
1

Efficient Adaptive Multi-level Privilege Partitioning
with RTrustSoC

Raphaële Milan, Lilian Bossuet, Senior Member, IEEE, Loı̈c Lagadec, Carlos Andres Lara-Nino, Brice Colombier
and Théotime Bollengier

Abstract—In recent years, heterogeneous SoCs—comprised of
multiple processor cores and programmable logic—have greatly
progressed both complexity and performance. From a security
point of view, this leads to an expansion of the attack surface ex-
posed to adversaries. To address this issue, in this article, we pro-
pose a novel heterogeneous SoC architecture called RTrustSoC.
Our proposal includes an innovative fully-reconfigurable post-
deployment strategy for partitioning the SoC architecture into
multiple exclusion levels—worlds—with customizable degrees of
privilege. We aim to provide SoC designers with fine control
over the security of the system by segregating trusted hardware
components from third-party IPs with “on-demand” hardware
isolation. Therefore, we expect that an RTrustSoC instance could
evolve from a multi-world SoC to a fully trusted platform as
IPs progressively develop. RTrustSoC also proposes a dynamic
reconfigurable penalty system to monitor the third-party IPs and
take measures in case of a detected abnormal behavior. Our
experimental testing on an AMD-Xilinx Zynq-7000 SoC-FPGA
showed the penalty of the proposed isolation strategy to be small,
up to 1% in LUT and 0.7% Flip Flop utilization, thus enabling
to an efficient security solution. RTrustSoC introduces a novel
design paradigm, evolving from the binary notion of security—
trusted vs untrusted—into a flexible set of worlds that can be
adapted to any scenario. We demonstrate a real case scenario
of RTrustSoC use on time-based cache memory attacks with
implementation results.

Index Terms—Secure system-on-chip, Hardware IP core pro-
tection, Hardware security, Secure architecture

I. INTRODUCTION

HETEROGENEOUS System-on-a-Chip (SoC) platforms
are found in multiple application domains thanks to

their high performance and flexibility. Their use cases range
from general-purpose to critical military applications: high-
frequency trading, cloud services, telecommunications, among
others. To adapt to an even wider range of environments,
the number and variety of components inside the SoC are
constantly increasing. Today, typical heterogeneous SoCs em-
bed one or several general-purpose processor cores, one or
several application-specific processor cores, several hardware
accelerators (which may be reconfigurable or not), large mem-
ories, power management units, communication interfaces,
analog components, and so on. SoC-FPGAs are among the

R. Milan, L. Bossuet, and B. Colombier are with the Université Jean
Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-
42023 in SAINT-ETIENNE, France. (email: {raphaele.milan, lilian.bossuet,
b.colombier}@univ-st-etienne.fr). C.A. Lara-Nino is with the Universitat
Rovira i Virgili, Departament d’Enginyeria, Informàtica i Mathemàtiques,
TARRAGONE, Spain. (email: carlos.lara@fundacio.urv.cat). L. Lagadec and
T. Bollengier are with the Lab-STICC, ENSTA Bretagne, in BREST, France.
(email: {loic.lagadec,theotime.bollengier}@ensta-bretagne.fr).

more complex heterogeneous SoCs. Contemporary examples
include the Intel Agilex FPGA·SoC, and the AMD-Xilinx
Zynq UltraScale+ MPSoC. Although this paper focuses on
this generation of devices, our work can be extrapolated to
other SoC platforms.

The increasingly complex design of SoCs poses a greater
challenge for security auditors. The attack surface available
for a malicious entity expands with the continuous inclusion
of additional components in the device creating multiple and
varied risks. As the market pushes for seemingly yearly
technology releases [1], manufacturers are hard pressed to
meet such deadlines. This leads designers to reuse hardware
descriptions and software libraries with the aim of reducing
development time. Quite often, these modules are created by
third parties and then licensed to be used in the SoC. If even
a single component of the SoC is not designed in-house, the
chain-of-trust may be broken. This is usually not an issue as
long as the third parties are reliable. However, by chance, their
intentions are not legitimate, the consequences can be severe
[2]–[4].

This paper addresses these security issues by presenting a
novel lightweight solution for securing heterogeneous SoCs
we named RTrustSoC. We introduce an innovative way of
segregating the heterogeneous SoC resources into multiple
levels, or worlds, with varying degrees of privilege. This novel
approach was inspired by the ARM TrustZone technology [5].
In TrustZone, the components of the system can be declared as
“trusted” or “untrusted.” The trusted modules have full access
to the platform while untrusted components have restricted
access. A secure monitor is responsible for performing the
context switches. TrustZone effectively performs spatial par-
titioning of the device into two regions. However, a binary
system of classes is too coarse to classify all the components of
modern SoCs. To overcome the problem, RTrustSoC provides
a customizable number of worlds that can have an equally
large set of customizable privileges.

This idea relies on configurable small reconfigurable se-
curity monitors that “wrap” each component and audit its
interaction with the SoC bus. These security wrappers enforce
the on-demand hardware isolation required by each world via
security policies to prevent any unauthorized behaviors and
restrict unauthorized accesses to other resources. They can
even disable the ability of a component (a hardware IP or
a software application) to make communication requests via a
reconfigurable penalty system. Another limitation of ARM’s
TrustZone is that it offers support for generic SoC architec-
tures, which reduces its usefulness in systems with custom



2

hardware accelerators. AMD-Xilinx addressed this issue by
proposing a TrustZone extension that can also isolate the IPs
in the FPGA through the AXI bus. However, the approach has
been shown to be vulnerable to elementary physical attacks
[6]. To solve this issue, RTrustSoC also extends the notion
of secure worlds to hardware accelerators: co-processors or
FPGA. As the multi-world partition is enforced by individual
security monitors, this explicitly improves the “poor man’s
security” approach of AMD-Xilinx.

RTrustSoC can be fully integrated into contemporary het-
erogeneous SoCs that feature ARM cores as well as in novel
platforms that intend to use those architectures. In this work,
we use the former approach: we implement an RTrustSoC pro-
totype in heterogeneous SoC. We use an AMD-Xilinx Zynq-
7000 SoC-FPGA (XC7Z010-1CLG400C) as testing platform
to conduct experiments and test for performance. Our findings
show that RTrustSoC has a minimal resource overhead, with
up to 1% LUT resource utilization and up to 0.7% FF
utilization for the fully trusted communication system.

The rest of the paper is organized as follows. Section II
presents the security context, related work and a comparison
with the state of the art. Section III describes the threat model.
Section IV presents RTrustSoC: the lightweight heterogeneous
SoC architecture secure-by-design. Section V provides the
estimated costs of the approach with the relevant implementa-
tion results. Section VI presents the application of RTrustSoC
to a time-based cache memory attack scenario. Section VII
concludes the paper.

