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Abstract. The modern security protocols in most of our systems rely
primarily on three basic functions of asymmetric cryptography: public
key encryption, digital signature, and key exchange. Today, we only do
key exchange (TLS 1.3) with the ECDH protocol. The confidentiality
is persistent because the session keys are discarded at the end and to
certify this key exchange, we sign it with RSA or ECDSA. However,
these cryptosystems are at least theoretically attackable in a quantum
computer model. Thus the NIST PQC standardization process has given
significant momentum to research on code-based public-key cryptosys-
tems specifically. Their security is based on the hardness of the syndrome
decoding problem. In this article, we first propose a new formalism of the
matrix-vector product in based-code cryptography. Second, we present
a chosen-ciphertext attack on the first step of Niederreiter decryption
by solving the matrix-vector product problem with side-channel infor-
mation. Finally, we put this result to recover secret information in code-
based cryptosystems including some candidates for the extension of the
NIST PQC normalization process.

Keywords: · Code-Based Cryptography · Side-Channel Attack · Matrix-
Vector Product Problem · NIST PQC Standardization

1 Introduction

In recent years, a lot of research has been done on quantum computers [17, 32,
14]. These are computers that exploit the phenomena of quantum mechanics
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to solve difficult mathematical problems in number theory, such as the Integer
Factorization Problem or the Discrete Logarithm Problem. Shor [28] proved that
if large-scale quantum computers are built, they will be able to break most of
the current asymmetric cryptography like RSA, ECDSA, and ECDH schemes.
This would seriously compromise the confidentiality and integrity of all digital
communications.

Since then, cryptographic community proposed alternative solutions which
remain safe in the quantum era. These schemes are called post-quantum resis-
tant. In 2016, the National Institute of Standards and Technology (NIST) made
a call to the community to propose post-quantum secure solutions for standard-
ization. The process consists of several rounds, and only some of the candidates
in each round are chosen to enter the next round. The most popular approaches
are those based on the search for low-weight words for lattice, the problem of
decoding random codes, solving multivariate polynomial systems, isogenies, and
hash functions [7, 5]. Lattice-based cryptography has the reputation of being
very efficient. Code-based cryptography using some codes is often considered to
be already more mature and reliable such as McEliece [23] and Niederreiter [25]
cryptosystems.

The majority of code-based post-quantum cryptosystems base their security
on the classic hard problem in code-based cryptography: the binary Syndrome
Decoding Problem (SDP). Informally, for a binary linear code C of length n and
dimension k, having a parity-check matrix H, the SDP is defined as follows: given
s ∈ Fn−k

2 , find a binary vector x having less than t values equal to one, such that
Hx = s. The best algorithm to solve this problem in this original version is the
Information Set Decoding (ISD) proposed by Prange [27]. The ISD techniques
are considered the best strategy for message recovery. It consists, in randomly
permuting the matrix H (denote P such a permutation) until the support of
the permuted x is included in the set {0, . . . , n− k − 1}, i.e., the set where the
HP is in upper triangular form. It has been considerably improved since then
[3, 18, 19, 21, 22, 29], although the complexity remains exponential in t.

A recent possible solution to solve the syndrome decoding problem is to use
Integer Linear Programming (ILP). The idea was first proposed by Feldman [11]
and later improved by Feldman et al. [12]. Since the initial problem is nonlinear,
some relaxation was proposed in order to decrease the complexity. Most recently,
Cayrel et al. [9] showed that the SDP becomes considerably easier to solve if
the syndrome is computed in N. They perform a laser fault injection attack on
the matrix-vector product when computing the syndrome in the encapsulation
of Classic McEliece. This allows them by corrupting some specific instructions
during this operation to have a syndrome in N. To solve the syndrome decoding
problem in N, they propose to define the SDP as an ILP inspired by the ideas
of Tanatmis et al. [33]. The complexity of recovering the secret message from
the faulty syndrome is polynomial O(n2) with an optimized version of their
algorithm.

Afterwards, Colombier et al. [10] proposed to perform a message-recovery
attack in Classic McEliece that relies on side-channel information only instead
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of laser fault injection in the previous work[9]. The latter depends on the very
strong attacker model and does not apply to optimized implementations of the
algorithm that make optimal usage of the machine words capacity. Improvements
include the power consumption analysis that is sufficient to obtain an integer
syndrome using machine learning techniques. To recover the secret message they
use the computationally-efficient score function and known information-set de-
coding methods.

