
TrustSoC: Light and Efficient Heterogeneous SoC
Architecture, Secure-by-design

Raphaële Milan∗, Lilian Bossuet∗, Loı̈c Lagadec†, Carlos Andres Lara-Nino∗, Brice Colombier∗
∗Université Jean Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

{raphaele.milan, lilian.bossuet, carlos.lara, b.colombier}@univ-st-etienne.fr
†Lab-STICC, ENSTA Bretagne, Brest, France

loic.lagadec@ensta-bretagne.fr

Abstract—In recent years, heterogeneous SoCs, embedding multiple
processor cores and programmable logic, have progressed in terms of
complexity and performance. They embed more and more components of
different natures. From a security point of view, this leads to an increase
of the attack surface exploitable by an attacker. The goals of these attacks
are to take control of the system and/or have access to sensitive data. To
address this issue, in this article, we propose a novel heterogeneous SoC
architecture called TrustSoC, which is secure-by-design. Our proposition
presents an innovative way of partitioning the system into worlds to
provide the designer with different levels of exclusion for the provision of
security. Tiny and distributed hardware security wrappers apply policies
and actively monitor the SoC communication bus to enforce these levels
of security and prevent any unwanted behavior. TrustSoC is a novel
proposition that considers both software and hardware approaches to
secure the device. We demonstrate our approach by prototyping the
security wrappers as well as their operating rules and show that TrustSoC
requires minimal changes while significantly improving the state of the
art on secure-by-design architectures.

Index Terms—Secure system-on-chip, hardware IP core protection,
hardware security, secure architecture

I. INTRODUCTION

Heterogeneous System-on-a-Chip (SoC) platforms can be found in
multiple domains of application due to their flexibility. They are used
from general-purpose applications to critical military applications:
high-frequency trading, cloud services, telecommunications, etc. To
adapt to a wider range of applications, the number and diversity
of components in a SoC are increased. Among the more complex
heterogeneous SoCs are the SoC-FPGA, such as the FPGA·SoC Intel
Agilex, and the AMD-Xilinx Zynq UltraScale+ MPSoC. This paper
focuses on these heterogeneous devices, nonetheless, our work can
also be applied to other kinds of SoCs.

With the increase of SoC complexity comes a bigger attack surface
for a malicious entity. The SoC communication system is a particu-
larly important point of weakness in the security of the system. The
works in [1] and [2] demonstrate different approaches for securing
the system through the SoC communication bus. Unfortunately, these
solutions use a RISC-V processor which is not native to commercial
SoC-FPGAs. Indeed, most of these platforms feature an array of
ARM processors. This is consistent with current trends, as ARM
is the leader in the smartphone market [3]. The solutions available
in the literature also fail to consider the SoC-FPGA whole and do
not provide security protections for all the SoC-FPGA components.
This paper addresses these issues by presenting a novel lightweight
solution for securing heterogeneous SoC-FPGA based on small,
efficient security wrappers. We also propose an innovative way of
segregating the SoC-FPGA resources into different worlds using an
extension of the ARM TrustZone technology [4], [5]. The proposed
solution can be fully integrated into current SoC-FPGAs which
feature ARM cores. To estimate the cost of the proposed approach
we prototype a SoC architecture called TrustSoC. We use an AMD-

Xilinx Zynq-7000 SoC-FPGA as prototyping platform to provide
experimental implementation and performance results. Our findings
show that TrustSoC has a minimal resources overhead, with only a
6% increase in LUT utilization.

The rest of the paper is organized as follows: Section II presents
the related work. Section III describes the threat model. Section
IV presents TrustSoC: the novel lightweight heterogeneous SoC-
FPGA architecture secure-by-design and the costs of the estimated
approach with the relevant implementation results. Section V presents
a discussion and comparison of our approach against related works
from the literature. Finally Section VI concludes the paper.