II. STATE OF THE ART

A. Security Overview

The literature contains multiple reports of vulnerabilities on
SoC platforms. Most are discovered and reported by security
researchers and have no significant impact for the end users.
But in other cases, manufacturers have been requested to
redesign their products [7]. When looking at these records, we
identified common failure points. For example, the SoC com-
munication bus is a particularly important source of weakness
in the security of the system. In [6], [8], the authors showed
how to perform privilege escalation attacks by targeting a
single bit of the bus. Another popular point of attack is the
device’s power distribution network (PDN). Works like [9]
and [10] have demonstrated the feasibility of leveraging the
shared power or clock trees of commercial heterogeneous
SoCs as intrinsic channels for bypassing isolation policies. The
memory architecture of SoCs also tends to be vulnerable. It
has been shown that shared DDR can be exploited to cause
faults in the system [11]. Cache memories can leak side-
channel information concerning the operation of the platform
[12] and also enable the covert communication of data [13].
In heterogeneous SoCs, the FPGA itself represents a major
liability. Many authors have demonstrated how to leverage the
reconfigurable fabric to cause faults in the system [14], transfer
data covertly [10], and implement remote monitoring schemes
that provide high quality side-channel information [15], [16].

Another relevant part of the literature focuses on coun-
termeasures against the aforementioned attacks. Some works

like [17]–[19] propose different approaches to secure a SoC
through its communication bus. However, these solutions focus
on processor architectures that are not native to commercial
heterogeneous SoCs. Indeed, most of these platforms feature
an array of ARM processors. This is consistent with current
trends, as ARM is the leader in the smartphone processor
market [20]. The solutions available in the literature also
fail to consider the heterogeneous SoC as a whole, i.e. they
do not provide security protections for all the heterogeneous
SoC components. Lastly, they require major modifications of
the architecture to prevent most vulnerabilities. This means
their ideas are worth exploring for applications in future SoC
designs, but they fail to address the challenges of platforms
that are already in use.

Given that SoCs may be used to handle sensitive data,
they have become prime targets for malicious attackers. The
main aims of attacks on SoCs range from stealing sensitive
data to creating a denial-of-service. These attacks are mainly
software-based and target the processing system of the SoCs.
They are partially possible because some SoC resources are
shared between applications. To give an example, in some
recent multi-processor SoC architectures the last level of cache
is shared by different cores. Depending on the cache memory
access time, a malware can leverage this characteristic to de-
termine whether or not the target application has accessed the
data [21]. This provides the adversary with helpful information
concerning the target application. This attack is also feasible
on heterogeneous SoCs [13].

B. Protected SoC architectures
The best known strategy for protecting heterogeneous SoCs

is ARM TrustZone [5]. The ARM TrustZone technology is
available for heterogeneous SoCs with ARM processors such
as the AMD-Xilinx SoC-FPGAs. This technology splits the
resources of the processing system into two different worlds:
secure and non-secure. Partitioning is then extended to the
rest of the SoC: peripherals and memories, and in the case
of AMD-Xilinx SoC-FPGAs also to the reconfigurable fabric
[22]. Figure 1 is a didactic example of this technology applied
to a heterogeneous SoC: the red blocks represent the non-
secure world and the green blocks the secure one. This
protection strategy is applied to the processing system (called
PS in Fig. 1), to the memory resources, and also to the
programmable logic (called PL in Fig. 1). The ARM TrustZone
technology allows each CPU core to execute software appli-
cations in one of the two worlds, whereas with the extension
proposed in the AMD-Xilinx SoC-FPGAs, each hardware IP
embedded in the programmable logic is linked to one of the
two worlds.

TrustZone enforces the policies in the SoC with an identifier
called “NS bit” and some controllers. To do so, TrustZone
uses the bus communication bus as shown in Fig. 1. Indeed,
communications within a SoC pass through system buses like
the Advanced Microcontroller Bus Architecture (AMBA). This
technology is available for ARM cores, and both AMD-Xilinx
and Intel SoC-FPGA use ARM cores. The Advanced eXtensi-
ble Interface bus (AXI) [23] is the main communication chan-
nel between the processing system and the programmable logic



3

MEMORY

PL (FPGA)

PS (CPU)
CORE 1 CORE 2

IP_1
IP_2

S_IP_1

S_IP_2

PERIPHERALS

UART SPI DVFS JTAG

Non-secure world

LegendSoC

NS bit = 0
NS bit = 1Cache

FLASH RAM ROM

TA_1_1

TA_1_2

TA_2_1

TA_2_2

APP_2_1

APP_2_1

APP_2_1

APP_2_1
Secure world

Secure OS

Rich OS

Fig. 1. An example of heterogeneous SoC architecture using ARM-TrustZone technology. The red blocks represent the non-secure world and the green blocks
represent the secure world.

in the case of AMD-Xilinx SoC-FPGA. In these platforms,
a proprietary IP (the AXI interconnect) acts as a translator
between the ARM AXI and AMD-Xilinx’ own specification:
the AXI4 bus. In this type of communication bus system, the
NS bit is sent on the AMBA buses and an AXI4 bus to allow
the programmable logic to be aware of the world (secure/non-
secure) in which the software application is running at any
time. This prevents non-secure resources (in the processing
system, programmable logic and memories) from accessing
secure ones. The code and data within the secure world are
assumed to be protected from intruders.

TrustZone was originally conceived as an efficient, holistic
security approach, but despite its popularity, it has been shown
to have many vulnerabilities that can be exploited to perform
attacks and corrupt the security partitioning [6]–[8]. In [6], the
authors target the communication bus of the SoC-FPGA, and
they show that a hardware Trojan [24], [25] can modify the
AXI communication signals and force an arbitrary value on the
NS bit. This modification can jeopardize the rest of the system,
leading to privilege escalation or denial-of-service attacks. In
addition to this attack, the work reported in [8] uses power
management of the heterogeneous SoC to perform covert
transmission of data between secure and non-secure worlds
despite TrustZone’s isolation policies. In [7], the authors used
a hardware Trojan to corrupt the secure boot and break the
memory isolation. Modifying secure boot allows an attacker to
change permissions to critical information, data or instructions,
and can lead to privilege escalation. What is more, because
TrustZone is proprietary, i.e. is not open source, it is difficult
to improve its implementation.