Contribution: In this work, a key-recovery chosen-ciphertext attack against code-
based cryptosystems is performed. We analyze in particular the secret opera-
tion of matrix-vector multiplication in Niederreiter decryption using a physical
attack. First, we will introduce a new formalism in code-based cryptography.
Informally, for z in Fn−k

2 of any weight, the Matrix-Vector Product Problem
(MVPP) is defined as follows: given z∗ in Nn−k , find S ∈ F(n−k)×(n−k)

2 such
that SzT = z∗. To get z∗ in Nn−k, we will use the same method of the power
analysis attack in [10]. This method is based on side-channel analysis using ran-
dom forests to recover z∗ from the Hamming weight information obtained from
the matrix-vector product in the first step of Niederreiter decryption. Second,
we show that if we can construct the matrix Z∗ = (z∗

1, · · · , z∗
n−k) correctly, we

can directly find the secret of the cryptosystem. We obtain directly the secret
without solving the syndrome decoding problem unlike in [9, 10] and this is
applicable for most of the code-based cryptosystems.

Organization: The paper is organized as follows. In Section 2, we focus on code-
based cryptosystems, and in particular on the results of the NIST PQC com-
petition. Section 3 defines the new formalism in code-based cryptography, the
Matrix-Vector Product Problem (MVPP). In Section 4, we present our attack
on the matrix-vector product in Niederreiter decryption using a side-channel
attack. Finally, we conclude this paper in Section 5.

2 Code-Based Cryptosystems

2.1 Encoding Theory

Notations The following conventions and notations are used. A finite field
is denoted by F, and the ring of integers by N. Vectors (column vectors) and
matrices are written in bold, e.g., a binary vector of length n is x ∈ {0, 1}n, an
m × n integer matrix is A = (ai,j)0≤i≤m−1

0≤j≤n−1
∈ Mm,n (N). A[i] denotes the i-th

line of A and a row sub-matrix of A indexed by a set I ⊆ {0, . . . ,m − 1} is
denoted by AI, = (ai,j) i∈I

0≤j≤n−1
. The same applies to column vectors, i.e., xI is

the sub-vector induced by the set I on x.

Error-Correcting Codes An [n, k] linear code C over Fq is a vector subspace
of Fn

q , where k, n are positive integers with k < n. The elements of C are called
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codewords. The support of a codeword Supp(c) is the set of non-zero positions
of c. We will represent a code either by its generator matrix G ∈ Fk×n

q such
that its lines form a basis of the vector space C, or by its parity-check matrix,
H ∈ F(n−k)×n

q , where HGT = 0 holds. One of the key elements of decoding is
the use of metrics. In the Hamming metric, we consider codes with coefficients
in Fq (generally, F2).
Definition 1 (Hamming metric). Let x ∈ F2, the Hamming weight wt(x)
is the number of non null coordinates in x, and the distance between two vectors
x and y is the number of non null coordinates in wt(x− y).
The hardness of general decoding for a linear code is an NP-complete problem
in coding theory [4]. This is the Syndrome Decoding Problem (SDP), which is
the hard problem in code-based cryptography.

Definition 2 (Binary-SDP). Let H ∈ F(n−k)×n
2 , a vector s ∈ Fn−k

2 and
t ∈ N. The syndrome decoding problem is to find x ∈ Fn

2 such that HxT = s
and wt(x) ≤ t.
The best-known algorithms for solving this problem are all exponential in t.
Except if the syndrome is computed in N instead of F2 [9].
Definition 3 (N-SDP). Let H ∈ Mn−k,n (N), with hi,j ∈ {0, 1} for all i, j,
a vector s ∈ Nn−k and t ∈ N∗. The syndrome decoding problem in N is to find
x ∈ Nn with xi ∈ {0, 1} such that HxT = s and wt(x) ≤ t.
H and x are sampled in the same way as for the binary SDP, only the matrix-
vector multiplication operation changes, and thus its result s.

Thus we define the new problem on the matrix-vector product as follows,
Definition 4 (Binay-Matrix-Vector Product Problem (MVPP)). Let
z ∈ Fn−k

2 of any weight, a vector z∗ ∈ Nn−k. The matrix-vector product problem
is to find S ∈ F(n−k)×(n−k) such that SzT = z∗.
We can find z∗ for side-channel information with power consumption analysis
and then with a chosen-ciphertext attack we find S.