II. BACKGROUND

SoC-FPGAs are generally divided into two main components: a
processing system (PS) which encapsulates the CPU cores, memory
elements, and peripherals, and a programmable logic (PL), i.e. the re-
configurable fabric or FPGA. Such systems also integrate other com-
ponents such as large memories, power management units, communi-
cation interfaces, application-specific processors, analog components,
etc. The programmable logic allows the user to embed their own
hardware accelerators in the form of IPs, post-delivery and potentially
at runtime. Communications within a SoC pass through system buses
like the Advanced Microcontroller Bus Architecture (AMBA). This
technology is available for ARM cores, and both AMD-Xilinx and
Intel SoC-FPGAs employ ARM cores. The Advanced eXtensible
Interface bus (AXI) [6] is the main communication channel between
the processing system and the programmable logic in the case of
AMD-Xilinx SoC-FPGAs. In these platforms, a proprietary IP (the
AXI interconnect) acts as a translator between the ARM AXI and
AMD-Xilinx’ own specification: the AXI4 bus.

Given how SoCs may be employed to handle sensitive data, they
have become prime targets for malicious entities. The main purposes
of attacks on SoCs range from stealing sensitive data to mount a
denial of service. These attacks are mainly software-based and target
the PS. They are possible, in part, because some SoC resources are
shared between applications. As an example, in some recent multi-
processor SoC architectures the last level of cache is shared between
the different cores. A malware can leverage this characteristic to
determine, according to the cache memory access time, whether
the target application has accessed the data [7]. This provides an
adversary with helpful information regarding the target application.
This attack is also viable on SoC-FPGAs [8].

To secure the execution of critical software applications in modern
SoCs, it is common to use built-in solutions such as the ARM
TrustZone technology which is available for SoCs with ARM pro-
cessors [4]. This strategy splits the resources of a processor into
two different worlds: the secure world and the non-secure world.
For SoC-FPGAs, AMD-Xilinx has developed a TrustZone Extension

MEMORY

PL (FPGA)

PS (CPU)
CORE 1 CORE 2

IP_1
IP_2

S_IP_1

S_IP_2

PERIPHERALS

UART SPI DVFS JTAG

Rich OS

Secure world

Normal world

Secure OS

LegendSoC

SoC communication bus

Ns bit = 0
Ns bit = 1Cache

FLASH RAM ROM

S_APP_1_1

S_APP_1_2

S_APP_2_1

S_APP_2_2

APP_2_1

APP_2_1

APP_2_1

APP_2_1

Fig. 1. An example of heterogeneous SoC architecture with ARM-TrustZone
technology. The red blocks represent the non-secure world and the green
blocks belong to the secure world.

which also protects some of the operations in the programmable logic
[9]. Fig. 1 illustrates a didactic example of this technology applied
to a SoC-FPGA: the red blocks represent the non-secure world and
the green blocks the secure one. To determine in which world it is
currently operating, the system relies on the value of the non-secure
bit (NS). This protection strategy is applied to the processing system
(each CPU core can execute software applications in one of the two
worlds), to the memory resources, and also to the programmable logic
(each IP embedded in the programmable logic is linked to one of the
two worlds). The NS bit is sent through an AXI4 bus to allow the
programmable logic to be aware about the world (secure/non-secure)
in which the software application is running at any time. This prevents
non-secure resources (in the processing system, programmable logic
and memories) from accessing secure ones. The code and data within
the secure world are supposed to be protected from intruders. It was
originally conceived as an efficient, holistic security approach.

Unfortunately, recent works have shown that despite of the pro-
tections brought by this security solution, many vulnerabilities can
be exploited to perform effective attacks and corrupt the security
partitioning. In [10], the authors target the communication system
of the SoC. They show that a hardware Trojan can modify the AXI
communication signals and force an arbitrary value for the NS bit.
This modification can jeopardize the rest of the system, leading to
privilege escalation or denial-of-service attacks. In addition to this
attack, the work proposed in [11] uses the power management of the
SoC-FPGA to perform covert transmission of data between secure
and non-secure worlds despite the policies of the TrustZone isolation.
In [12], the authors used a hardware Trojan to corrupt the secure boot
and break the memory isolation. The modification of the secure boot
can allow an attacker to be able to change permissions to critical
information, data or instructions, and can lead to privilege escalation.

All these attacks show that it is not sufficient to consider the
security of the SoC from just the software or hardware point of view
separately. Instead, the design of protections and countermeasures
requires an integral approach. Security solutions must be carefully
thought out and consider both factors: software (processing system,
operating system, boot, etc.) and hardware (programmable logic, bus,
hardware IP, etc.).

