

Then H is a parity-check matrix of €.
Let v € IFy, then the syndrome of the vector v with respect to H is defined as the vector
s = HovT.

Definition 6 (Goppa Code). Let £ = {ag,...,anp—1} with a; € Fom and «a; # «; for
i # j. Let g(z) € Fylz], deg(g) = t such that Va € £, g(a) # 0. Then the set

n—1
Y(g9,L) = {c = (co,C1,...,Cn—1) €EFy: Z % =0 mod g(m)}
=0

T — O

is a Goppa code with parameters £ and g(z).
Also, let H be the ¢t X n matrix defined as

g Hewo) ... g Ham-1)
H= : : :
0‘6_19_1(0‘0) O‘fL_—llg_l(O‘n—l)

Then, its expansion over Fo, which is an mt x n matrix, is a parity-check matrix of ¢(g, £).

6 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Classic McEliece Classic McEliece [ABCT22] is a KEM relying on the Niederreter
cryptosystem based on a Goppa code. Table 2 shows the sets of parameters for Classic
McEliece as well as a smaller set of parameters, called toyeliece [BCM™T25], that is a
toy KEM useful for research purposes. We give a description of the KEM algorithms in
Appendix A.

Table 2: Parameter sets for toyeliece and Classic McEliece.
toyeliece51220 mceliece348864 mceliece460896
(m,n,t) (9, 512, 20) (12, 3488, 64) (13, 4608, 96)

mceliece6688128 mceliece6960119 mceliece8192128
(m,n,t) (13, 6688, 128) (13, 6960, 119) (13, 8192, 128)

2.3 Template attacks

Introduced in 2003 by Chari et al. [CRRO03] as “the strongest form of side-channel attack
possible in an information theoretic sense”, template attacks have become a popular type of
side-channel attack. They rely on the assumption that the relation between acquired power
consumption traces and secret data can be modeled as multivariate Gaussian distributions,
called templates, defined by a mean vector and a covariance matrix.

During the first stage of the attack, called the profiling stage, the attacker uses an
identical copy of the attacked device on which they have full control to run the target
cryptographic algorithm many times with different values for the secret parameter while
recording the power consumption. The power consumption traces are then used to
estimate the parameters (mean and covariance) of the corresponding multivariate Gaussian
distributions.

During the second stage, called the matching stage, the attacker records power con-
sumption traces from the attacked device and then uses the templates built previously to
associate each trace with its corresponding secret value.

3 Related works

3.1 Key-recovery side-channel attacks on Classic McFEliece

We focus on profiled key-recovery side-channel attacks on Classic McEliece and how
they handle the classifier’s inaccuracy. In particular message-recovery attacks, as well as
key-recovery attacks not relying on side-channel, are out of scope.

In [BCM™25], a key-recovery attack on the key generation algorithm is proposed. They
show how power consumption leakage during the Gaussian elimination step, where an
invertible matrix E is used to transform the binary matrix H' into the matrix H ,p, can
be used to recover the matrix E.

In [GJJ22], the authors proposed a chosen-ciphertext profiled attack on the decap-
sulation algorithm. They exploit a vulnerability in the additive FFT evaluation of the
error locator polynomial. For a given error-locator polynomial, the FFT behaves the same.
Therefore, side-channel analysis can be used to recover the error locator polynomial and
the secret support. To do so, they train a neural network as a classifier to associate the
power consumption during the FFT evaluation of an error locator polynomial of degree 1
(i.e. o(x) = (r — «;)) with the corresponding «;. Since there are 2™ «;, there are 2™
possibilities for the degree 1 error locator polynomial.

In [SCD™23], the proposed attack is also a profiled one on the decapsulation algorithm
but the ciphertexts used are random. In this article, the authors exploit a vulnerability
during the loading of the Goppa polynomial g which allows to recover the Hamming weight

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 7

of the coeflicients of the polynomial. They then find g by searching in the set of all monic
polynomial of degree t with corresponding coefficients Hamming weights until they find a
polynomial such that the Goppa code ¥4(g, £) is equivalent to the public code C. Finally,
they use the Support Splitting Algorithm [Sen00] to find the permutation £ of the secret
key.

In [DCV*25], the authors described a profiled attack using random ciphertexts on the
decoding algorithm. They exploit a vulnerability during the syndrome computation which
allows them to recover the Hamming weights of (aig’Q(a))j:)l VYo € L . They then show
how those lists of Hamming weights can be exploited to recover the corresponding pair
(a, g(a)). Once they recover t pairs among the n pairs, they use Lagrange interpolation
to recover the Goppa polynomial ¢g. Finally, they use mt recovered pairs («, g()), such
that the corresponding columns of the matrix H' are linearly independent, to recover the
parity-check matrix H, and therefore the rest of the permuted support £, from the public
key pk =T.

3.2 Dealing with inaccurate side-channel classifiers

In [BCM*25], the attack uses an algorithm that can correct bit-flip errors up to 7 ~ 0.4
in the recovered matrix E used in the Gaussian elimination step.

In [GJJ22], [SCD*23] and [DCV*25], the power consumption traces are acquired using
a ChipWhisperer [OC14], allowing a high accuracy for the classifier (100% for [GJJ22],
99.86% for [SCD 23] and 96.84% for [DCV*25] in the worst case).

Due to its high classifier accuracy, no considerations are made in [SCD23] about the
impact of the accuracy on the feasibility of the attack. In particular, no information is
given on the complexity to recover the Goppa polynomial if the Hamming weights of the
Goppa polynomial coefficients are wrongly recovered.

In [GJJ22], the authors consider the case of a threshold approach where instead of
choosing the o with the maximum likelihood given by their deep-learning model, they
pick a threshold 7 such that if the largest likelihood value is still below that threshold,
then they measure new power consumption traces of the decryption process using the
same error vector e; until the maximum likelihood outputted by the classifier is above the
threshold. However, no information is given about this threshold value or the number of
new power consumption traces needed with regard to the efficiency of the deep-learning
classifier. Moreover, no information is given on how the attack will perform if the classifier
makes a wrong guess on one, or more, «.

In [DCV™25], the authors shows how the accuracy affects the success probability of
the attack. Moreover, they suggest an algorithm proposed by Bernstein [Ber24] that
could be used to interpolate the polynomial g even if some recovered pairs (a, g(a)) are
wrong. In addition, since they need only mt + § pairs, out of the n used in the syndrome
computation, to recover the permuted support £, they propose to reduce the length of the
list of Hamming weight from 2t to d,,; < 2t — 1 chosen such that at least mt¢ + ¢ pairs
can be recovered. This reduction allows to reduce the probability to have an erroneous
Hamming weight in the list.

4 FError correction algorithm

We first introduce the attacker model followed by the error model. Then, we describe
our error correction algorithm and finally, we present the error correction capability and
the correction probability, two metrics for analyzing the efficiency of our error correction
algorithm.

8 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

4.1 Attacker model

Our main purpose is to improve the attack proposed in [DCVT25] by decreasing the
minimal accuracy required by the classifier as well as the number of pairs (o, g(a))
required. Hence, our attacker model will be almost identical to the one in [DCV*25] with
an improvement on the required accuracy. Indeed, while their attacker model requires the
Hamming weights outputted by the classifier to be correct with a probability of 0.94' with
unbounded error, we only require the Hamming weights outputted by our classifier to be in
the £1 interval around the correct value, thus bounded error. We show in Subsection 4.2
that this bounded error model holds for an accuracy higher than 0.81.

The attacker model that we use here was previously employed by [SCD*23], and
contrary to [GJJ22], no control over the ciphertext is required. It is based on the following
requirements.