In [18], Bahmani et al. propose an architecture called
“CURE” containing three different types of software enclaves
at different levels in the SoC: user-space, kernel-space and
sub-space. The authors modify a RISC-V processor to support
an enclave identifier. The rest of the system is also modified
to support the enclave identifier. This identifier is then used

in the rest of the system, and filtering blocks are installed to
check the legitimacy of accesses to the enclave. A hypervisor
(secure monitor) is used to configure the permissions. CURE
also embeds protections against cache side-channel attacks.
Policies are installed to supervise cache partitioning (L1),
allocation and eviction. For each cache line in CURE, the
enclave identifier is attached to it, allowing the hardware-
coded arbiters to determine illegitimate accesses and prevent
illegal eviction. The cache system is also flushed whenever
there is a context change. CURE is mostly a software security
proposal, as no hardware (logical) resources are embedded in
the SoC. Thus, we consider their solution as unsuitable for
heterogeneous SoCs since a secure architecture must take the
whole SoC into consideration and provide both software and
hardware protection.

In [17], Nasahl et al. present a secure architecture called
“Hector-V”. In their proposal, security is based on differen-
tiating between the processors. The non-trusted applications
operate in a rich execution environment in the application
processor and the trusted applications operate in a trusted
execution environment in the secure co-processor. To differ-
entiate between illegitimate and legitimate communications,
Hector-V uses identifiers (core ID, process ID and peripheral
ID) and filtering blocks called “wrappers”. The processors are
modified to directly embed the identifiers. Hector-V uses AXI4
as a communication protocol, so the identifiers are propagated
using the AXI4 user signals. The SoC communication buses
are also distinguished into two communication channels: one
for the data and one for the configuration. In Hector-V, the
peripherals are bound to an entity and can only accept requests
coming from it. The configuration channel is used to define
the entity for each peripheral. A secure monitor is responsible
for the configuration and for overseeing the operation of the
communication between all peripherals and the processors.
The authors argue that duplicating the resources in Hector-



4

TABLE I
COMPARISON OF PROTECTED SOC ARCHITECTURES. THE SYMBOLS INDICATE NO SUPPORT, LIMITED SUPPORT, AND FULL SUPPORT.

Architecture Type of
processors

Trusted
hardware

IPs

Dynamic
penalty system

Protections for
the cache memory

Protections
for the bus

Secure
domains

Protections
against

DoS attacks

CURE [18] RISC-V 3 types of enclaves

Hector-V [17] RISC-V 1

ARM TrustZone [5] ARM 1

Embedded policing [26] ARM 1 from ARM TZ

E-IIPS [27] DLX 0

ProMiSE [28] RISC-V 0

TrustSoC [29] ARM N worlds

RTrustSoC (this work) ARM N worlds

V can mitigate micro-architectural attacks and in part cache
side-channel attacks. However, in a real use case where the
constraints on resource use are high, this solution would not
be entirely viable. What is more, their proposal does not allow
programmable hardware resources to be embedded which is
an essential part of SoC-FPGAs. Furthermore, the proposal in
Hector-V is only a dual world segregation, similar to ARM
TrustZone.

Hagan et al. [26] propose a hardware-based pro-active
policing and policy architecture. They use hardware modules
called “security policy engines” at the system communication
level. These modules act as hardware-coded firewalls with
a list of permissions that actively monitor the AXI4 SoC
communication bus. For every incoming request, the security
policy engine uses the read and write address channels to de-
termine the legitimacy of the transaction. They can either grant
or deny access to the peripheral depending on the policies
stored in a table. The policies are configured by SELinux
and can be updated over time. The system also allows the
integration of programmable logic (FPGA). In case an attack
is detected, blocks called “security response engines” can
initiate responses. The responses can go from erasure of secret
keys to system reset. Furthermore, it uses ARM TrustZone to
provide the designer with the possibility of having a secure
domain in their architecture. Their architecture fails to provide
several secure software environments to isolate the user trusted
applications from each other. The active responses are neither
very dynamic nor particularly flexible. Their proposal does not
provide solutions against cache-based side-channel attacks.

In [27], Basak et al. propose a flexible framework to
implement security policies in a SoC based on two types
of communication controllers. The first one is centralized
and is a plug-and-play module implementing the SoC poli-
cies called “extended infrastructure IP for security”. It is
microcontroller-based and can be updated via firmware code.
The second controllers comprise small “security wrappers”
connected to each IP block. They identify security events
relevant to the security policies they enforce and communicate
any violations of security policies to the centralized controller.
Upon detection of a violation, the system can take action
for example, by disabling the IP interface. However, like in
[17], the authors duplicate the resources with the two types of

communication controllers, meaning this solution would not be
entirely feasible on a system where the constraints on resource
utilization are high. Additionally, the architecture does not
provide multiple secure domains nor dynamic responses to
attacks. Their proposal fails to provide solutions against cache-
based side-channel attacks.

In [28], Singh et al. presented a hardware framework to
quantify the security health value of a device inside a zero-
trust network with a trust score. This is done by hardware-
coded blocks that monitor the CPU cores at any time during
execution and log all the operation information. A dedicated
secure co-processor then uses the gathered data and executes
a threat estimation model that computes a trust score. This
score evolves over time and the closer it gets to zero, the more
untrustworthy the program it is linked to is considered. The
system can take immediate action according to the value of
the trust score and provides dynamic access policies. However,
the proposal is mainly based on software and the design lacks
of programmable resources. This architecture is designed for
network applications which is not our target, plus it uses neural
networks for the computation. This type of calculation is not
viable for embedded systems where the constraints on resource
use are high. Therefore, in our opinion, their solution is not
suitable for heterogeneous SoCs.

In addition to these works, we can find other solutions,
hardware or software, to secure the cache memory against
time-based side-channel attacks. However, we are not going
to cite them in our comparison since these works only focus
on the cache memory, whereas we target the full architecture
of the SoC. In [30], the authors present a multi-compartment
solution applied to an embedded system and more precisely
to the cache memory. Similarly to CURE, each cache line
is assigned an identifier and with the help of hardware-
coded firewalls a logic check of access rights is performed
preventing any illegitimate access or modification. Only cache
lines belonging to a certain identifier are flushed when needed
and not the entire cache memory. This allows a performance
gain. In [31], the authors concentrate on the software with the
proposition of automated compiling techniques that eliminate
key-dependent conditional instructions. Another possibility is
to use constant-time techniques such as [32], so the adversary
is not able to observe cache access behavior during the



5

execution. The attacker is not able to recover any sensitive
information. The downside of the software-based solutions to
mitigate side-channel attacks on the cache memory is the loss
of performance of the system. Nonetheless, they are easier to
implement than hardware-based propositions.

Table I provides a qualitative comparison of the state of the
art solutions that are the most relevant to this work. Note that
the TrustSoC [29] listed in Table 1 is a first initial version
of RTrustSoC with less protections and flexibility features
than the most recent version. We consider solutions that use
ARM cores to be more viable because they are native to
most heterogeneous SoCs available on the market today and
therefore easier to integrate unlike RISC-V processors. Most
of the solutions embed bus protections and cache memory
protections, but not many consider the programmable logic,
and even fewer propose a concept of trusted hardware IPs.
Some works include protection against DoS attacks, but only
one instance [28] proposes a penalty system where the penal-
ization parameters are reconfigurable at runtime. None of the
solutions in the literature propose a multi-world-based system.
CURE [18] proposes different types of enclaves but limited
to only three, and the remainder propose either no secure
domain at all, or just one, whereas we propose up to N with
different levels of privileges (the number is only limited by
the resources of the system).