III. THREAT MODEL

In this paper, we contemplate several threats from remote software
and hardware attacks. TrustSoC considers malicious hardware IPs
or software applications introduced at design time. TrustSoC also
considers illegitimate accesses and modifications of the memory
contents.

Time-to-market tends to become narrower, designers do not have
the time to develop every software or hardware component, thus they
utilize third-party blocks. These components can contain malicious
routines or circuits which can be used to perform an attack. For
example, they could try to access sensitive information from other
applications or IPs. These threats we envisage are relevant and
correspond to the process of SoC-FPGA design. TrustSoC mitigates
these menaces by introducing minimal additional components for
every hardware IPs enforcing policies to prevent illegal accesses.

We assume that the software compiler and the synthesis tool
are trusted and cannot be used to perform illegal modifications
of the design. The synthesis tool is responsible for the additional
components addition of every hardware IPs. We also assume that the
SoC and the founder are trusted. No modification was made such as
adding a hardware Trojan.

TrustSoC prevents the attacks cited in the background Section II.
TrustSoC prevents side-channel attacks [8] against the cache memory
with several security solutions. TrustSoC uses identifiers to restrict the
cache access and creates different cache partitions for each running
application. It also stipulates operating rules such as flushing the
cache on each context switch preventing reuse of data. Additionally,
TrustSoC prevents attacks performed with illegal accesses [12].
TrustSoC uses additional components that can distinguish between
legitimate and illegal accesses with a set of rules and identifiers.
With this solution TrustSoC prevents [10].

IV. TRUSTSOC

This section describes an instance of the trusted heterogeneous SoC
architecture secure-by-design called TrustSoC. This design exhibits
multiple security features:

• software and hardware components can be assigned to multiple
worlds with different privilege levels, in contrast to the basic
secure/non-secure approach of TrustZone;

• the cache memory is protected against attacks that leverage the
shared cache access;

• a set of distributed communication controllers enforce policies
to implement trusted communications inside the SoC.

TrustSoC is a flexible and scalable architecture which can be
adjusted to the application requirements. For the purposes of this
paper we present the concrete prototype shown in Fig.2. The process-
ing system includes two cores, but it could be extended with more
cores and support different architectures. TrustSoC also embeds a
programmable logic region, a communication bus, several peripherals
and shared memories. Each core has a non-secure world, shown
in dark red, and two secure worlds, shown in green colors, which
are presented in the next subsections. Finally, TrustSoC embeds tiny
distributed communication controllers called “s wrapper”. We also
present these controllers in the following subsections.

A. TrustSoC security features

SF.1: Operating rules: TrustSoC comes with a set of operating
rules which must be enforced as policies to prevent any unwanted
behavior and provide more security.

SF.2: Extended secure multi-worlds: TrustSoC introduces multi-
secure domains to allow the designer more flexibility for their

CPU

FPGA

CORE 1 CORE 2

 UART DVFS JTAG

Rich OS

Secure
worlds

Normal world

Secure OS

LegendSoC

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER

SoC communication bus

IP_1 ID
S_WRAPPER

S_IP_2 ID
S_WRAPPER

S_IP_1 ID
S_WRAPPER

World ID

ID IDID ID ID ID

Cache

ID
FLASH

ID
ROM

ID
RAM

SoC communication bus

Permisssion table

Device 0 address W/R

Device 2

address W/R

Device N address W/R

...

Software secure boot
configuration

ID ID ID

RAM

Device 1

address W/RDevice 2 address

APP_1_1

S_APP_1_1

S_APP_1_2

APP_1_1 APP_2_1

APP_2_1

S_APP_2_1

S_APP_2_2

S_WRAPPER

ID

AXI4 interface

Memory interface

Test logic :

If (world_ID and IP_ID
match with the

permission table)
Then :

request forwarded
Else :

request not forwarded

ID ID ID

Fig. 2. Example of the proposed TrustSoC architecture

design. Contrary to ARM TrustZone technology, TrustSoC allows
the designer to choose the number of secure worlds in their design
and have a proper isolation between the applications and IPs.

SF.3: Programmable logic in the security resources : TrustSoC
fully integrates the programmable logic in the security resources by
using a unique identifier for each hardware IP.