1. A clone device running the reference implementation of Classic McFEliece is used
by the attacker with a complete control of the inputs while measuring the power
consumption.

2. Only one power trace of the syndrome computation of the reference implementation
of the Classic McFEliece decapsulation algorithm has been recorded by the attacker.

3. There is no control nor knowledge by the attacker of the input ciphertext used on
the attacked device.

4.2 FError model

We assume that an attacker can recover the Hamming weight of an intermediate value, for
example thanks to side-channel measurement of the data. However, the guessed values
can be incorrect, but the guessed Hamming weights are “close” to their actual value. By
close we mean that we recover the Hamming weight or the Hamming weight plus one or
the Hamming weight minus one.

In other words, let us denote by a an intermediate value and by wt(«a) its Hamming
weight, the predicted Hamming weight wt(c), then we have —1 < wt(a) —wt(a) < 1. Both
wt(a) and wt(a) are integers thus the error is in {—1,0,1}. For short we refer to this
assumption as the &1 error model. Notice that if wt(a) = m, the case where wt(a) = m+1
is not possible in our model. In the same way, if wt(a) = 0, the case where wt(a) = —1 is
not possible.

To find the accuracy where this error model is valid, we use the most common leakage
model, the Hamming weight plus Gaussian leakage model [CRR03, MMPS09, Riv09,
HRG14]. We consider a Gaussian leakage function with V, ~ N (i, 0?), where a € Fam,
V is the leakage view, N is the normal distribution with mean o = ¢ x wt(a) + po, with ¢
a constant and pg the mean for a = 0 € Fam and standard deviation o. Choudary showed
that the parameter o is the same for all a and we can assume pg = 0 [Chol4]. This model
leakage allows to have the formula for the accuracy presented in Equation 1.

accuracy(c, o) = erf <20‘3ﬂ> (1)

where erf is the Gauss error function. It is important to note that the accuracy depends
on £, therefore only that ratio is important rather than specific values for ¢ and o. In this
article, we will use the accuracy, deduced experimentally or estimated during simulations,

to compute the efficiency of our error correction algorithm, so the actual values of ¢ and o

1Such high accuracy can be obtained with low-noise dedicated platforms, such as the ChipWhis-
perer [OC14], but may be harder to reach for real-life devices.

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 9

are not relevant for the algorithm performance. We can then define the probability to have
an error outside the 1 error model as a function of the accuracy as shown in Equation 2.

Pr[le| > 1](¢c,0) =1 — erf < > = 1 — erf (3erf*(accuracy)) (2)

3c
20v/2

The probability that a vector e satisfies the +1 model equals

2t—1 2t—1
PrV i€ [0;2t — 1] |es] < 1] =] Prlles| < 1] = [(@ = Pr(le| > 1](c, 0))
=0 =0

— (1= Prle| > 1](c, 0))*
= (erf(3erf " (accuracy)))”

To simplify the notations, let £ be the probability that a vector e fits the +1 error
model. This allows us to deduce the accuracy as a function of £, more precisely, we have:

accuracy = erf (;erfl(&’lt)) . (3)

Since we are given n elements (via their associated lists of Hamming weight) on which
this model applies, and considering that our algorithm requires one to recover mt correct
elements, we can set the following inequality n¢ > mt. Indeed, the average number of
noisy Hamming weight lists for the &1 error model should be strictly greater than mt. The
number of lists, in the +1 model, follows a binomial distribution with pmf (?) (1—=&)n=igl.
Hence, the average number of lists in the +1 model equals n&. Table 3 illustrates the
different accuracy levels and number of valid lists for the +1 model for all the Classic
McFEliece parameter sets.

Table 3: Accuracy and average number of Hamming weight lists in the +1 model (n&) for
£€e€{1-1072,1-1073,1—10"*} for all Classic McEliece parameters

13 mceliece348864 mceliece460896 mceliece6688128 mceliece6960119 mceliece8192128

accuracy
0.9999 0.900372 0.905638 0.909193 0.908305 0.909193
0.9990 0.863789 0.871163 0.876131 0.874892 0.876131
0.9900 0.811925 0.822439 0.829500 0.827741 0.829500

né

0.9999 3488 4608 6687 6959 8191
0.9990 3485 4603 6681 6953 8184
0.9900 3453 4562 6621 6890 8110

4.3 Error correction algorithm

This part corresponds to line 2 of Algorithm 1 and constitutes the first improvement
of the attack presented in [DCV*125]. Once the potentially erroneous lists of Hamming
weights (Wt(o/ﬂ))i €[0:2t—1] have been recovered through a template attack as described in

[DCV*25], we use Algorithm 2 to correct those lists.
From here on we will use the following convention. Let x be a list of acquired,

2t—1 N N
o e B € Fy x Fg) |

be the set of all lists of Hamming weights contained in the Hamming weight Vandermonde
distinguisher. We can thus deduce: 3y € Uy, 4, 3r € ([-1;1])%", & = y + r. The objective
of the proposed algorithm is to recover y from x. Our solution, as well shall see in the

potentially erroneous, Hamming weights and U, ; = {(wt(o/ B))

10 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Algorithm 2 Error correction algorithm

Input: A Hamming weights list = (x;)?2," and the array Uy, ;

Output: y, € [0;m]* or (L, count)

L: Psors = @

2: count =0

3: domin = 2t + 1

4: for y € Uy, + do

5: if (doo(,y) =0) then > @ is correct
6: return y

7: else if (doo(x,y) = 1) then > doo filtering
8: 7Dsols = 7Dsols) {y}

9: if #Psp1s == 1 then > unique solution
10: return y, = Psors[0]
11: else
12: for y € Py do > selection among all the potential solutions
13: d =do(x,y) > dy filtering
14: if d < domin then

15: domin = d

16: Ys=Y

17: count =1

18: else if d == dg,uin then

19: count+ =1
20: if count == 1 then
21: return y,
22: else > multiple solutions
23: return (L, count)

next section, is the Maximum likelihood decoder under the +1 error model. Let us first
describe in details the algorithm.

We first consider, based on the £1 error model hypothesis Subsection 4.2, the set of
all the potentials solutions, denoted by Pses, which are all the lists of Hamming weights
y= (Wt(oﬂﬂ))?:)l with (e, 8) € (F3..)? such that max;eqo.0e—1] [Y; — @ = doo(y,) = 1.
From line 4 to line 8, the set of potential solutions of @ is created by computing, for every
Y € U, +, the infinite distance of « and y and including the y with such a distance equal
to 1. As long as the hypothesis is respected, we know for sure that the correct Hamming
weight list is included in that set. In the case where & = y + r has been acquired without
error (i.e. 7 = 0), then the corresponding y € U, ¢ will be found, and returned by the
algorithm, during this step as it is the only element of U, + with an infinite distance from
x equal to 0. Otherwise, we will exploit the Ps,s set to recover the correct y. Once that
set is formed, there are two possibilities :

#Psots = 1 Only one element y from the U, ; set fits the condition on the infinite distance.
Therefore, the algorithm outputs that element. It is important to notice that, as
long as the £1 error model hypothesis is respected, then the outputted element is
the correct one.

#Psois > 1 More than one element fit the condition on the infinite distance. Therefore,
other methods must be applied to discriminate all the elements of the potential
solutions set and find the one which is most likely to be the correct one.