2.2 NIST PQC Standardization and Result

On July 5, 2022, NIST released the first four winning algorithms from a campaign
launched in 2016 to standardize post-quantum cryptographic algorithms. These
future standards will be default options for selecting post-quantum algorithms in
the majority of security products. Provided that these post-quantum algorithms
are also combined with proven classical algorithms through hybrid mechanisms.
The main goal of the process started by NIST is to replace three standards that
are considered the most vulnerable to quantum attacks, i.e., FIPS 186-45 (for
digital signatures), NIST SP 800-56A6, and NIST SP 800-56B7(both for keys
5 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
6 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-56Ar2.pdf

7 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-56Br1.pdf



Key-Recovery by Side-Channel Information on CBC 5

establishment in public-key cryptography). For the first round of this competi-
tion, 69 candidates met the minimum criteria and the requirements imposed by
NIST. 26 out of 69 were announced on January 30, 2019, for moving to the second
round. Of these, 17 are public-key encryption and/or key-establishment schemes
and 9 are digital signature schemes. In July 2020, NIST started the third round
of this process where only seven finalists were admitted (four PKE/KEM and
three signature schemes). In addition to the finalists, eight alternate candidates
were selected.

The first four algorithms selected are a key establishment algorithm named
CRYSTALS-Kyber; and three digital signature algorithms named CRYSTALS-
Dilithium, FALCON, and SPHINCS+. The first three of these algorithms are
based on structured lattices; the last one, SPHINCS+ is a hash-based signature
scheme. These four algorithms will therefore be used as the basis for writing U.S.
federal standards. The scope of the NIST announcement is international with
strong involvement of the cryptography research community, which will make
the future US standards also used as de facto international industry standards.
Beside the four winners, an extension of the NIST PQC standardization cam-
paign (4th round) is planned for four key establishment algorithms: BIKE [1],
HQC [24], Classic McEliece [2] (all three based on error-correcting codes), and
SIKE [16] (isogeny graphs-based). Classic McEliece was the first selected final-
ist as a key encapsulation mechanism, while BIKE and HQC were alternative
candidates. The latter two use special codes to reduce the size of the public key,
which is considered the main drawback of code-based cryptosystems.

Classic McEliece is a code-based scheme using binary Goppa codes, the same
codes that McEliece originally proposed in [23]. During Round 2 the scheme
merged with NTS-KEM, which was using the same codes. The Classic McEliece
scheme uses the dual of McEliece’s scheme, as proposed by Niederreiter [25], and
tightly turns this OW-CPA PKE into an IND-CCA2 KEM.

BIKE (Bit Flipping Key Encapsulation) is a key encapsulation mechanism
(KEM) based on quasi-cyclic codes with moderate density parity check matrices.
The code structure in BIKE is public and allows to reduce the size of the public
key. Bit flipping corrects errors by repeatedly flipping the input bits that, given
the secret moderate-density parity checks, seem most likely to be errors.

HQC (Hamming Quasi-Cyclic) uses error-correcting codes built from Reed-
Muller and Reed-Solomon. The public key includes a random h and s = x+h·y,
where x,y are secretes and small Hamming weights. The ciphertext includes
u = r1 + r2 · h and v = M + s · r2 + e, where r1, r2, e are small Hamming
weights and M is a message encoded using an error-correcting code. The receiver
computes v−u ·y = M+s ·r2+e−u ·y, which is close to M since x,y, r1, r2, e
are small, and decodes the error-correcting code to recover M.

SIKE (Supersingular Isogeny Key Encapsulation) is a key encapsulation
mechanism based on the hard problem of pseudo-random walks in supersingular
isogeny graphs. SIKE is a relatively new problem in the cryptographic arena and
currently undergoing several attacks like its instantiation SIDH (Supersingular
Isogeny Diffie–Hellman key exchange protocol) [8, 13, 20, 34, 35]. These are key
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recovery attacks, reduces of the level security, side-channel attacks, and fault
injection.

Some of these algorithms could therefore later join the same standardization
process as the four algorithms already selected. The final objective of NIST is
indeed to be able to standardize a varied range of algorithms to cover a majority
of use cases. Most of these constructions based on error-correcting codes use
matrix-vector products in the decryption, as in Niederreiter’s scheme (Table 1).