This paper aims to extend the distributed hardware mon-
itoring to cover the heterogeneous SoCs as a whole, while
accounting for both factors: software (processing system,
operating system, boot, etc.) and hardware (programmable
logic, bus, hardware IP, etc.). It also offers the designer more
flexibility via a multi-world on-demand segregating method
with more than one secure world. RTrustSoC extends the
notion of trusted applications to the programmable logic with
trusted hardware IPs. We also propose a dynamic penalty
reconfigurable system that can respond in case of a detected
attack performed by a third party. We target threats introduced
during the SoC design which are detailed in the following
threat model.

III. THREAT MODEL

In this paper, we consider several threats from remote
software along with hardware attacks. We called our proposal
RTrustSoC. We consider threats that are relevant to the SoC
design process [33], in particular with the reuse of hardware
IP blocks or software applications. Indeed, as time-to-market
tends to progressively shorten, designers do not have the
time to develop every software or hardware component, and
consequently use third-party blocks. These components may
contain malicious routines or circuits that can be used to
perform an attack on the system. These malicious entities can
affect the system in various ways. They can be passive, i.e.
collect secret information that is meant for another hardware
IP or software application. They can also interfere more deeply
with the system by changing the contents of communications
or by taking control of a communication that is not intended
for them. This can cause severe damage to the system.
For these reasons, RTrustSoC considers malicious hardware

IPs or software applications that are introduced during the
design stage. These malicious entities can perform the attacks
cited above such as: illegitimate accesses, modifications of
the memory contents, modifications of the communication
contents [6] or take control of the power supply to perform
covert channels [8]. RTrustSoC considers time-based cache
memory side-channel attacks. The attack can be performed by
malicious third-party hardware IPs targeting a trusted software
application running in a secure world [13]. The malicious IP
can modify the contents of the cache memory contents and
access secure regions.

Unlike TrustSoC [29], RTrustSoC also covers denial-of-
service attacks. The goal of these attacks is to prevent le-
gitimate users from using the system resources. In the case
of RTrustSoC, we consider a malicious entity flooding the
SoC communication bus with illegitimate requests thereby
preventing legitimate users from using a resource.

The threats we consider are relevant and correspond to the
process of heterogeneous SoC design. RTrustSoC mitigates
these threats by introducing minimal additional components
for each hardware IPs enforcing policy to guarantee that no
abnormal behavior can take place in the architecture such
as illegal accesses, modifications of the memory contents,
changes in privileges, etc.

We assume that the CAD toolchain is trusted and cannot
be used to perform illegal modifications of the design. The
synthesis tool is responsible for the components added to
each hardware IPs. The additional components are trusted and
cannot be modified by the synthesis tool. We also assume that
the SoC and the founder are trusted. No physical modification
can be made to the circuit. Attacks that require physical access
to the architecture are beyond the scope of this paper.

IV. RTRUSTSOC

This section describes the secure-by-design heterogeneous
SoC architecture we named RTrustSoC. It is based on a multi-
world segregating method: from one non-secure world up
to N secure worlds with the possibility of having different
privilege levels (N chosen by the designer and only limited
by the resources in the system). The idea behind RTrustSoC
is to extend the notion of trusted applications and their trusted
environments available in ARM TrustZone in the CPU to the
whole SoC and to be able to multiply these environments to
suit the designer’s needs. We want to provide designers with
isolated, safe and trusted environments in the programmable
logic so they have hardware IPs they can trust. Trusted
IPs have the same guarantees as trusted applications, i.e.
confidentiality of their design and data, privacy, integrity and
control over access. Their design and data are isolated from
the non-secure world and the segregation, and access controls
are added. The security of the SoC modules is enforced by
on-demand hardware isolation and control.

RTrustSoC is a flexible and scalable architecture that can
be adjusted to the designer’s requirements. Figure 2 presents
the RTrustSoC concept. The processing system includes k
cores but could be extended to support different architectures.
RTrustSoC also embeds a programmable logic region with m



6

CPU

FPGA

 UART DVFS JTAG

RTrustSoC

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER
ID IDID ID ID IDID

FLASH
ID

ROM
ID

RAM

Permisssion table
Device 0 address W/R

Device 2

address W/R

Device N address W/R

...
...

..

...
...

..

...
...

..

Software secure boot
configuration

ID ID ID

Device 1

address W/RDevice 2 address

S_WRAPPER

ID

AXI4 interface

Memory interface

Test logic :

If (world_ID and IP_ID
match with the

permission table) Then : 
request forwarded

Else : 
request not forwarded

ID ID ID

World ID 

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

k

m

S_IP_1

S_WRAPPER

ID
PT

S_IP_1

S_WRAPPER

ID
PT

2

ID
PT

IP_1

1                       HARDWARE ENCLAVE

Rich OS

Secure world 1
Non-secure world
Secure OS

Secure world N
ID Hardware IP Identifier

Legend

RAM

S_WRAPPER ID

S_WRAPPER
ACP

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

APP_1_1

APP_1_N

S_APP_1_1

S_APP_1_N

2
1                                 CORE

ID ID ID
Cache

Request

Fig. 2. Example of the proposed RTrustSoC architecture

hardware enclaves, a communication bus, several peripherals
and shared memories. Each core has a non-secure world,
shown in red, and N secure worlds, shown in green. Finally,
RTrustSoC embeds tiny, distributed communication controllers
called “s wrapper”, for security wrappers, to enforce RTrust-
SoC’s security policies. These policies allow the security
wrappers to distinguish between legitimate and illegal access
with the help of hardware-coded identifiers. With the extension
of the security wrappers, RTrustSoC can also take immediate
action when an attack is detected. It does so through a system
of dynamic penalties that prevent DoS attacks on the system.
The security wrappers enforce the isolation, the integrity and
the safe environments required by the trusted hardware IPs
and trusted applications. However, to propose a secure-by-
design architecture, we must provide a set of essential security
features. We present our security features in the following
subsection.

A. RTrustSoC security features
SF.1: Operating rules: RTrustSoC comes with a set of

operating rules that must be enforced as policies to prevent any
unwanted behavior and create trust between the components
during operation.