The ideal case is #Pso;s = 1. We have run simulations on the toyeliece51220 and
mceliece348864 to verify how often we fall under such a case. We repeat a Monte Carlo

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 11

simulation, in which we compute the Pg,s set for a large number of lists of Hamming
weights randomly chosen in U,, ;, on which we add a random error vector (r; € {£1,0}).
The conclusion is that the probability of having #Ps,s = 1 is lower than 0.063. Therefore,
if we want to recover at least ¢ pairs («, g(«)) out of the first mt pairs, we need to add
another method to choose the best solution from the Py, set. If the first step was not
enough to recover the initial list of Hamming weight, we assume that, of all the elements
from the P15 set, the most likely to be correct is the one with the less erroneous coordinates
(i.e. the one where the error vector r has the lowest Hamming weight). Therefore the
Hamming distance is used. From line 12 to line 19, we compute, for each element y of
the Psos set, the Hamming distance do(y,) in order to find which element(s) have the
minimal distance as well as the number of elements with the minimal distance to y. Once
this second step has been applied, two outputs are possible:

Zero list This output means that at least two elements from the Py,;s set have the same
minimal Hamming distance from @x. In that case, the count variable allows to know
their numbers. We show experimentally in Subsection 6.2 that this happens with
low probability even for highly erroneous lists of Hamming weights.

Unique list In that case, only one element from the Py, set has the minimal Hamming
distance from x. We show experimentally in Subsection 6.2 that, even for errors with
higher Hamming weight, the outputted list is the correct one with high probability.

4.4 From leakage to communication model

We translate the leakage model into a communication model, following the same framework
as in [HRG14]. We define the input alphabet Y = {0,...,m} and output alphabet
X =1{0,...,m}. Hence, the communication channel is Z = (), X', Prz) where the stochastic
matrix of the channel is described in Equation 4. The parameter a that we consider here
is a fairly good approximation of the accuracy.

o loa g 0 0o 0 0
1—a l1—a
Prs=| s (4)
0 0 0 0 .. e o L=
0 0 0 0 .. 0 Lo Le

Notice that we have Prz(X =0|Y =0) =Prz(X =m|Y =m) = a+ 152 which is

greater than all the other cases (due to the boundaries of the Gaussian distributions in
Figure 1).

Theorem 1. Algorithm 2 is the Mazimum likelihood decoder for the Z channel.

Proof. Since, Z is memoryless the probability of receiving the € X?! given that y € Y%
was sent equals

Prz(x | y) = _]f[lPrZ(X =z, |Y =y). (5)

12 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Now based on the definition of the channel Z we have:

1+4+a
Prz(X =2 |Y =yi)=a-]l{wi:yiﬁyiE{lpwm*l}} + 9 l{Ii:yiyyiE{O;m}}

1—a 1—a
+ 2 ’ H{Ii:yifl,mio} + 2 ’ H{Ti:yi+1vyi7ém}

+ 0 Lyjg,—yi)>2}

. g ilTi=yi,y:7#0,m}

#{i‘wi:yivyie{o,m}}
Prz(ZB ‘ y) — 0#{i||yi—zi|22} . (14—@)

2
(1-a #{ilzi=yi—1,y:#0} 1—a #{ilzi=yi+1,yi#£m}
S\ 2 2
#J:c dU(mvy)
1 Y 1—
PrZ(:c ‘ y) — O#Ez,oo . (;) . a2t—do(m,y) . (5 a) .

where Eg oo = {i | deo(x,y) > 2}, Jpy = {i | i = y; € {0,m}} and 0° = 1.
Using the fact that 1 4+ a > 2a we obtain

Pry(zx | y) > 0#F2e . q2t—do(z.y) (1_Ta)d0(a:,y) ’ ©)

with equality when #J , = 0 or when a = 1/3. The maximum likelihood decoder for the
channel Z is an algorithm that receives a vector from X! and returns a vector y € Y? s.t.

Dur(y) = argmax,,cy2: Prz(z | y)

do(z,y) #Ja,
1—a\™ 1+a Y
_ #E2,00 | ,2t—do(z,
= argmax,cy2 077> - q o@y). (5 > . (50 > .

O

Remark 1. Any pair (x,y) satisfying doo(x,y) > 2 yields Prz(y |) = 0. For any pair
(z,y) satisfying doo(x,y) < 2 we have

Pra(e |y) 2 a2 (o)) g2 (1gaylew). G

Hence, for any a > 1/3 the ML decoder searches for y that minimizes dy(x, y), also known
as the closest vector w.r.t. the dy distance.

Remark 2. Given a received vector & € X" an ML decoder should first select the vectors
y € V! which satisfy do.(y,) = 0. Then it decodes by choosing the closest vector to x.
It is thus the closest vector to w.r.t. the Hamming distance while being inside the closed
ball around x, B(x,1)4__ .

Beyond the +1 error model We have shown that using d, and the Hamming distance
one can decode in the +1 model. However, one can definitely extend our channel model to
42 or even higher error models. The recipe is identical: extend the channel model Z and
compute the channel probabilities. By doing so, we can tweak Algorithm 2 by including
the distances corresponding to the new channel model.

4.5 FError correction capability

One possible way to characterize the efficiency of the error correction algorithm presented
in Subsection 4.3 is to determine its error correction capability denoted as cuin,, , which
is defined as the maximum number of coordinates of y that can be erroneous while still
being correctable for all y € U, +.

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 13

Notice that y can be recovered, using Algorithm 2, if and only if Vy' € Uy, \
{y},doo (¥, 2) <1 = do(y,x) < do(y’,x). From Property 1, one can deduce that all
y’ such that deo(y,¥y’) > 2 do not affect the recovery of y from x using Algorithm 2.
Let Peoltisions(y) be the set of all y’ € Uy, ;. \ {y} such that doo(y,y’) < 2, then one can
compute the maximum number of coordinates that can be erroneous while y can still be

ming,/ o do(y,y")—1 . :
recovered as { {y epc"“”’°g°(”” . If the Peoitisions(y) set is empty for a given

element y, then it means that y can always be recovered independently of the number of
erroneous coordinates.

Property 1. Let « be an erroneous list of Hamming weights such that 3y € U,,, ,,Ir €
([-1;1])%, 2 = y + r. Then we have Yy’ € U+ \ {¥},deo(y,y’) > 2 = doo (v,) > 1.

Proof. Let be an erroneous list of Hamming weights such that 3y € U, ., 3Ir €
([-11)%, z =y + 7, and Y’ € Uyt \ {y} such that doo(y', y +7) < 1 then

doo (Y,) + doo (2, Y)
oo (Y, y+r)+d (y+ry)
doo (Y, y+r)+zg[13x 7]

3

doo(Y',y) <

INIA

IN

2

So, by contraposition, we have do (¥, y) > 2 = doo(y/, @) > 1. O

The error correction capability of the algorithm is computed using Algorithm 6

ming, s . d (y,y')*l
{¥' €Peottisions (¥)} 40
that computes [2

for all y € Uy, and returns Crning, 4

. ming, s L do(y,y')fl .
mingey,, , { Lo et we o1 J Table 4 shows the result for the security pa-

rameter sets toyeliece51220 and mceliece348864.

Table 4: Error correction capability for the toyeliece51220 and mceliece348864 sets of
security parameters.

Parameter set toyeliece mceliece
51220 348864

Cminmt 4 5
it 10% 3,9%

For toyeliece51220, where the lists are composed of 2¢t = 40 Hamming weights, the
minimal error correction capability cmin,, , is 4. It means that, for every y € U,, + we can
correct up to 4 erroneous Hamming weights. Concerning mceliece348864 where the lists are
composed of 128 Hamming weights, it is possible to correct up to 5 erroneous Hamming
weights.