The goal of our attack is to find the secrete matrix Q. But first, let’s as-
sume that we already have the result of the product Q−1z in N using the same
technique as in [10].

Table 1: Niederreiter PKE scheme

KeyGen(n, k, t) = (pk, sk)

H-parity-check of C that corrects t errors

An n× n permutation matrix P

An (n− k)× (n− k) invertible matrix Q

Compute Hpub = QHP

pk = (Hpub, t)

sk = (Q,H,P )

Encrypt(m, pk) = z

Encode m → e \\ error vector of wt(e) = t

z = Hpube

Decrypt(z, sk) = m

Compute z∗ = Q−1z = Sz \\ target of our attack

z∗ = HPe

e∗ = Decode(z∗,H)

Retrieve m from P−1e∗

3 Our Attack and Result

3.1 On the Decryption of Niederreiter

Our attack on Niederreiter’s decryption is now described. It consists in directly
finding the secret matrix Q. In the following, we note S = Q−1 ∈ F(n−k)×(n−k)

2 .
We assume that, we can recover the result of the matrix-vector product Sz in
N (z∗ ∈ Nn−k) with side-channel information as in [10].
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Profiled side-channel measurements. We performed side-channel measurements
during the computation of the product Sz in the Niederreiter decryption imple-
mentation. The vector z∗ is computed as the matrix-vector product Sz = z∗.
We have recorded a single trace that will be sufficient to form the training set
for the profiled attack. This trace is composed of n samples and stored as a row
vector. We chose the ciphertexts zi in F(n−k)

2 linearly independent as the inputs
of the matrix-vector product algorithm. In addition, we stored a second trace,
used as a test set when training the classifier. For both traces, we also stored
the Hamming weights of the intermediate value resulting from the matrix-vector
product Szi.

After the traces acquisition, we performed an adequate preprocessing for
reducing the dimension (eight dimensions since there are nine possible values
for the Hamming weight of a byte) of the data by Linear Discriminant Analysis
(LDA) to make it easier to handle by the classifier. We chose the random forest
algorithm, used previously for side-channel analysis with good results [15], to
recover the Hamming weight of z∗.

We obtained the Hamming weight of the intermediate value of the prod-
uct Szi, we derived the entries of z∗ in N with 98.65% accuracy. Indeed, the
Hamming distance between two consecutive intermediate values is exactly the
number of 1’s found in the bitwise AND between the row of the matrix S and
the byte of the ciphertext z. Computing the value of the integer z∗ entry is
equivalent to counting those ones, which in turn is equivalent to summing the
Hamming distances between consecutive intermediate values (the absolute value
of the difference of their Hamming weights). In our implementation (n = 6, 960,
k = 5, 413 and t = 119), the Hamming distance between two consecutive inter-
mediate values is small and satisfies the condition in [10, Equation (3)] to recover
the entries of z∗ in N with good accuracy (82% for Hamming distance).

Course of the attack. We propose a chosen-ciphertext attack that essentially
consists of 4 steps:

Step 1. We choose the ciphertexts or vectors zi in F(n−k)
2 linearly indepen-

dent. We therefore define a matrix Z = (z1, · · · , zn−k) which is invertible.
Step 2. For each vector zi thanks to the side-channel attack, we have the

vector z∗
i = Szi in N (in reality we get the Hamming weight for each component).

This gives us a new matrix Z∗ = (z∗
1, · · · , z∗

n−k).
Step 3. We solve a matrix system SZ = Z∗ with S the unknown matrix

in F(n−k)×(n−k)
2 . Since Z is invertible, we multiply on the right-hand side by its

inverse and we obtain
S = Z∗Z−1. (1)

Then we just have to read the entries of the right matrix to get the values of S
and thus the secret matrix Q. A toy example is discribed in the Appendix A.

The attack as presented above allows to find the secret matrix directly. How-
ever, in Step 2, we can raise two questions:

1. Can we know if the matrix Z∗ is not correct?
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2. If so, how can we correct the errors and find the secret matrix S?

We will discuss question 2 in Section 3.2. For the first point, we assume that in
Step 2 we obtain the matrix Z∗∗ instead of Z∗. So we have

S′ = Z∗∗Z−1 (2)

and
Z∗∗ = Z∗ +Er (3)

where Er is an error matrix.
How to distinguish S from S′?

We know that S is an invertible matrix in F2. Thus it’s enough to look directly
at its coefficients and compute its determinant.