SF.4: Trusted communications inside the SoC: TrustSoC estab-
lishes secure communications between hardware IPs and software
applications inside the heterogeneous SoC. With this security func-
tionality, TrustSoC does not rely on third party’s security features
and ensures that the IPs introduced are operating as intended.

SF.5: Side-channel attack resilience: TrustSoC embeds protec-
tions against software side-channel attacks by restricting the cache
access with identifiers and creating different and isolated cache par-
titions for each running application. The operating rules of TrustSoC
also stipulated the flush of the cache on each context switch or end
of utilization of the cache by an application.

B. TrustSoC architecture

TrustSoC embeds ARM Cortex processors. This choice is moti-
vated by the fact that ARM has a strong presence in the SoC and
SoC-FPGA markets. ARM processors can be found in the main SoC-
FPGAs of AMD-Xilinx and Intel. Nevertheless, it would be possible
to employ any other kind of processors in TrustSoC such as RISC-V.

TrustSoC uses small distributed security wrappers to create trusted
communications between the hardware accelerators, peripherals and
applications. The security wrappers aim to distinguish between illegal
and legitimate transactions. To establish this secure communication,
TrustSoC assigns an IP identifier and a world identifier to each
hardware resource in the SoC. These identifiers are different, unique
and hardware-coded. They are assigned pre-synthesis and cannot be
changed. Each security wrapper comes with a set of permissions
that specifies the access rights for every hardware resource to the
underlying component.

These identifiers are transported through the communication bus,
which is an AXI instance for the prototype presented in this work.
AXI is a slave/master protocol. It has five separate channels: write
address (AWADDR), write data (WDATA), write response (BRESP),

read address (ARADDR), read data (RDATA) and the optional read
response (RRESP). The AXI protocol operates on handshake mech-
anisms with ready and valid signals for each channel. The response
channels (BRESP and RRESP) indicates the state of the transaction
to the master: OKAY when the transaction was successfull, SLVERR
or DECERR when an error had occurred.

In addition, the AXI protocol allows to use user signals to transport
added information up to 1024 bits without overhead. We leverage
this feature in TrustSoC: each request on the SoC communication
bus has the IP identifier and the world identifier added through
the AXI user signals. The width of the identifiers depends on the
number of components and worlds in the SoC. Similarly, for the
identifier of the worlds we use ⌈log2(max(worlds))⌉ bits. The world
identifier is used to extended the NS bit of the ARM TrustZone.
Since it is hardware-coded and we assume that the AMD-Xilinx
tool chain is trusted the world ID cannot be changed preventing
attacks like [10]. Additionally, the distributed controller prevents
unauthorized modifications. When a security wrapper receives a
request, it compares the IP and world identifiers with its list of access
policies (read/write). The access rights are hardware-coded but may
be changed at boot time through a software secure configuration.
After the boot configuration, the policies are set and can no longer
be changed. If a request conveys a correct address and world, plus
it respects the security policies, it is forwarded to the underlying
component. In the case where an anomaly is detected, the wrapper
discards the data, sends a null response, and raises an error on
the AXI bus through the response XRESP signals. These hardware-
coded identifiers and access rights verify the SF.4 security feature in
subsection IV-A. Furthermore, the secure boot configuration that can
change the access rights will provide more flexibility to the designer.

The distributed security wrappers also embed simple security
policies to oversee the operation of the IP. For example, we specify
the reset after every use of the component to prevent the reuse of
data. These security policies correspond to the SF.1 and SF.3 security
features.

C. Multiple security worlds

We use an ARM processor in TrustSoC due to its large availability.
Our proposal is an extension of the ARM TrustZone technology. We