4.6 Noisy Hamming weights lists correction probability

Although it allows to obtain a lower bound in the number of coordinates that can be
erroneous while still being able to correct, the error correction capability cuyin,, , presented
in Subsection 4.5 suffers many drawbacks. In particular, the error correction capability
corresponds to the global minimum, i.e., for all y € U, ;. Indeed, as the code formed by
the elements y € U, is non-linear, some y can have more erroneous coordinates than the
value of the error correction capability cmin,, , While still being correctable. Moreover, the

14 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

value ¢min,, , gives us no information on the error positions that makes the erroneous lists
of Hamming weights no longer correctable.

To get a more precise characterisation of the efficiency of Algorithm 2, we first define,
for y € Uy, the correction probability of y, called Preo.(y), as the probability that,
given a random error vector r € ([—1;1])?%, y can be recovered from the erroneous list
of Hamming weights @ = y + r using Algorithm 2. As the probability on the Hamming
weight of the error is not uniform, an error with a low Hamming weight is more likely
to happen than an error with a high Hamming weight. That probability is equal to
Pr(wt(r) = k) = (3)(1 — a)*a®~* for k € [0;2t], where a = Pr(y; = 2;|%:)ic[o.2¢—1] i the
probability, considered independent of the coordinates, of the classifier to correctly recover
the Hamming weight of the i*" coordinate, as proved by Lemma 1.

Lemma 1. For any k € [0;2¢] we have:

Pr(wt(r) = k) = (th> (1 —a)ka?F. (8)

where a = Pr(y; = x;|7:);c[0;2¢—1] 15 the probability, considered independent of the coordi-
nates, of the classifier to correctly recover the Hamming weight.

Proof.

Pr(wt(r) = k) = py) (2:) (1 ;a)i (2tj— z) <1 ;a>i (i)

Remark 3. Straightforward we notice that on average the Hamming weight is concentrated
around the value (1 — a)2t.

To take that non-uniformity into account in our error correction probability, we consider
the conditional probability Pree.(y|wt(r)) as the correction probability of y for a given
Hamming weight of the error vector r. Using the result from Subsection 4.5, we know
that:

VY € Upt, V1 € ([-1;1])*, Vi € [0; cmin,, | Pr(ylwt(r) = i) = 1.

The value Preo,(y) of the correction probability of a given list of Hamming weights
Y € Uy ¢ is given in Equation 9.

Preos(y) = Y4t Pr(ylwi(r) = k) Pr(wi(r) = k)

= > (2,f>(1—a)’“a2t—’“+ i (2];)(1—@)%2*’“ Pr(y|wt(r) = k))

k=0 k=cmin,, ;+1

In addition, we define, for a given set of parameters of Classic McEliece, the correction
probability Preer,, , of Algorithm 2 as the average correction probability of y € U, ;. The
value of Preopr, , is given in Equation 10.

ZyGl/lyn . Preore (y)
#HUm ¢

We estimate Preopr,, , experimentally in Subsection 6.2.

(10)

Prcorrm,t -

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 15

5 Exploitation of the recovered Goppa polynomial g

This part corresponds to line 5 of Algorithm 1. In [DCV*25], the authors recovers all the
required mt + & pairs (o, g(«)) at once without exploiting the Goppa polynomial g. In this
section, we detail how to exploit the recovered polynomial to decrease both the number of
required pairs from mt 4 § random pairs to the first mt¢ pairs and how to ease the recovery
of the full permuted support £ using those first mt pairs.

5.1 Recovery of the first mt pairs

Once the Goppa polynomial g has been recovered from ¢ pairs («, g(«)), one no longer
needs to look in the complete Hamming weight Vandermonde-like matrix 5V, to recover
a pair (a,g(a)). Indeed, as g is known, there is, for each o € Fam, only one possible
list of Hamming weights corresponding to 8 = g(«). Therefore, we can extract a new
Vandermonde-like matrix g(a)V, = (Wt(aig(a)))ieﬂo;2t_1]] for o € F5,. from the initial
one. This allow to decrease the time required to recover the remaining pairs (¢, g(@)) and
the number of collisions inside the Vandermonde-like matrix.

For the parameter sets of Classic McFEliece where m = 13, using Proposition 1, we
know that, assuming that the lists of Hamming weights of the first mt¢ columns are correct,
or have been corrected successfully, we can recover the first mt pairs (o, g(«)) from the
matrix g(a)V, as they will not be any list of Hamming weights that belongs to several
a’s.

For the parameter set mceliece348864 and toyeliece51220, using Algorithm 7 shows that
it is still possible, while highly unlikely, to have lists of Hamming weights inside the matrix
g(a@)V, that belongs to several o’s. In such case, all the potential pairs are saved for the
given column and we show in Subsection 5.2 how to exploit the public key T to recover
the correct a.

Proposition 1. For the field proposed in Classic McEliece where m = 13, it holds:

V(OZ,O/) S (;13)2,V(5,ﬂ/) € (;13)2,
(Wt(alﬂ))ie[[o;%—l]] = (Wt(a”ﬂ/))ie[[o;zt—l]] = a=a.

Proof. We run Algorithm 7 that verifies by exhaustive search that there is no collision
between two lists of Hamming weights that belongs to different a’s. Using the U, ; from
the mceliece460896 parameter set, with m = 13 and ¢t = 96, the exhaustive search returns
an empty list, which means that there is no list of Hamming weights y € U, such that
there are several pairs (o, 3) € (F515)? such that (Wt(aiﬁ))ie[[o;%—l]] = y. This result holds
for other Classic McEliece parameter sets where m = 13 as they have a higher value for
t. O

5.2 Improved full recovery of the private permuted support £

In [DCV*25], to recover the full permuted support £, they first need to partially compute
the matrix H', which is the binary extension of the Vandermonde-like matrix H. More
precisely, they must find mt¢ columns of H’' that are linearly independent. On the
assumption that H’ is random, the authors shows that, if we are to draw mt columns
at random, then the probability for them to be linearly independent is only equal to
H;itl (1 — 2*2'), which gives a probability of approximately 29% for every sets of parameters
of Classic McEliece. To increase that probability, they propose to recover § more columns,
so that among those mt 4+ § columns, mt are linearly independent with a high enough
probability.

16 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

However, recall that H,up, = (In|T) = EH' with E € F52*™ the invertible matrix
that corresponds to the Gaussian elimination step of the KeyGen algorithm. Let Z, =
[0; mt — 1] and Z; = [mt;n — 1], then:

EH' = (EH'[:,T)||EH'[:,T]) = (Iu|T)
=EH'[:,Ty] = It and EH'[;, ;] =T
=E '=H'[;,Ty) and E™'T = H'[.,7,]T = H'[:,T}].

Therefore, with the first mt columns (i.e. the first m¢ pairs («, g(«))), we can compute the
H'[:,75] matrix and multiply it with public key T to get the matrix H'[:,Z;]. We then
divide its second row by its first row to find the rest of the permuted support L.

If the lists of Hamming weights of one or more columns of H'[:,Z;] matches several
pairs (a, g()), we find the permuted support £ by computing H'[:,Zo] with all possible
values for the first mt elements until we find the correct permuted support L.