We have shown that our attack allows us to directly find the secret matrix S
in the case where there is no error in Step 2. Otherwise, we know how to detect
it. We have two levels of optimization of this attack either minimize the risk of
errors when recovering the matrix Z∗ or reduce its coefficients modulo an integer
number to speed up the computations. We can choose judiciously the zi at step
1, for example, taking zi of low Hamming weights allows having regular words
with a “1” for each zi. This can considerably reduce the risk of errors during
the acquisition of the traces. Moreover, in this case, we would have Z = In−k

and we obtain the secrete matrix S directly without computing Z−1. We can
also suppose that the victim does not accept to decrypt n − k ciphertexts for
example, but with the choice of ciphertexts with low regular weights we avoid
this problem.

We will now see how to correct the errors in the matrix Z∗ and find the
correct matrix S.

3.2 Error Correction

In this section, we will provide an answer to question 2 and show that we can
indeed find the matrix S in some cases. We consider the case where we have Er

in the matrix Z∗ at Step 2, equations (2) and (3). We consider two assumptions
h1 et h2 about Er:

1. The matrix Er has coefficients 0 or 1, (h1 ).
2. The matrix Er has, at most, a 1 on each row, (h2 ).

These two assumptions are not restrictive, we will see that we can deduce the
general case and we assume that the error can be controlled to some extent, i.e.,
Z∗∗ does not differ “too much" from Z∗.

According to the above assumptions, there exist two finite sets I and J such
that:

Er =
∑

(i,j)∈I×J

Ei,j (4)

with Ei,j the square matrix of order n − k where all coefficients are zero,
except the one of row i and column j which is 1.

We will need the following lemma:
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Lemma 1. Let 1 ≤ a, b ≤ n. Let M = (mi,j) be a square matrix of order n−k.
then :

Ea,bM =



0 · · · 0

0 · · · 0
... · · ·

...
mb,1 · · · mb,n−k

... · · ·
...

0 · · · 0

0 · · · 0


← a-th row

In other words: [Ea,bM ]i,j =

{
0 if i ̸= a

mb,j if i = a

To find S despite the error in Z∗. We have

SZ = Z∗ +Er = Z∗ +
∑

(i,j)∈I×J

Ei,j

Hence

S = Z∗Z−1 +ErZ
−1 = Z∗Z−1 +

∑
(i,j)∈I×J

(Ei,jZ
−1)

From the above we deduce the following theorem:

Theorem 1. For any i ∈ [1, n − k], there exists j ∈ [1, n − k] and ε ∈ {0, 1}
such that Z∗∗Z−1[i]− εZ−1[j] is binary and Z∗∗Z−1[i]− εZ−1[j] = S[i].

Proof. Let us suppose |I × J | = 1, let I × J = (a, b). Then we have

S = Z∗Z−1 +Ea,bZ
−1.

According to Lemma 1, only the line a of Ea,bZ
−1 is nonzero.

We deduce that for all i ̸= a,

Z∗∗Z−1[i] = S[i].

It is ,therefore, sufficient to take ε = 0 and any j.
According to Lemma 1,

Ea,bZ
−1[a] = Z−1[b]

and so it suffices to take ε = 1 and j = b.
Let (a, b) ∈ I × J , (c, d) ∈ (I × J) \ (a, b) and if |I × J | ≥ 2, the hypothesis

(h2 ) implies that c ̸= a.
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According to Lemma 1, we have

Ec,dZ
−1[a] = 0.

thus
Z∗Z−1[a] +

∑
(i,j)∈I×J

(Ei,jZ
−1[a]) = Z∗Z−1[a] +Ea,bZ

−1[a].

We thus have, on each line, at most one contribution. We deduce then

1. if i ̸∈ I, then Z∗∗Z−1[i] = S[i], it is enough to take ε = 0 and any j.
2. if i ∈ I, then there exists j such that (i, j) ∈ I × J , we have Z∗∗Z−1[i] =

S[i] +Z−1[j], so it is enough to take the j given previously and ε = 1.

We deduce that in some cases, it is possible to find S by the following algorithm
1.

Algorithm 1 Finding S with errors in Z∗

1: We assume that we can determine the erroneous line(s) of S (for example, S is not
binary).

2: Let Li be an erroneous row of S, we subtract from Li the rows of the matrix Z−1

and keep those that are binary.
3: We thus obtain a list of possible candidates for S and for each candidate matrix,

we compute its determinant to check its invertibility in F2.
4: In particular, if this list is reduced to one element, we obtain S.