CPU

FPGA

CORE 1 CORE 2

 UART DVFS JTAG

Rich OS

Secure
worlds

Normal world

Secure OS

LegendSoC

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER

SoC communication bus

IP_1 ID
S_WRAPPER

S_IP_2 ID
S_WRAPPER

S_IP_1 ID
S_WRAPPER

ID IDID ID ID IDID ID ID

APP_1_1

S_APP_1_1

S_APP_1_2

APP_1_1 APP_2_1

APP_2_1

S_APP_2_1

S_APP_2_2

S_WRAPPER

ID

ID ID ID

Cache

FLASH ROM RAM

World ID = 01

(a) Operation of one of the secure world

CPU

FPGA

CORE 1 CORE 2

 UART DVFS JTAG

Rich OS

Secure
worlds

Normal world

Secure OS

LegendSoC

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER

SoC communication bus

IP_1 ID
S_WRAPPER

S_IP_2 ID
S_WRAPPER

S_IP_1 ID
S_WRAPPER

ID IDID ID ID IDID ID ID

APP_1_1

S_APP_1_1

S_APP_1_2

APP_1_1 APP_2_1

APP_2_1

S_APP_2_1

S_APP_2_2

S_WRAPPER

ID

ID ID ID

World ID = 00

Cache

FLASH ROM RAM

(b) Operation of the non-secure world

Fig. 3. Architecture of the operation of TrustSoC

aim to give the designer more flexibility, but especially more isolation
on their design since the designer can isolate or group hardware IPs
or software applications by worlds. With our trusted communication
system and operating rules we address the vulnerabilities of the
basic ARM TrustZone technology. We provide isolation between the
worlds making it impossible for a malicious entity to get information
on a victim that would reside in one of the secure worlds. A
potential attacker also could not modify the identifiers to perform
an illegal access to a world where it does not belong. Dedicated
security wrappers control the accesses to the memories making it also
impossible for a malicious entity to perform illegal memory accesses.
With TrustSoC, the designer chooses the number of worlds they wish
in their system. The encoding of the identifier of the worlds is given
by ⌈log2(max(components))⌉ bits. This enforces the SF.2 security
feature.

The Fig.3 illustrates an example of TrustSoC applied to a design.
The secure worlds are identified with different levels of green and
the normal world is identified with dark red. This figure shows an
example of the encoding in a system where there are three worlds.
Fig.3a illustrates the isolation between entities from different worlds:
resources of the secure worlds, encoded with world ID = “01”,
are inaccessible to the normal world in Fig.3b. The hardware and
software components in the system cannot communicate directly with
each other without authorization. Also, the components cannot access
or modify a memory partition without authorization. This applies to
all operations of the different worlds. The authorizations are enforced
by the distributed security wrappers and their policies.

The non-secure world components cannot access resources from
the secure worlds, however this restriction is not applied to the secure
worlds. For example, an application running in a secure world could
delegate some computation to a non-secure hardware accelerator. In
this case, after the end of processing the IP would be automatically
reset by its security wrapper to prevent the miss-use of sensitive
data. This rule is also applied for cache partitions which are flushed
when switching from one world to another. This reduces the overall
performance but provides a better level of security and contributes to
the SF.5 security feature.

D. Memory protection

One feature of TrustSoC is to protect memory resources from
illegitimate accesses and isolate the partitions of the different worlds
between themselves. This is enforced by a security wrapper connected

to the AXI4 communication bus and then to the memory. Each request
coming from the bus is verified by the security wrapper. It verifies
that every request complies with the security policies. It compares the
identifiers of the transaction, which component is the sender, and in
which world the system is currently operating, using the access rights
table belonging to the underlying component. It accepts and forwards
the transaction when the rights are verified, otherwise it discards the
data and raises an error on the bus through the SLVERR signal.

E. Prototyping and testing

In this subsection, we provide implementation results from an
AMD-Xilinx Zynq-7000 SoC-FPGA (XC7Z010-1CLG400C). We
used the Xilinx Vivado 2020.2 toolchain to implement the TrustSoC
prototype. The distributed security wrappers presented in subsection
IV-B were described in VHDL. We used these distributed wrappers
to protect five different IPs from cryptographic and signal processing
applications. The implementation results are shown in Table I. The
size of these IPs ranges from 2,747 to 4,903 LUTs. All the hardware
IPs we used are found in online repositories. We evaluated our
hardware implementations with and without the security wrapper,
using as metric the hardware utilization in LUTs, FFs, and the
maximum frequency attainable by the design.