SF.2: Extended secure multi-worlds: RTrustSoC provides
segregated on-demand multiple secure domains with the pos-
sibility of having different privilege levels to allow designers
more flexibility for their design. In contrast to ARM TrustZone
technology, RTrustSoC allows the designers to choose the
number of secure worlds they want in their design. This
extends the notion of trusted execution environments to the
rest of the SoC, not only to the software applications but also
to the hardware IPs.

SF.3: Programmable logic in the security resources:
RTrustSoC fully integrates the programmable logic in the se-

curity resources by using a unique identifier for each hardware
IP, again offering a secure environment during execution.

SF.4: Trusted communications inside the SoC: RTrustSoC
establishes secure communications between hardware IPs and
software applications inside the heterogeneous SoC. Thanks
to this security functionality, RTrustSoC does not have to
rely on a third-party’s security features and guarantees that
the IPs introduced are operating as intended. RTrustSoC also
guarantees that no malicious entity can take control of the SoC
communications: change communications or monopolize the
SoC communication bus.

SF.5: Side-channel cache time-based attack resistance:
RTrustSoC embeds protections against remote time-based
side-channel attacks targeting the cache memory by restricting
access to the cache either from the processing system or the
programmable logic. This is done with the use of identifiers
and by creating different isolated cache partitions for each
world. The isolation is also enforced with the communica-
tion controls that prevent any illegal accesses. The operating
rules of RTrustSoC also stipulate flushing the sensitive cache
partitions at each context switch or at the end of the use of
the cache memory by a given sensitive application. Even if
flushing cache memory partitions leads to performance loss,
it will enhance the security.

B. RTrustSoC security wrappers
The RTrustSoC prototype proposed in this paper embeds

ARM Cortex processors. This choice is motivated by the fact
that ARM has a strong presence in the SoC and heterogeneous
SoC markets. ARM processors can be found in the main
heterogeneous AMD-Xilinx and Intel SoCs.

RTrustSoC uses small, distributed hardware-coded security
wrappers to create trusted communications between the hard-
ware accelerators, peripherals and applications. The security



7

wrappers aim to distinguish between illegal and legitimate
transactions. To establish this secure communication, RTrust-
SoC assigns an IP identifier and a world identifier to each
hardware resource in the SoC. These identifiers are differ-
ent, unique and hardware-coded. They are assigned prior to
synthesis and cannot subsequently be changed. Each security
wrapper comes with a set of permissions that specifies the
access rights of each hardware resource to the underlying
component. The security wrapper is then able to perform the
control access to the underlying resource and guarantee the
on-demand hardware isolation.

The module identifiers are transported through the commu-
nication bus, which is an AXI4 in the prototype presented
in this work. AXI4 is a slave/master protocol [23]. It has
five separate channels: write address (AWADDR), write data
(WDATA), write response (BRESP), read address (ARADDR),
read data (RDATA) and the optional read response (RRESP).
The AXI protocol operates on handshake mechanisms with
Xready and Xvalid signals for each channel (X represents
the channel). The response channels (BRESP and RRESP)
indicate the state of the transaction to the master: OKAY if
the transaction is successful, SLVERR or DECERR when an
error occurs. A transaction can only be initiated by a master
interface and only occurs if the channel handshake signals are
high at the same time.

In addition, the AXI4 protocol makes it possible to use user
signals to transport extra information up to 1024 bits with
no overhead. We leverage this feature in RTrustSoC: each
request submitted to the SoC communication bus has its IP
identifier and its world identifier added through the AXI4 user
signals. The width of the identifiers depends on the number
of components and worlds in the SoC. For the hardware
identifiers, encoding is given by ⌈log2(max(components))⌉
bits, excluding the zero. Similarly, for the identifier of the
worlds, we use ⌈log2(max(worlds))⌉ bits. The world identifier
essentially extends the NS bit of the ARM TrustZone. Since
it is hardware-coded and we assume that the CAD toolchain
is trusted the world ID cannot be changed, hence preventing
attacks described in [6].

Figure 3 shows how the security wrappers operate. When
a security wrapper receives a request, it compares the IP and
world identifiers with its list of access policies (read/write).
RTrustSoC allows the access rights to be changed at boot time
via a software secure configuration. This secure configuration
gives the designer more flexibility. After the secure boot
configuration, the policies are set and can subsequently not
be changed. The reconfiguration of security policies during
runtime is excluded. After comparison, if a request conveys
the correct hardware and world identifiers, plus if it follows the
security policies, it is forwarded to the underlying component.
If an anomaly is detected, the wrapper discards the data, sends
a null response, and signals an error via the AXI bus using
the response XRESP signals. The distributed security wrappers
also embed simple security policies to oversee the operation
of the IP. For example, there is a reset after every use of
the component to prevent reuse of data. As these hardware-
coded identifiers and access rights cannot be modified by
an attacker to perform an attack (illegal accesses, change

in communications, etc.), they therefore confirm the SF.4
security feature. Likewise, the secure boot configuration makes
it possible to change the access rights thereby giving the
designer more flexibility.

C. RTrustSoC penalty system for trusted communications

Figure 3 also shows how a security wrapper behaves when
it is attached to a malicious entity performing unauthorized
communications. This is a new security feature of RTrustSoC
that is not available in TrustSoC [29]. The security wrapper
has a counter that is incremented each time the IP makes an
illegal request over a specified period of time. To determine if
a request is illegal, the security wrapper analyzes the XRESP
signals of the AXI bus, if an error is detected the illegal
request counter is incremented. When the value of the illegal
request counter exceeds a given threshold called Max, then the
ability of the IP to communicate is disabled for a specified
period of time, called Tblock. Max and Tblock are initialized
during the secure boot configuration and then become dynamic
during execution. They follow a penalty system. They start
at the values fixed during configuration and then the higher
the frequency of attempts by the IP underneath the security
wrapper to perform illegal requests, the more the Tblock time
value is incremented and the threshold Max is decremented.
So, the more malicious behavior is pursued by the IP, the more
it will be penalized, whereas, if the IP behaves the way it is
supposed to, no penalties will be applied. This system provides
more flexibility while nevertheless enforcing SF.1 and SF.4
security features.

D. RTrustSoC multi-world partitioning

Figure 4 illustrates the operation of RTrustSoC applied to
any design. The non-secure world is shown in red. There can
be up to N secure worlds, which are identified in green. Figure
4 illustrates the state of the system when it is operating in
the non-secure world (Fig. 4 (a)) and in one of the secure
worlds (Fig. 4 (b)). Figure 4 (a) shows which resources of
the system are accessible to the non-secure world when it
is operating. None of the secure world resources, encoded
world ID = “secure world 1” (#sec world 1) to world ID
= “secure world N” (#sec world N), are accessible to the
non-secure world. No hardware IP is directly connected to
the system communication bus because a security wrapper
is placed between the component and the bus. The security
wrapper prevents any unauthorized communication between
hardware and software components in the system. It also
prevents the occurrence of covert channels since each action
must be authorized by the communication controllers. Addi-
tionally, the components cannot access or modify a memory
partition without authorization. This applies to all operations
in the different worlds. The authorizations are enforced by the
distributed security wrappers and their policies.