We will now lighten the assumptions by deleting (h2 ). According to Theorem
1, we can deduce the general case of our approach.

Corollary 1. Let i ∈ [1, n−k], let ri be the Hamming weight of the vector Er[i],
there exists a sequence (jk)1≤k≤ri of distinct pairwise elements and a sequence
(εk)1≤k≤ri such that

Z∗∗Z−1[i]−
∑

Z∗∗Z−1[i]−
ri∑

k=1

εkZ
−1[jk] is binary and Z∗∗Z−1[i]−

ri∑
k=1

εkZ
−1[jk] = S[i].

Proof. We use the same notations as before. We suppose that |I×J | ≥ 2 (if not,
we are in the previous case). Let (a, b) ∈ I × J .

We try to count the couples (a, t) with t in J . There are as many as the
amount of “1" on the row Er[a], in other words, there are ra couples (a, t).

Let Ga = { (a, t) | t ∈ J} = {(a, j1), (a, j2), · · · , (a, jra)}.
By Lemma 1 , for all c ̸= a and d ∈ J , the a-th row of Ec,dZ

−1 is zero. We
deduce that

S[a] = Z∗∗Z−1[a] = Z∗Z−1[a]+ErZ
−1[a] = Z∗Z−1[a]+

∑
(i,j)∈I×J

(Ei,jZ
−1)[a]
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= Z∗Z−1[a] +

ra∑
k=1

Z−1[jk].

Table 2: McEliece PKE scheme

KeyGen(n, k, t) = (pk, sk)

G-generator matrix of C that corrects t errors

An n× n permutation matrix P

An k × k invertible matrix S

Compute Gpub = SGP

pk = (Gpub, t)

sk = (S,G,P )

Encrypt(m, pk) = z

Encode m → c = mGpub

z = c+ e \\ e is an error vector of wt(e) = t

Decrypt(z, sk) = m

Compute z∗ = zP−1

z∗ = mSG+ eP−1

m∗ = Decode(z∗,G)

Retrieve m from m∗S−1

Thus we have the following result :

1. If i ̸∈ I, then the sequence (εk) is null and it is enough to take any (jk) and
two by two distinct.

2. If i ∈ I, considering the set Gi defined above and according to what precedes,
it is enough to take the sequence (εk) constant equal to 1 and the (jk) given
by Gi.

In the case where the matrix Er has negative coefficients or is not binary, we
can adapt Theorem 1. It is sufficient to allow the sequence εk to take the value
-1 and to be able to subtract (or add) the same row several times.

We notice that, unlike in the previous case, we cannot give an algorithm to
determine a list of possible candidates for the matrix S. A similar approach as
the one presented above would be too expensive. We do not know, a priori, the
number of rows to remove from each erroneous row. Although correcting the
error in the matrix Z∗ at Step 2 is theoretically possible, it may be difficult in
practice.
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3.3 Comparison to other Attacks

Recall that the goal of our attack is to find the secret matrix Q in the Niederreiter
scheme. It has been shown in various previous works that it is possible to obtain
secret information about the decryption in the McEliece scheme (Table 2). Falko
Strenzke proposed in [30, 31] two attacks on each of the two calls of the Extended
Euclidean Algorithm (EEA) in McEliece decoding with the parameters n =
2, 048 and t = 50. This vulnerability in the Patterson algorithm [26] in the error
correction phase allows an attacker to gather information about the secret n×n
permutation matrix P through a timing side channel.

The first attack [30] targets the second call of the EEA in the Patterson
algorithm to determine the polynomials forming the error locator polynomial
σ(x). The polynomial of deg(σ(x)) ≤ t consists of two polynomials a(x) and
b(x) whose degrees have a direct impact on the number of iterations of the EEA.
This variation in the number of iterations implies a difference in the execu-
tion times and makes possible a timing attack. The attacker creates ciphertext
(chosen-ciphertext attack) using random error vectors with Hamming weight
wt = 4 and then lets the decryption routine decrypt the ciphertext. It evaluates
whether zero or one iteration occurred in the EEA. If an iteration has occurred,
deg(b(x)) = 1, nothing is done, and if there are no iterations, deg(b(x)) = 0, the
error vector is added as a new row of a matrix over F2 having n columns. Each
time a row is added, a Gauss-Jordan elimination is performed and the rank is
determined. Once the maximum rank is reached (here 2,036), the attack is com-
pleted with 7,848,229 ciphertexts. However, such an approach only recovers the
secret permutation matrix P when the Hamming weight of error e is small (2
or 4).