As shown in Table I, the resources overhead induced by the security
wrapper in number of LUTs is 0.34% at most and in number of
registers, 0.13% at most compared to the baseline implementation
costs of the IPs. This resource overhead can be explained by the fact
that we add logic to each IP in order to implement our distributed
security wrappers. In our experimentation we were limited by the size
of the fabric in the AMD-Xilinx Zynq-7000. For example the largest
multiplier instances we could fit in this board used operands of 128-
bits. However, for cryptography applications it is expected to use up
to 512-bits operands. Such larger instances would evidently dwarf the
hardware costs of the security wrapper in comparison. The overhead
in terms of maximum frequencies of operation is not significant.
Indeed, the security wrapper does not affect the critical path of
the hardware accelerators and thus it does not affect the maximum
attainable frequencies. We suspect that the fluctuations that appear
in Table I are due to the non-deterministic nature of the synthesis
process. In conclusion, the security wrapper has a negligible resources
and performance overhead with a significant security improvement.

We then implemented a security wrapper with a BRAM in order
to demonstrate the operation of our system and the costs of the

TABLE I
IMPLEMENTATION COSTS FOR MULTIPLE PROTECTED AND UNPROTECTED

HARDWARE ACCELERATORS FROM AN AMD-XILINX ZYNQ-7000
SOC-FPGA (XC7Z010-1CLG400C).

IP Strategy LUT FF Fmax
(MHz)

Sobel filter
Unprotected 2,783 4,355 219

Protected 2,795 4,359 212
Overhead % +0.4 +0.1 -3.2

ASCON-Masked
Unprotected 2,747 2,545 209

Protected 2,756 2,547 212
Overhead % +0.33 +0.1 +1.4

AES-128
Unprotected 3,048 2,031 128

Protected 3,057 2,034 126
Overhead % +0.3 +0.2 -1.6

Karatsuba-128
Unprotected 2,921 3,061 239

Protected 2,934 3,063 240
Overhead % +0.5 +0.1 +0.5

Montgomery-128
Unprotected 4,903 1,625 102

Protected 4,915 1,627 101
Overhead % +0.2 +0.12 -1.0

7 1
1 2
0 2
9 5
3

9 1
5 2
8 5
0

1
5
3

2
3 2
9 7

7

1
5
2

2
9
1

5
3 8
9 1

5
7

2
9
1

1
1
1
3

9
2 1

6
0

2
9
6

1
1
1
2

1
6
1
6

2 worlds 4 worlds 8 worlds 16 worlds 32 worlds

Number of worlds in the system

0

200

400

600

800

1000

1200

1400

1600

1800

L
U

T
s

 2 components

 4 components

16 components

32 components

64 components

Fig. 4. Results of implementation of the security wrapper attached to a BRAM

world partitioning on a memory block. We implemented this BRAM
security wrapper and tested it with a varying number of worlds
(2,4,8,16,32) as well as a varying number of IPs which requested
access to the memory (2,4,16,63). Fig. 4 shows the results of our
implementations. This prototype allowed us to explore the costs and
scalability of our proposal.

The overhead in resources is attributed to the size of the access-
rights table. This explains the higher overhead for the larger number
of worlds with the most IDs. Currently our implementation employs
LUTRAMS, but it is also possible to use BRAMS which would
reduce drastically the overhead in the number of LUTs. The results of
the timing criteria are not displayed since the variation is negligible.
From the results in Fig.4 we can conclude that the costs of the
security wrapper and world partitioning impose a small overhead on
the protected system, which is very much acceptable with the degree
of protection provided by the proposed solution.

V. DISCUSSION AND BENCHMARK

In this section, we review the state of the art on secure-by-design
architectures for heterogeneous SoCs. We focus on the works which

are the most relevant to our proposal. A qualitative comparison
between these references is shown in Table II.

The most prominent strategy for protecting SoC-FPGAs is ARM’s
TrustZone [4]. This is a security solution available in AMD-Xilinx
lines of SoC-FPGAs. Arm TrustZone divides the resources of the pro-
cessing system in two different worlds: secure and non secure. This
partitioning is then extended to the rest of the SoC: peripherals and
memories. And in the case of AMD-Xilinx SoC-FPGAs also to the
reconfigurable fabric. TrustZone enforces the policies in the system
with an identifier called “NS bit” and some controllers. The security
identifier is directly implemented in the AMBA buses. Despite its
popularity, TrustZone has shown many vulnerabilities that can be
exploited to perform attacks and corrupt the security partitioning
[10]–[12]. Moreover, TrustZone being a proprietary solution, is not
open source which makes it difficult to improve its implementation.