The non-secure world components cannot access resources
in the secure worlds, but the restriction does not apply to
the secure worlds. For example, an application running in
a secure world could delegate some computations to a non-
secure hardware accelerator. In this case, when processing is



8

Processor Dedicated security wrapper of the processor Dedicated hardware IP
security wrapper

Request
communication

with the IP

Sends the
information to

its security
wrapper Communication

enabled ?
Yes

No

Communication
authorized ?

No

Yes

Block request
to the IP

Raises an error on the
communication bus

Block request
to the IP

Increment the
illegitimate access

counter 

Max reached ?

Yes

Disable
commmunication
for Tblock time

No

Tblock reached ?

Decrement Max
and increment

Tblock 

No Keep the
communication

disabled

Enable
commmunication 

Receive
communication and

checks the
permission table

Slave IP

Receive request
and perform a
computation

Computation
done ?

Raises a done
 signal when 

finished

No

Yes

W
ait until done

Let the
respond go

through

Transmits the
response to the

processor

Perform its
task

Keep the
communication

enabled

Transmits the
response to the

processor

Yes

Fig. 3. Flow chart of how the RTrustSoC security wrappers operate.

complete, the IP is automatically reset by its security wrapper
to prevent the misuse of sensitive data. This rule also applies
to cache partitions which are flushed when switching from
one world to another. This reduces overall performance but
provides a better level of security and contributes to the
SF.5 security feature. Our trusted communication system and
operating rules address the vulnerabilities of the basic ARM
TrustZone technology. The on-demand isolation we provide
between the worlds makes it impossible for a malicious entity
to obtain information on a victim that resides in one of the
secure worlds. Neither could a potential attacker modify the
identifiers needed to illegally access a world where it does not
belong.

E. RTrustSoC memory protection and cache memory protec-
tion

One interesting feature of RTrustSoC is its ability to protect
memory resources from illegitimate access and isolate the
different world memory partitions from each other. This is
enabled by security wrappers that are placed between the
AXI4 communication bus and the memories. Each request
originated from the bus is verified by the security wrapper
to be sure it complies with the security policies. The security
wrappers compare the identifiers of the transaction sender and
the access rights table that belongs to the memory. If the rights
are confirmed, the security wrappers accept and forward the
transaction, otherwise they discard the data and raise an error
on the bus through the SLVERR signal. With the security



9

CPU

FPGA

 UART DVFS JTAG

RTrustSoC

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER
ID ID IDID

RAM

S_WRAPPER

ID

ID ID ID

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

k

m

S_IP_1

S_WRAPPER

ID
PT

S_IP_1

S_WRAPPER

ID
PT

2

ID
PT

IP_1

1                       HARDWARE ENCLAVE

S_WRAPPER ID

S_WRAPPER
ACP

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

APP_1_1

APP_1_N

S_APP_1_1

S_APP_1_N

2
1                                 CORE

ID IDID

FLASH
IDID

ROM

ID ID ID
Cache

World ID =
Non-secure world

Rich OS

Secure world 1
Non-secure world

Secure OS
Secure world N

ID Hardware IP Identifier

Inaccessible

Legend

CPU

FPGA

 UART DVFS JTAG

S_WRAPPER S_WRAPPER S_WRAPPERS_WRAPPER S_WRAPPER S_WRAPPER
ID ID IDID

RAM

S_WRAPPER

ID

ID ID

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

k

m

S_IP_1

S_WRAPPER

ID
PT

S_IP_1

S_WRAPPER

ID
PT

1

ID
PT

S_IP_1

S_WRAPPER ID

S_WRAPPER
ACP

APP_K_1

APP_K_N

S_APP_K_1

S_APP_K_N

APP_1_1

APP_1_N

S_APP_1_1

S_APP_1_N

2
1                                 CORE

IDID

FLASH
IDID

ROM

ID ID

ID

ID
Cache

ID

RTrustSoC

World ID =
Secure world 1

(a) (b)

2                       HARDWARE ENCLAVE

Fig. 4. Modes of operation of RTrustSoC architectures in (a) the non-secure world, (b) in one of the secure worlds (#sec world 1)

wrapper controls, it is impossible for a malicious entity to
illegally access the memory (cache and external memories).
RTrustSoC’s rules stipulate that the different world cache
memory partitions are isolated from each other. However,
RTrustSoC allows a secure world to have access to non-
secure external memory (FLASH, ROM, RAM) partitions for
performance purposes. For example, if the secure world needs
to use of an accelerator to speed up a calculation. We discuss
the cache memory issue with a real use case scenario in
another Section VI.

V. PROTOTYPING AND TESTING

In this section, we provide the results of the implementa-
tion on an AMD-Xilinx Zynq-7000 SoC-FPGA (XC7Z010-
1CLG400C). We used the Xilinx Vivado 2020.2 toolchain to
implement the RTrustSoC prototype. The distributed security
wrappers presented in subsection IV-B were described in
VHDL. We used these distributed wrappers to protect five
different IPs from cryptographic and signal processing appli-
cations: Sobel filter, ASCON, Karatsuba-128, AES-128 and
Montgomery-128. We also prototyped the security wrappers
that enforce the penalty system presented in subsection IV-C.
The results of the implementation are shown in Fig. 5. Both
slave and master implementations were done for a small
system (small number of worlds and components) to give
the logic costs. Then we implemented a security wrapper
protecting a BRAM memory to explore the costs of our

solution for bigger systems, the results are shown in Table
II.

A. Evaluation of the RTrustSoC security wrappers

The size of the hardware IPs ranges from 2,747 to 4,875
LUTs. All the hardware IPs we used are open source and
found in online repositories. We evaluated our hardware im-
plementations with and without the security wrapper, using
the hardware utilization in LUTs, FFs, and the maximum
frequency achievable by the design as metrics. As shown
in Fig. 5, the resources overhead caused by the security
wrapper in number of LUTs is very small, at most 2.54%
and in number of registers, at most 0.54% compared to
the baseline implementation costs of the IPs. This resource
overhead can be explained by the logic we add to each IP
in order to implement our distributed security wrappers. In
our experiment, we were limited by the size of the fabric
in the AMD-Xilinx Zynq-7000. For example, the largest
multiplier instances we were able to fit in this board used
128-bit operands. However, for cryptography applications one
would expect to use up to 512-bits operands. Such larger
instances would obviously dwarf the hardware costs of the
security wrapper in comparison. The overhead in terms of
maximum frequencies of operation as shown in Fig. 5 is not
significant. Indeed, the security wrapper does not affect the
critical path of the hardware accelerators and hence does not
affect the maximum achievable frequencies. We suspect that