The second attack [31] is based on the vulnerabilities that are present in the
inversion of the error syndrome through the extended euclidean algorithm (first
call in the Patterson algorithm). Strenzke showed the existence of a timing side
channel vulnerability in the syndrome inversion that allows the attacker to gain
knowledge of the zero-element of the secret support. It is based on the analysis of
the key equation to deduce the relations between the degrees of the polynomials
involved in it. As in the first attack, this approach only works for Hamming
weights of 2, 4, or 6 of the error vector e to recover the secret permutation
matrix P . Despite the improvements in [6], the main problem with these two
previous attacks is the number of cases (depending on the Hamming weight of
e) that can be exploited to find the secret. In our attack, we have no constraints
on the Hamming weights of the ciphertext (or error vector e) to find the secret
matrix Q in the case that we correctly construct the matrix Z∗ with a random
forest. Moreover, we attack the least complex step of Niederreiter decoding (first
step). The Niederreiter PKE is slightly different from the McEliece PKE (Table 1
and Table 2). However, here too, an error vector is chosen during the encryption
and decryption features, and since these features are the prerequisites of our
attack, it is also applicable to McEliece’s PKE. Unlike the attack of Strenzke in
[30] we only need 2,048 ciphertexts instead of 7,848,229 to find the secret n× n
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Table 3: Attacks to recover the secret matrix P

Attack Hamming weight Number of
ciphertexts

Target

Timing attacks of
Strenzke

2, 4 or 6 7,848,229 in [30] EEA in Patterson
algorithm

Our attack against
MVPP

no constraints 2,048 First step in
McEliece’s
decryption

permutation matrix P . The Table 3 give more details on the comparison with
Strenzke’s attacks to find the secret matrix P .

4 Conclusion

This article presents a key-recovery attack against the Matrix-Vector Product
Problem, which is a new formalism that we introduce in based-code cryptog-
raphy. We have also shown that with a side-channel attack on this operation,
we can recover secret information on based-code cryptosystems without solv-
ing the hardness of the binary syndrome decoding problem. In addition to the
side-channel information, we performed a chosen-ciphertext attack, which, with
careful choice of the ciphertexts, can find the secret matrix without errors. When
noise (errors) is present during the attack, we have shown that in some cases it
is possible to find the secret matrix. Our attack can be applied to code-based
cryptosystems with matrix-vector product operations.
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A Simple Version of Our Attack

Case 1: no errors in Z∗

Let the matrices Z invertible in F2 and Z∗ in N respectively constructed in Step
1 and recovered in Step 2 of our attack. One chooses here n − k = 3, we have
for instance

Z =


1 1 1

1 0 1

1 1 0


its inverse

Z−1 =


−1 1 1

1 −1 0

1 0 −1


and

Z∗ =


2 2 1

1 0 1

2 1 2

 .

From the equation 1, S = Z∗Z−1, we find

S =


1 0 1

0 1 0

1 1 0

 .

Case 2: few errors in Z∗

We keep the same Z, its inverse and Z∗ matrices in case 1.
According to equation 3, Z∗∗ = Z∗ +Er, we have
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Er =


1 0 0

0 0 0

0 0 0

 .

By performing the same operation as before, we obtain the following S′

matrix according to equation 2

S′ =


0 1 2

0 1 0

1 1 0

 .

This matrix S′ is not binary, so we deduce that the first row contains a fault.
We then apply the algorithm 1 of Section 3.2 to determine the list of possible
candidates for the matrix S

S′[1]−Z−1[1] = [1 0 1]

S′[1]−Z−1[2] = [−1 2 2]

S′[1]−Z−1[3] = [−1 1 3].

Only the first case gives a binary vector, we deduce that S′[1] = S[1] + Z−1[1]
and we have directly S.

Case 3: errors in Z∗

We consider the error matrix

Er =


0 0 0

0 1 0

0 0 0

 .

We then obtain the following matrix

S′ =


1 0 1

1 0 0

1 1 0

 .

Here the matrix is binary, moreover its determinant det(S′) = 1. In this case,
we cannot detect that the matrix is not correct.