6 Experimental results

6.1 Template attack

In this section, we show the result of the profiling stage of a template attack to support
the £1 error model hypothesis made in Subsection 4.2. This attack was performed
using a setup identical to [DCV'25]. We use an STM32F303RCT6 microcontroller
programmed with the syndrome computation function used in the reference implementation
of the decapsulation algorithm that was compiled with arm-none-eabi-gcc version 9.2.1
using the -0s optimisation. We carry out the attack with both toyeliece51220 and
mceliece348864 security parameter sets. For the side-channel acquisitions, we use the
open-source ChipWhisperer platform developed by NewAE [OC14]. We built two sets of
templates, one for the leakage on the Hamming weights of g~2(a) composed of 1000 x n
traces and one for the leakages on the Hamming weights of a’g=2(«a), i € [1;2t — 1]
composed of 1000 x n x 2t traces. We then apply a dimensionality-reduction method, the
Linear Discriminant Analysis [SA08], and use the first component for the templates.

Resulting templates for the toyeliece51220 parameter set are shown in Figure 1. As one
can see, the Gaussian distributions are overlapping, therefore validating the 1 error model
hypothesis stated in Subsection 4.2. Similar overlapping of the Gaussian distributions can
be observed for the mceliece348864 parameter set.

Results of the matching phase are shown in Table 5. As we can see, the probability for the
error to be strictly superior to 1 is equal to zero, for both toyeliece51220 and mceliece348864,
which confirms our +1 error model. Moreover, although there is a difference between
Pr(yo = xo|zo) and Pr(y; = 4|;)icq;2¢—1], we consider, to simplify the computation of
Pr(wt(r) = k), that Pr(yo = xo|zo) = Pr(y; = il@i)icp26-1]-

Table 5: Hamming weight recovery probabilities of the template distinguishers.

Parameter set toyelieceb1220 mceliece348864
Pr(yo = xo | xo) 0.9943 0.9941
Pr(|lyo — zo| = 1| zo) 0.0057 0.0059
Pr(lyo — ol > 1| o) 0 0

Pr(yz =x; ‘ xi)ie[[l;Qt—l]] 0.9713 0.9685
Pr(ly; — =4l = 1| 24)ieqi;2e-1] 0.0286 0.0315
Pr(ly; — il > 1| i)icqi2e-—1] 0 0

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 17

o o
& ~
1 1

Probability
=)
o
1

0.1 4
0.0
T T T T T T T
—30 —20 —10 0 10 20 30
o« Power consumption
— Wt =] =—— wt =2 wt=3 wt=4=—— wt=5
— Wt =6 = wt=17 wt= 8= wt=29
(a) Hamming weight Gaussian templates for wt(g™2(a))
0.3
£
E 0.2+
3
Q
2
& 0.1 A
0.0 A

—30 —20 —10 0 10 20 30
o Power consumption

wt=3
—_—Wwt=6—— wt=17 wt=8—— wt=9

—_—wt=0=—— wt=1=—— wt=2

(b) Hamming weight Gaussian templates for wt(a’g™?(c)), i € [1;2t — 1]

Figure 1: Visualization of the Hamming weight Gaussian templates for the toyeliece51220
security parameters set, validating the £1 error model experimentally.

6.2 Noisy Hamming weights lists correction probability

As already described in Subsection 4.6, given a set of parameters of Classic McFEliece, the
exact computation of the correction probability Preorr,, , requires too much computation.
Therefore, we propose in this part an experimental estimation of its value. To do so,
we use the Monte Carlo method, with 1000000 correction simulations, to approximate
the conditional correction probability Preorr,, ,(Wt(r) = k), defined in Equation 11, for
k € 0; 2t] for the toyeliece51220 and the mceliece348864 sets of parameter.

ZyGMm,t Prcorr(y)

Prcorrm ¢
' #um,t
Y yctin s Soneo Preon (ylwt(r) = k) Pr(wt(r) = k)
#um,t ()
2t Preom (ylwt(r) = k 11
_ Z YEUm ¢ (‘ ()) Pr(wt('r) _ k‘)
k=0 #um,t

= Preom,, , (wt(r) = k) Pr(wt(r) = k)
k=0

The blue line on Figure 2 shows the approximation of the conditional correction
probability Preor,, , (wt(r)) for toyeliece51220. One can see that the probability is always
superior to 99.80% independently of the error’s Hamming weight. Moreover, an interesting

18 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

1.0000

T
w

0.9998
0.9996
0.9994

0.9992 A

Probability

0.9990
0.9988

T
o
Average number of candidates

=

A V.4
T T T T T T T T

0 Conin 10 15 20 22 25 30 35 2t
wt(r)

—— Conditional correction probability Peor(wt(7)) using our error correction algorithm
—— Conditional correction probability Peorr(wt(7)) using the Hamming distance dg

—— Average number of candidates after do filtering

Figure 2: Experimental computation using different distances for error correction for
toyeliece51220.

result to notice is that Preorr,, ,(wt(r)) decreases with the increase of the Hamming weight
of r up to a given value, which is close to t, and then it starts to increase again for higher
values of the Hamming weight of r. Similar results can be observed on the mceliece343864
set of security parameters where the conditional correction probability starts at 1 for
wt(7) = 0, then reaches its minimum of 0.999998 for wt(r) = 66 ~ t and then increases
again. This result can be explained by looking at the behavior of the infinite distance and
the Hamming distance separately.

The green line on Figure 2 shows the average decoding probability when only the
Hamming distance dy is used for correction (i.e. Peoitisions(y) = Um VY € Upm) while
the red line corresponds to the average number of potential collisions obtained while
approximating Preorr,, , (Wt(r)) using the Monte Carlo method. As one can see, when the
Hamming weight of the error vector is low, the Hamming distance is enough to correct
the erroneous list of Hamming weights while the average number of potential solutions
obtained with the d, distance is between 2 and 3, therefore, the d, can not be used
alone to correct efficiently. However, when the Hamming weight of the error vector is
higher than 8, the Hamming distance d falls drastically and can no longer be used alone
to correct efficiently erroneous lists of Hamming weights.

The slight drop in the conditional correction probability of our algorithm is caused
by the drastic fall of the Hamming distance starting from wt(r) = 8 while the average
number of candidates with distance d, is still superior to 1.

We also approximate the conditional correction probability Preor,, , (Wt(r) = k), for
k € [0;2t], for the mceliece348864 set of parameter, using the Monte Carlo method
with 1000000 correction simulations. The obtained conditional correction probability is
better than for the toyeliece51220 set of parameter. Indeed, for the mceliece348864 set of
parameter, the conditional correction probability is equal to 100% for a Hamming weight
of the error lower than 52 and higher than 85. Moreover, in the worst case, which happens
when wt(r) = 66, only two lists of Hamming weights could not be corrected, as opposed
to 137 for the worst case of toyeliece51220. That better correction is explained by two
reasons: there are more coordinates for the lists of Hamming weights of mceliece348864
and the Hamming weights have a wider range of possible values. Those two reasons allow
for a better do, filtering, the average number of potential collisions for wt(r) = ¢ is equal
to 1.0068 for toyeliece51220 and 1.000003 for mceliece348864, and so, a better conditional
correction probability.

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 19

6.3 Algorithm performance

Going from success rate to timing and memory requirements, the performance of our
algorithm will be analyzed in this part. Let us first see what happens in the case of noisy
Hamming lists that are not included in the £1 error model.

6.3.1 Detecting larger errors

The proposed method presents a particularly interesting feature, namely, it detects errors
that are outside the +1 model. Simulations show that for Hamming weight list that do
not fit in the £1 error model, the majority of the noisy vectors that have at least one
component e; satisfying |e;| > 2 can be detected. Indeed, for such cases we have observed
empirically that the majority of the lists & give Pyos = . In Table 6 we quantify the
probability that a list of erroneous Hamming weight lies in the +1 model, in other words
we compute the value £, and this for an accuracy of 0.81. Notice that the simulations align
with our theoretical estimations from Table 3. In addition, we select from our samples
all the vectors that are outside the +1 model and apply Algorithm 2. If, for a given list
x, the set Pyyrs is empty, then we deduce that such errors were detected by our method.
The proportion of detectable lists is extremely large, as we can see from Table 6. We do
believe that such a capacity of detecting and excluding lists that are outside the 1 model
comes from the value of the accuracy and the block-code (defined by V') properties.