10

ASCON-Masked Sobel Filter Karatsuba-128 AES-128 Montgomery-1280

1000

2000

3000

4000

5000

LU
Ts 27

47

27
84 30

06

30
73

48
63

27
55

27
93 30

08 31
45

48
67

27
57

27
95 30

15 31
51

48
75

Unprotected TrustSoC RTrustSoC

ASCON-Masked Sobel Filter Karatsuba-128 AES-128 Montgomery-1280

1000

2000

3000

4000

FF
s 25

45

43
55

30
61

20
31

16
25

25
47

43
57

30
63

20
34

16
27

25
55

43
65

30
71

20
42

16
35

Unprotected TrustSoC RTrustSoC

ASCON-Masked Sobel Filter Karatsuba-128 AES-128 Montgomery-1280

50

100

150

200

250

M
ax

im
um

 a
ch

ie
va

bl
e 

fr
eq

ue
nc

y
(M

H
z)

21
5

22
0 24

8

12
4

10
0

22
0

22
0 23

9

12
8

10
1

22
0

21
8 22
9

12
4

10
1

Unprotected TrustSoC RTrustSoC

Fig. 5. Results of implementation of a RTrustSoC security wrapper for five
different hardware IPs from an AMD-Xilinx Zynq-7000 SoC-FPGA.

the fluctuations that appear in Fig. 5 are due to the non-
deterministic nature of the synthesis process. In conclusion,
the resources and performance overhead incurred by security
wrapper presented in RTrustSoC is negligible compared with
a significant improvement in security. Indeed, RTrustSoC and
its security wrappers mitigate the threats induced by the use
of third-party hardware IPs or software applications while
simultaneously offering the designer more flexibility.

B. Evaluation of the RTrustSoC’s penalty system

We have implemented a security wrapper that enforces the
penalty system presented in subsection IV-C. We evaluated
the security wrapper using the hardware utilization in LUTs,
FFs, and the maximum frequency achievable by the design
as metrics. We developed several implementations with and
without the penalty system, with and without the secure boot
reconfiguration. The results are presented in Fig. 6 and shown
in the following order: (Unp.) unprotected, (FPT) fixed per-

Unp. FPT RPT FPS DPS RDPS0

25

50

75

100

125

150

175

LU
Ts

39

19

58

69

16
9 18

3

Unprotected RTrustSoC

Unp. FPT RPT FPS DPS RDPS0

50

100

150

200

250

FF
s

92

75

15
9 18

9

26
1

26
1

Unprotected RTrustSoC

Unp. FPT RPT FPS DPS RDPS0

50

100

150

200

250

300

350

M
ax

im
um

 a
ch

ie
va

bl
e 

fr
eq

ue
nc

y
(M

H
z)

38
0

35
5

25
7 26
9

16
0

16
0

Unprotected RTrustSoC

Fig. 6. Results of the implementation of a RTrustSoC security wrapper con-
nected to a master interface (Unp. for Unprotected, FPT for fixed permission
table, RPT for reconfigured permission table, FPS for fixed penalty system
with fixed Max and Tblock, DPS for dynamic penalty system and fixed Max
and Tblock, RDPS for dynamic penalty system and reconfigured Max and
Tblock values) from an AMD-Xilinx Zynq-7000 SoC-FPGA.

mission tables, (RPT) reconfigurable permission tables, (FPS)
fixed penalty system, (DPS) dynamic penalty system and
(RDPS) reconfigurable dynamic penalty system. The resources
overheads incurred by the security wrapper in number of LUTs
and FFs seem very high. The security wrapper can take a
lot more resources with the dynamic penalty system, but the
baseline for comparison is very small so the implementation
costs appear to be really high although in reality they are
not. If we were to compare with the total resources available
in the AMD-Xilinx Zynq-7000 SoC-FPGA, our mean LUT
implementation result is 100 LUTs which represents only
0.57 % of the total LUTs, our mean FF result is 189 which
represents only 0.54 % of the total FFs. So, our penalty system
has a very small overhead compared to the confidence it



11

TABLE II
RESULTS OF IMPLEMENTATION OF A SECURITY WRAPPER ATTACHED TO A

BRAM IN LUTS FROM AN AMD-XILINX ZYNQ-7000 SOC-FPGA.

Components
Worlds 2 4 8 16

2 7 11 20 29
4 9 15 28 50
8 15 17 48 83

16 23 29 77 152
32 53 89 157 291
64 92 160 296 1112

adds to the architecture. For the first evaluation, the security
wrapper with fixed permission tables, we have results that
are inferiors to the unprotected version, this is due to the
use of constants in the implementations which then induced
optimizations from the CAD toolchain. The overhead in terms
of maximum achievable frequency of operation is shown in
Fig. 6, the dynamic penalties impact the system because of
the use of a counter to block the communications for a period
defined by the parameter Tblock. To improve our results, we
could use another type of counter like the Johnson counter.

C. Evaluation of the RTrustSoC’s memory protection

We implemented a security wrapper attached to a BRAM in
order to demonstrate how our system works and the costs of
world partitioning on a memory block. We implemented the
BRAM security wrapper and tested it with a varying number
of worlds (2, 4, 8, 16) as well as a varying number of IPs
that require access to the memory (2, 4, 8, 16, 32, 64). Table
II shows the results of our implementations. This prototype
allowed us to explore the costs and scalability of our proposal.
The overhead in resources is due to the size of the access
rights table that evolves quadratically in large systems (16
worlds and 64 components). In addition, in larger systems,
the AXI logic increases with the extension of the USER signal
width. This explains the higher overhead for the larger number
of worlds with the most hardware identifiers. Currently our
implementation uses LUTRAMS, but it is also possible to
use BRAMS, which would enable a dramatic reduction in the
overhead in terms of the number of LUTs. The results of the
timing criteria are not shown since the variation is negligible.
From the results in Table II, we can conclude that the costs of
the security wrapper and world partitioning lead to a small
resource overhead on the protected system, which is more
than acceptable given the high degree of protection provided
by the proposed solution. The security wrappers prevent any
malicious entity from illegally accessing memory.

VI. USE CASE SCENARIO

In this section, we present one use case scenario for
RTrustSoC. More concretely, we demonstrate how RTrustSoC
can be used to secure the cache memory from malicious
hardware IPs embedded inside the programmable logic. In
this example, we use the threat model presented in [13]. It

TABLE III
IMPLEMENTATION COSTS FOR THE SCENARIO PROPOSED IN FIG. 7 FROM

AN AMD-XILINX ZYNQ-7000 SOC-FPGA.