In [2], Bahmani et al. presented an architecture where there are
three different types of software enclaves at different levels in the SoC
(user-space, kernel-space and sub-space). They modified a RISC-V
processor to support an enclave identifier. The rest of the system was
also modified to support the enclave identifier. This identifier was then
used in the rest of the system and filtering blocks were put in place
to determine legitimate accesses. A hypervisor (secure monitor) was
used to configure the permissions. Cure also embedded protections
against cache side-channel attacks. Policies were set in place to
supervise the cache partitioning, allocation and cache eviction. The
proposition was a software security solution for the most part, as there
were no programmable resources embedded in the SoC. Thus, we
consider their solution as not suitable for SoC-FPGAs since a secure
architecture must consider the whole SoC and have both software
and hardware countermeasures.

Nasahl et al. presented in [1] a secure architecture called Hector-
V. The security of their proposal is based on the distinction of the
processors. They use a dedicated processor for the normal applica-
tions and a processor dedicated for the secure ones. To differentiate
between illegitimate and legitimate communications, Hector-V uses
identifiers (core ID, process ID and peripheral ID) and filtering blocks
called “wrappers”. The processors are modified to embed directly
the identifiers. Hector-V uses AXI4 as communication protocol so
the identifiers are propagated using the AXI4 user signals. There
is also distinction in the SoC communication buses. The design
includes two communication systems: one for the data and one for
the configuration. In Hector-V, the peripherals are bound to an entity
and can only accept request from it. The configuration channel is
used to define this entity for each peripheral. A secure monitor is
responsible for the configuration and to oversee the operation of
the communication between all peripherals and the processors. The
authors argue that the duplication of the resources in Hector-V can
mitigate cache and micro-architectural side-channel attacks. However,
this solution would not be entirely viable on a real use-case where the
constraints on resource utilization are high. Also, their proposal does
not allow to embed programmable resources which is an essential
part of SoC-FPGAs. Furthermore, Hector-V only provides a dedicated
processor for secure applications, it does not provide segregation in
multiple secure domains.

Hagan et al. [13] propose a hardware-based pro-active policing
and policy architecture. They deploy hardware-based modules called
“security policy engines” at the system communication level. These
modules are acting as hardware-coded firewalls with a list of permis-
sions that actively monitor the AXI4 SoC communication bus. For
every incoming request, the security policy engine uses the read and
write address channels to determine the legitimacy of the transaction.

TABLE II
COMPARISON OF SOC ARCHITECTURES WHICH PROVIDE PROTECTIONS FOR CACHE MEMORY, PROTECTIONS FOR THE COMMUNICATION BUS,

PROTECTIONS FOR THE PROGRAMMABLE RESOURCES, SEGREGATION INTO MULTIPLE SECURE DOMAINS AND MAKE THEIR CODE AVAILABLE AS WELL
AS THE PROCESSOR TYPE THEY UTILIZE. STANDS FOR NO SUPPORT, FOR SUPPORT BUT WITH LIMITATIONS AND IS FOR FULL SUPPORT.

Architecture Type of processors Programmable
resources
(FPGA)

Protections for
the cache memory

Protections
for the bus

Segregation in multiple
secure domains

CURE [2] RISC-V 3 types of enclaves

Hector-V [1] RISC-V 0

ARM TrustZone [4] ARM 2 worlds

Embedded policing [13] ARM 2 from ARM TZ

Our proposition ARM N worlds (is only limited
by available resources)

They can either grant or deny access to the device according to the
policies stored in a table. The policies are configured via SELinux
and can be updated over time. The system also allows to integrate
programmable logic (FPGA). Furthermore, it uses ARM TrustZone to
provide the designer with the possibility of having a secure domain in
their architecture. However, the architecture does not embed security
solutions for the cache memory and the user is restricted to two
worlds with a single secure one.