Table 6: Proportion of detectable (x with Psys = ()) erroneous lists of Hamming weight
outside the +1 error model for accuracy = 0.81

Parameter set toyeliece mceliece mceliece
51220 348864 460896

¢ (simulation) 0.9966 0.9892 0.9840

Proportion of detectable x 0.9251 0.9987 1

6.3.2 Success rate

In this article, we propose a faster algorithmic way to recover the full permuted support £
if we are able to recover the first mt pairs (o, g(a)). Here we consider the success rate in
the case where the error correction algorithm allows to recover mt + 0 pairs («, g(a)) and
then use the algorithmic methods proposed in [DCV™*25].

For an accuracy greater than or equal to 0.81, we reach a 100 % success rate, as long
as we can detect all Hamming weight lists that are outside the +1 model. To determine
how many columns one needs to sample in order to have at least mt 4+ d decodable, we
define the following sampling process.

Let &n be the number of columns that are decodable, and (1 — £)n the number of
column that are not decodable but detectable by Algorithm 2. Sampling k(coh)mms from
()

- , where

a total of n, gives the hypergeometric distribution, i.e., Pr(X = z) =

X is the random variable counting how many columns are detectable out of]C k. Hence, we
search a value for k such that Pr(X > mt) is reasonably high.

Notice that for all Classic McEliece parameters, less than 6 = 30 suffices to obtain the
required number of decodable elements, as shown in Table 7.

Remark 4. Under the hypothesis that Algorithm 2 detects all non-decodable lists one
could decrease the accuracy as low as accuracy > %‘*‘5 which is way smaller than the
0.81 accuracy threshold. The only issue is that the accuracy is related to the proportion of
non-decodable and non-detectable lists.

20 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Table 7: Success rate (Pr(X > mt)) as a function of the number of sampled columns
k=mt+ 6 for £ = 0.99 or equivalently accuracy = 0.81

I k=mt+6 | Pr(X >mt)

| 6=15 [6=2 [6=2 6=

mceliece348864 783 0.998147 788 0.999998 793 1.000000 798 1.000000
mceliece460896 1263 | 0.832299 1268 | 0.993809 1273 | 0.999967 1278 | 1.000000
mceliece6688128 1679 | 0.361957 1684 | 0.847677 1689 | 0.990324 1694 | 0.999846
mceliece6960119 1562 | 0.486351 1567 | 0.910721 1572 | 0.996008 1577 | 0.999954
mceliece8192128 1679 | 0.368679 1684 | 0.841757 1689 | 0.988176 1694 | 0.999741

Although small, when taken into account, the proportion of non-detectable lists has a
huge impact on the success rate. Indeed, taking into account for this proportion changes our
probability distribution into a multivariate hypergeometric, Pr(X; = z1, Xo = 29, X3 =

(En) ((1—£)Vn) ((1—5)(1—V)n)
.1‘3) — 71 x2 — z3

(wl +"L‘2+.’K3)
X5 the number of column detectable and non-decodable, and X3 columns that are non-
detectable, non-decodable. Obviously, when v = 1, in other words all non-decodable are
detectable, this brings us back to the hypergeometric distribution.

The success rate becomes now the probability that X; > mt and X3 = 0 which gives

) (2

PI‘(Xl Z mt,Xg = O) = Z Z %
x2 T12mt <I1+CL‘2)

parameter v decreases. Even in the case of a single non-detectable non-decodable column,

there is already an upper bound for the accuracy at 0.772 for the first parameter set, and
even lower for the rest of the parameters. Nevertheless, remember that we can use the
knowledge of g in order to improve the success of the proposed attack. Hence, we are
required to retrieve a considerably smaller quantity of correct Hamming weight lists, more
precisely, t.

, where X is the number of columns that are decodable,

. The success rate drops down as the

Table 8: Success rate (Pr(X; > t, X3 = 0)) as a function of the number of sampled columns
k=t+9 for £ =0.99 and v = 0.97

I k=t+5 | Pr(X; >t,X3=0)
| 6=1| | 6=9 | | 6=11| \
71 0.979584 73 0.979070 5 0.978498

| 6 =13 |
77 0.977924

mceliece348864

mceliece460896
mceliece6688128
mceliece6960119
mceliece8192128

109 1.000000
141 0.978917
132 1.000000
141 0.982787

103 | 0.999065 105 | 0.999963 107 0.999999
135 | 0.974624 137 | 0.979152 139 0.979199
126 | 0.996411 128 | 0.999777 130 0.999990
135 | 0.978197 137 | 0.982896 139 0.983013

6.3.3 Time and memory requirements

Concerning the time complexity, the longest step of Algorithm 2 is the do, filtering (line 4
to line 8). The Psys set is computed by calculating the infinite distance between the
erroneous list and every y € U, 4, this requires 22™ comparisons of lists of 2¢ Hamming
weights. Assuming m = O(log, n), the time complexity of the algorithm is thus O(n? x t).

Based on Figure 2, we see that the highest number of potential solutions appears when
the Hamming weight of the error is equal to zero. This implies a longer running time for
our algorithm. Therefore, we choose to measure the running time for this worst case. The
average times for decoding a Hamming weight list, as well as the full permuted support,
are given in Table 9. For the toyeliece51220, mceliece348864 and the mceliece460896 set of
parameters, the experiments were ran on a Ubuntu laptop with an Intel i5 processor and

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 21

64 GB of RAM. However, for the other set of parameters, due to memory limitations, the
experiments were ran on a cluster with an Intel Xeon Gold 6444Y and 128 GB of RAM.

Table 9: Average correction time for the lists of Hamming weights for different set of
Classic McFEliece parameters.

Parameter sot toyeliece mceliece mceliece mceliece mceliece mceliece
ramerer 51220 348864 460806 6688128 6960119 8192128
Single list 1.3ms 74.8 ms 319 ms 521 ms 464 ms 480 ms

Full permuted

666ms 4min21s 24min 30s 58 min 54 min 1h 6 min
support L

We can note that for all different m, our algorithm finishes the correction of a single
list of Hamming weights in less than 1 second, making the full attack really efficient in
terms of time, with a full permuted support recovery in around 1 hour for the largest set
of parameters mceliece8192128.

Concerning the memory requirements, both the list of Hamming weights being corrected
and the set of all lists of Hamming weights 4, ; must be loaded in memory. For all Classic
MecFEliece parameter, the Hamming weight value is encoded on one byte. The memory
usage is therefore approximately equals to ((2™ — 1)? + 1) x 2t bytes.

7 Conclusion

In this article, we study the robustness of side-channel attacks on Classic McFEliece in the
presence of side-channel estimation errors. We present a simple yet efficient algorithm that
allows us to recover a list of Hamming weights from a list of erroneous Hamming weights,
where the error is of at most +1 on each Hamming weight, with high probability allowing
us to recover the field elements used. We require only ¢ out of n values (or only the mt) or
slightly more if we want to cover the recovery failure and interpolate the secret polynomial
g, which is the first element of the private key. The error detection can be done by checking
the degree of the polynomial. Alternatively, the interpolation with errors method [Ber24]
can be used to recover the polynomial from the erroneous evaluation points. The knowledge
of g allows us to project the 3-dimensional Hamming weight Vandermonde-like matrix
BV, into a 2-dimensional one by fixing § = g(a). We use this additional knowledge to
recover the mt first columns of the parity check matrix. Since these columns are invertible
by construction, this allows us to reduce the number of columns to recover in the side
channel attack, and remove the § margin parameter. The effectiveness of the proposed
attack path is demonstrated through various experiments. Our attack shows that the
countermeasure proposed in [DCV'25], which consists in shortening the Vandermonde
matrix computation, is not a valid approach.

Future works can improve the effectiveness of the search in the Hamming weight
Vandermonde-like matrix in terms of efficiency. Our current algorithm has a complexity of
O(n? x t). Perhaps using list decoding for sublists of Hamming weights and performing the
intersection of these lists can lead to an efficient unique decoding algorithm. The +1 error
model we use seems adapted to the side-channel context, where it is more likely to have
an error value close to the actual value, but a natural extension is to consider larger errors.
The evaluation of the second algorithmic countermeasure of [DCV™25], which proposes to
build the extension Fom with different polynomials f, could be interesting to evaluate in
our scenario. Indeed, they found, for m = 6 and m = §, that the polynomial f chosen to
build the extension changes the lists of Hamming weights inside the matrix SV, as well
as the number of unique lists and therefore the efficiency in recovering each pair («, g(a))

from its lists of Hamming weights (Wt(o‘ig(o‘)))ie[[o;th]]' This change is likely to affect

22 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

the correction properties of the error correction algorithm presented in this article as it
will change the distances, both d, and dg, between the lists of 5V . It may also affect
the efficiency of the Goppa polynomial g exploitation by making the recovery of the first
mt pairs more difficult.

Acknowledgements

This work received funding from the France 2030 program, managed by the French National
Research Agency under grant agreement No. ANR-22-PETQ-0008 PQ-TLS and funding
from the Aurel Vlaicu University of Arad through the research grant UAV-IRG-1-2025-12.

References

[AAB*22] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert,
and Pascal Veron. HQC. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/pos
t-quantum-cryptography/round-4-submissions.

[ABB*22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier,
Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh, and Jan
Richter-Brokmann. BIKE. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/pos
t-quantum-cryptography/round-4-submissions.

[ABC*22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Nieder-
hagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson,
and Wen Wang. Classic McEliece. Technical report, National Institute of
Standards and Technology, 2022. available at https://csrc.nist.gov/proj
ects/post-quantum-cryptography/round-4-submissions.

[BCM*25] Marcus Brinkmann, Chitchanok Chuengsatiansup, Alexander May, Julian
Nowakowski, and Yuval Yarom. Leaky McEliece: Secret key recovery from
highly erroneous side-channel information. JACR TCHES, 2025(2):94-125,
March 2025. URL: https://tches.iacr.org/index.php/TCHES/article/v
iew/12043, doi:10.46586/tches.v2025.12.94-125.

[Ber24] Daniel J. Bernstein. Understanding binary-Goppa decoding. TACR Communi-
cations in Cryptology, 1(1), 2024. doi:10.62056/angy4fe-3.

[Chol4] Omar-Salim Choudary. Efficient multivariate statistical techniques for extract-
ing secrets from electronic devices. PhD thesis, University of Cambridge, UK,
2014. URL: https://ethos.bl.uk/0OrderDetails.do?uin=uk.bl.ethos.70
8342.

[CRRO3] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 13-28. Springer, Berlin, Heidelberg, August 2003.
doi:10.1007/3-540-36400-5_3.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://tches.iacr.org/index.php/TCHES/article/view/12043
https://tches.iacr.org/index.php/TCHES/article/view/12043
https://doi.org/10.46586/tches.v2025.i2.94-125
https://doi.org/10.62056/angy4fe-3
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708342
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708342
https://doi.org/10.1007/3-540-36400-5_3

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 23

[DCV+25]

[GJJ22]

[HRG14]

[LDW94]

[McE78]

[MMPS09]

[NAB*20]

[Nie86)]

[0C14]

[0ST24a]

[0ST24b)

[0ST24c¢]

Vlad-Florin Dragoi, Brice Colombier, Nicolas Vallet, Pierre-Louis Cayrel,
and Vincent Grosso. Full key-recovery cubic-time template attack on classic
McEliece decapsulation. JACR TCHES, 2025(1):367-391, 2025. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/11933, doi:10.46586
/tches.v2025.i1.367-391.

Qian Guo, Andreas Johansson, and Thomas Johansson. A key-recovery
side-channel attack on classic McEliece implementations. [ACR TCHES,
2022(4):800-827, 2022. doi:10.46586/tches.v2022.14.800-827.

Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough -
deriving optimal distinguishers from communication theory. In Lejla Batina
and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages
55-74. Springer, Berlin, Heidelberg, September 2014. doi:10.1007/978-3-6
62-44709-3_4.

Yuanxing Li, Robert H. Deng, and Xinmei Wang. On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems. IEFE Trans. Inf.
Theory, 40(1):271-273, 1994. doi:10.1109/18.272496.

Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
The deep space network progress report 42-44, Jet Propulsion Laboratory,
California Institute of Technology, January/February 1978. https://ipnpr.
jpl.nasa.gov/progress_report2/42-44/44N.PDF.

Amir Moradi, Nima Mousavi, Christof Paar, and Mahmoud Salmasizadeh. A
comparative study of mutual information analysis under a Gaussian assumption.
In Heung Youl Youm and Moti Yung, editors, WISA 09, volume 5932 of LNCS,
pages 193—-205. Springer, Berlin, Heidelberg, August 2009. doi:10.1007/97
8-3-642-10838-9_15.

Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher
Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Technical
report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-q
uantum-cryptography-standardization/round-3-submissions.

H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159-166, 1986.

Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff, editor,
COSADFE 2014, volume 8622 of LNCS, pages 243-260. Springer, Cham, April
2014. doi:10.1007/978-3-319-10175-0_17.

National Institute of Standards and Technology. FIPS203 module-lattice-based
key-encapsulation mechanism standard. https://nvlpubs.nist.gov/nistp
ubs/FIPS/NIST.FIPS.203.pdf, Aug 2024. Standard.

National Institute of Standards and Technology. FIPS204 module-lattice-based
digital signature standard. https://nvlpubs.nist.gov/nistpubs/FIPS/NIS
T.FIPS.204.pdf, Aug 2024. Standard.

National Institute of Standards and Technology. FIPS205 stateless hash-based
digital signature standard. https://nvlpubs.nist.gov/nistpubs/FIPS/NIS
T.FIPS.205.pdf, Aug 2024. Standard.

https://tches.iacr.org/index.php/TCHES/article/view/11933
https://tches.iacr.org/index.php/TCHES/article/view/11933
https://doi.org/10.46586/tches.v2025.i1.367-391
https://doi.org/10.46586/tches.v2025.i1.367-391
https://doi.org/10.46586/tches.v2022.i4.800-827
https://doi.org/10.1007/978-3-662-44709-3_4
https://doi.org/10.1007/978-3-662-44709-3_4
https://doi.org/10.1109/18.272496
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://doi.org/10.1007/978-3-642-10838-9_15
https://doi.org/10.1007/978-3-642-10838-9_15
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-319-10175-0_17
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.205.pdf
https://nvlpubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.205.pdf

24 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

[PFHT22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute of
Standards and Technology, 2022. available at https://csrc.nist.gov/Proj
ects/post-quantum-cryptography/selected-algorithms-2022.