VI. CONCLUSION

This paper’s main contribution has been to present a novel way
of segregating SoC-FPGA into different secure domains based on
the ARM TrustZone technology. The security is then enforced with
operating policies that prevent any unwanted behavior. To enforce the
policies, each hardware resource is given an hardware-coded identifier
that cannot be changed. The hardware resources are also given a table
of permissions that specify the hardware resources that have the priv-
ileges to access the resource. The permissions list is hardware-coded
and configured at boot by a software secure configuration. After
the initial configuration the permissions cannot be changed. Small
distributed communication controllers are then used to monitor the
SoC communication bus and determine, according to the resource’s
policies, the legitimacy of every transaction.

The proposed architecture has been prototyped on an AMD-Xilinx
Zynq-7000 SoC. Our experimentation demonstrated that the hardware
overhead of the communication monitoring are small in relation to the
sized of the purported application domains. The operational frequency
of the system would not be affected, and only a small latency over-
head is incurred. In regards to memory protections, we have shown
that there is a lineal relationship between the hardware overhead
and the number of secure worlds and components considered in the
system. This can be mitigated with the use of dedicated memories
available in most modern platforms.

This paper has laid the foundation for a trusted heterogeneous SoC
architecture secure-by-design called TrustSoC. We have demonstrated
that security cannot be an add-on functionality and must be carefully
thought out from the moment of conception of the architecture. This
also must be a dual security model: hardware and software. As
our experimental evaluation of the hardware overhead has shown,
with a hardware prototype of TrustSoC, this work conduces to the
proposition of an efficient and light secure-by-design architecture.
It is also a scalable architecture defined at the design stage by the
designer.

ACKNOWLEDGMENT

This work is conducted in the framework of the TrustSoC project
funded by the French Agence de l’Innovation et de la Défence (AID).
The authors acknowledge the support of the French Agence Nationale
de la Recherche (ANR), under grant ANR-19-CE39-0008 (project
ARCHI-SEC)

REFERENCES

[1] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “HECTOR-V:
A Heterogeneous CPU Architecture for a Secure RISC-V Execution
Environment,” in Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security. New York, NY, USA:
Association for Computing Machinery, May 2021, pp. 187—-199.

[2] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-
R. Sadeghi, and E. Stapf, “CURE: A Security Architecture with CUs-
tomizable and Resilient Enclaves,” in Proceedings of the 30th USENIX
Security Symposium., Berkeley CA, USA, Aug 2021.

[3] A. Fitch. Arm-Based Chips Make Inroads With Apple, Amazon. The
Wall Street Journal. [Online]. Available: https://www.wsj.com/articles/
arm-based-chips-make-inroads-with-apple-amazon-11674436002

[4] ARM. TrustZone for Cortex-A. [Online]. Available: https://www.arm.
com/technologies/trustzone-for-cortex-a

[5] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security,” Information Quarterly, vol. 3, no. 4, pp. 18–24, 2004.

[6] ARM. (2003) AMBA AXI and ACE protocol specification AXI3, AXI4,
and AXI4-lite.

[7] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: The Case of AES,” in Proceedings of the Cryptographers’
Track at the 2006 RSA Conference. Springer, Feb 2005, pp. 1–20.

[8] L. Bossuet and E. M. Benhani, “Security Assessment of Heterogeneous
SoC-FPGA: On the Practicality of Cache Timing Attacks,” in Proceed-
ings of the 19th IFIP/IEEE International Conference on Very Large Scale
Integration. IEEE, Oct 2021, pp. 1–6.

[9] AMD-Xilinx, “Programming ARM TrustZone Architecture on the Xilinx
Zynq-7000 All Programmable SoC,” AMD-Xilinx, Santa Clara CA,
USA, User Guide UG1019 (v1.0), 2014.

[10] E. M. Benhani, L. Bossuet, and A. Aubert, “The Security of ARM
TrustZone in a FPGA-Based SoC,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1238–1248, Feb 2019.

[11] E. M. Benhani and L. Bossuet, “DVFS as a Security Failure of
TrustZone-enabled Heterogeneous SoC,” in IEEE International Confer-
ence on Electronics, Circuits and Systems, Dec 2018.

[12] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking TrustZone memory
isolation and secure boot through malicious hardware on a modern
FPGA-SoC,” Journal of Cryptographic Engineering, 2020.

[13] M. Hagan, F. Siddiqui, and S. Sezer, “Policy-Based Security Modelling
and Enforcement Approach for Emerging Embedded Architectures,” in
IEEE International System-on-Chip Conference, 2018.