[Riv09] Matthieu Rivain. On the exact success rate of side channel analysis in the
Gaussian model. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, SAC 2008, volume 5381 of LNCS, pages 165-183. Springer, Berlin,
Heidelberg, August 2009. doi:10.1007/978-3-642-04159-4_11.

[SA08] Frangois-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic informa-
tion leakages. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES 2008,
volume 5154 of LNCS, pages 411-425. Springer, Berlin, Heidelberg, August
2008. doi:10.1007/978-3-540-85053-3_26.

[SCD*23] Boly Seck, Pierre-Louis Cayrel, Vlad-Florin Dragoi, Idy Diop, Morgan Barbier,
Jean Belo Klamti, Vincent Grosso, and Brice Colombier. A side-channel attack
against classic McEliece when loading the goppa polynomial. In Nadia El
Mrabet, Luca De Feo, and Sylvain Duquesne, editors, AFRICACRYPT 23,
volume 14064 of LNCS, pages 105-125. Springer, Cham, July 2023. doi:
10.1007/978-3-031-37679-5_5.

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear codes:
The support splitting algorithm. IEEE Trans. Inf. Theory, 46(4):1193-1203,
2000. doi:10.1109/18.850662.

[SS92] VM Sidelnikov and SO Shestakov. On insecurity of cryptosystems based on
generalized Reed-Solomon codes. Discrete Math. AppL, 2(4):439-444, 1992.
doi:10.1515/dma.1992.2.4.4309.

A Classic McFEliece KEM

In 1978, Robert J. McELiece introduced the McEliece cryptosystem as the first code-
based cryptosystem [McE78]. The basic idea is to use an error correcting code, relying
on a randomly chosen irreducible binary Goppa code, paired with an efficient decoding
algorithm. A variant of that cryptosystem, called the Niederreiter cryptosystem [Nie86],
was proposed by Harald Niederreiter in 1986 by replacing the generator matrix in the
encryption algorithm with a parity-check matrix. Although its original version, based
on a Reed-Solomon code, was proven to be insecure [SS92], the use of an irreducible
Goppa code is still considered secure. The two cryptosystems have been proven to be
equivalent [LDW94].
Hereafter we describe the different algorithms of Classic McEliece KEM.

A.1 Algorithms

Like every KEM, Classic McEliece is composed of three algorithms: Key generation,
Encapsulation, and Decapsulation.

Key generation This algorithm generates both the public and private keys (pk, sk)
that will then be used for the encapsulation and decapsulation algorithms. It should be
noted that the key-generation algorithm is a highly computationally intensive process; as a

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-031-37679-5_5
https://doi.org/10.1007/978-3-031-37679-5_5
https://doi.org/10.1109/18.850662
https://doi.org/10.1515/dma.1992.2.4.439

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 25

result, the output of the algorithm is considered a long-term secret. Algorithm 3 describes
the different steps of the algorithm.

Algorithm 3 The key-generation algorithm of the Classic McEliece KEM.

Input: The Classic McEliece security parameters (m,n,t)

Output: The private key sk = (g, £) and the public key pk =T
1: Generate a set £ = {ayg,...,an—_1} of random elements of Fom with #L£ =n
2: Generate an irreducible monic polynomial g € Fom[2] of degree ¢
3: Compute the t x n parity-check matrix H

g) g Han_1)
H = : ' :
ag g Hao) .. aigT N an-1)
4: Transform H to an mt x n binary matrix H’ > Using the Fam — F5* mapping

ot

: Transform H' in standard-form H pup, = (It | T)
return sk = (g, £) and pk =T

<@

The mapping on line 4 of Algorithm 3 is done with the representation of Fom given by
an extension polynomial f(z), provided by the Classic McEliece specification [ABCT22]
and such that deg(f) = m and f(z) is irreducible. The transformation in standard-form in
line 5 might fail if the first mt = n — k columns of H’ are not invertible (i.e. the identity
matrix cannot be obtained). In such case, a new permuted support £ is generated until the
computation of the identity matrix, and so the standard-form transformation, succeeds.

Encapsulation The encapsulation algorithm takes as input the public key pk and
generates both a ciphertext ¢t and a session key K. The ciphertext corresponds to a
syndrome of a random low-weight vector e that is generated during the algorithm. Its
steps are described in Algorithm 4.

Algorithm 4 The encapsulation algorithm of the Classic McEliece KEM.
Input: The public key pk =T
Output: The ciphertext ct and the session key K

1: Generate a random vector e € Fy with wt(e) = ¢

2: Compute ct = (I, | T)eT

3: Compute K = hash(1|e|ct)

4: return ct and K

Decapsulation The decapsulation algorithm decodes the ciphertext ct using the private
key sk and to generate the session key K. Its steps are described in Algorithm 5.

26 Optimizing Key Recovery in Classic McEliece: Advanced Error Correction

Algorithm 5 The decapsulation algorithm of the Classic McFEliece KEM.

Input: The ciphertext ¢t and the private key sk = (g, £)

Output: The session key K
1: Compute the vector v = (¢t,0,...,0) by padding ct with n — mt zeros
2: Compute the parity-check matrix

9 %) .. g Ham-1)
Hprivgz = .
g %) ... a2Tlg % anoy)

Compute the syndrome s = Hpring'uT

Compute the error locator polynomial o(x) with the Berlekamp-Massey algorithm
Compute (o(ag),...,0(an—1)) for a; € L and recover the error vector e

Compute K = hash(1|e|ct)

return K

B Error correction capability computation

Algorithm 6 Error correction capability computation algorithm

Input: The array U, ;
Output: cyin,, ,
1: Cming, ; = 2t
2: for y € Uy, + do
3: Peoltisions(y) = {y' € Ut \{y}dwo(y',) < 2} > doo filtering

4 if #Pcollis'ions (y) > 0 then ,

5 c = \;mln'ylepcollisiogs(y> do(y,y)71J > dy filtering
6: if ¢ < cmin,,, , then

T Cmin,, = c

8 return cy;p,, ,

N. Vallet, P.-L. Cayrel, B. Colombier, V. Dragoi, V. Grosso 27

C Collisions computation in the reduced Hamming
weight Vandermonde-like matrix

Algorithm 7 Collisions between «’s.

Input: The array U,,
Output: Col, : the list of all collisions between a’s
1: COl@:[]
2: for y € Uy, do
Listy, = |]
4 for o € (F3.) do
5 if 38 € Fam, (Wt(aiﬁ))ie[[O:Qt—l]] = y then
6: Listy += [a] '
7
8
9:

if len(Listy) > 1 then
Colo += [List,]
return Col,

	Introduction
	Side-channel attacks on the Classic McEliece KEM
	Contributions

	Background
	Linear algebra, norms and distances
	Code-based cryptography and the Classic McEliece KEM
	Template attacks

	Related works
	Key-recovery side-channel attacks on Classic McEliece
	Dealing with inaccurate side-channel classifiers

	Error correction algorithm
	Attacker model
	Error model
	Error correction algorithm
	From leakage to communication model
	Error correction capability
	Noisy Hamming weights lists correction probability

	Exploitation of the recovered Goppa polynomial g
	Recovery of the first mt pairs
	Improved full recovery of the private permuted support L

	Experimental results
	Template attack
	Noisy Hamming weights lists correction probability
	Algorithm performance

	Conclusion
	References
	Classic McEliece KEM
	Algorithms

	Error correction capability computation
	Collisions computation in the reduced Hamming weight Vandermonde-like matrix