LUT FF Fmax (MHz)

Cache security wrapper 63 116 212

Utilization (%) 0.36 0.33 –

targets a heterogeneous SoC architecture where the TrustZone
technology is enabled. It consists of a software application
inside the CPU that runs a vulnerable to time-based cache
attack AES-128 T-table implementation. The software applica-
tion is linked to the secure world. Then, a malicious hardware
IP belonging to the non-secure world is embedded inside the
FPGA. The malicious logic tries via the cache coherency port
to access the cache memory and perform time-based cache
attacks to recover the encryption key. The authors in [13] use
Flush+Reload and Evict+Time attacks. This attack is made
possible in most systems due to the fact that slave processing
system interfaces are often not configured to deny access to
secure regions in TrustZone-enabled SoC architectures. The
authors leverage this particular feature to run the attack from
the PL to the cache memory.

In Fig. 7, we show this scenario applied to a RTrustSoC-
enabled architecture. The software implementation of the
vulnerable AES-128 T-table is inside the CPU and belongs
to one of the secure worlds identified in dark green. The
malicious hardware IP is embedded inside the FPGA inside
the non-secure world identified in red. The malicious hardware
IP is then connected to the snoop control unit (SCU) via the
ACP port. The SCU connects the processor cores, and the ACP
PL interfaces to the cache memory and offers support to the
cache coherency. Since it is not possible to modify inside the
ARM CPU to add our hardware-coded monitor for the cache
memory, we placed it inside the PL to the ACP connection
for our demonstration. Both Flush+Reload and Evict+Time
attacks are based on the ability of the master interface to be
able to evict a cache line. However, with RTrustSoC and its
enhanced control, this is not possible. The permission tables
are set to make it impossible for a non-secure resource to
access secure cache memory partitions. The permission tables
also cannot be changed since they are only managed by the
security wrapper which is trustworthy. We implemented the
cache memory security wrapper with its permission table
according to the scenario (Fig. 7: 2 worlds and 2 components)
on an AMD-Xilinx Zynq-7000 SoC-FPGA. There is only one
secure world in this scenario, but it could be easily extended
to match a multi-world SoC architecture. The overheads of our
implementation are shown in Table III. The security wrapper
utilizes 0.36 % of LUT and 0.33 % of Flip Flop resources of
the SoC-FPGA.

VII. CONCLUSION

In this work, we propose a reconfigurable on-demand multi-
world-based partitioning system on heterogeneous SoCs. As
RTrustSoC partitioning is flexible, the designer can choose



12

CPU FPGA
RTrustSoC

Non-secure world

IP_DMA

Non-secure world
Secure world

ID Hardware IP Identifier

Legend

S_WRAPPER ID

ID

ACP
Snoop Control Unit (SCU)

1                           CORE
MH Malicious Hardware

MH

AES-128 Table Inaccessible

ID

Cache

Fig. 7. Attack scenario based on [13] where a malicious hardware IP inside PL tries to perform cache timing attacks on an AES algorithm inside the PS
implemented on an AMD-Xilinx Zynq-7000 SoC-FPGA.

the number of secure worlds. Our trusted communication
system, which is based on hardware-coded operating rules,
identifiers and security wrappers, enforces strict separation
inside the heterogeneous SoC between the different secure do-
mains proposed by RTrustSoC. The security wrappers make it
impossible for a malicious entity to get information concerning
a victim that may reside in one of the secure worlds. Neither
could a potential attacker modify the identifiers to gain illegal
access to a world where it does not belong. The dedicated se-
curity wrappers control all accesses to the memories, thus also
making it impossible for a malicious entity to illegally access
memory. When a malicious activity is detected, the dedicated
security wrappers can also take proactive measures using a
penalty system. The parameters of this penalty system are
configurable through a secure boot configuration and evolve
over time depending on the behavior of the entity. With these
security features, RTrustSoC transposes the concept of trusted
applications inside the processing system to trusted hardware
IPs inside the programmable logic. The security wrappers
guarantee privacy, confidentiality, integrity and access control,
services required by the trusted components.

The proposed architecture has been prototyped on an AMD-
Xilinx Zynq-7000 SoC-FPGA. Our experiment demonstrated
that the hardware overheads of the communication monitoring
and the dynamic penalty system are small in relation to the
size of the targeted domains of application. The operating
frequency of the system would not be affected, and only a
small latency overhead is incurred for a slave interface which
is not the case for a master interface, but this can be mitigated
by using a Johnson counter. Concerning memory protections,
we have shown that there is a lineal relationship between the
hardware overhead, and the number of secure worlds and the
components considered in the system. This can be mitigated
by using the dedicated memories available in most modern
platforms. Finally, we have demonstrated with a real case
scenario of time-based attack on the cache memory, the interest
of using RTrustSoC in heterogeneous SoC architectures.

ACKNOWLEDGMENTS

This work was conducted in the framework of the TrustSoC
project funded by the French Agence de l’Innovation de

Défense (AID). This work was also supported by the French
government through the Agence Nationale de la Recherche in
the framework of project ARSENE (ANR-22-PECY-0004).

REFERENCES

[1] A. Lanxon, “Why We Don’t Need New Phone Launches
Every Year,” 2023. [Online] https://www.cnet.com/tech/mobile/
why-we-dont-need-new-phone-releases-every-year/.

[2] H. Li, A. Abdelhadi, R. Shi, J. Zhang, and Q. Liu, “Adversarial Hardware
With Functional and Topological Camouflage,” IEEE Trans. Circuits
Syst. II Express Briefs, vol. 68, no. 5, pp. 1685–1689, 2021.

[3] J. Robertson and M. Riley, “The Long Hack: How China Exploited
a U.S. Tech Supplier,” 2021. [Online] https://www.bloomberg.com/
features/2021-supermicro/.

[4] A. Greenberg, “How a Shady Chinese Firm’s Encryption Chips Got
Inside the US Navy, NATO, and NASA,” 2023. [Online] https://www.
wired.com/story/hualan-encryption-chips-entity-list-china/.

[5] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security,” ARM Inf. Q., vol. 3, no. 4, pp. 18–24, 2004.

[6] E. M. Benhani, L. Bossuet, and A. Aubert, “The Security of ARM
TrustZone in a FPGA-Based SoC,” IEEE Trans. Comp., vol. 68, no. 8,
pp. 1238–1248, 2019.

[7] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking TrustZone memory
isolation and secure boot through malicious hardware on a modern
FPGA-SoC,” J. Cryptogr. Eng., vol. 12, no. 2, pp. 181–196, 2022.

[8] E. M. Benhani and L. Bossuet, “DVFS as a Security Failure of
TrustZone-enabled Heterogeneous SoC,” in IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS), IEEE, 2018.

[9] D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B. Tahoori,
“Voltage-Based Covert Channels Using FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 26, no. 6, 2021.

[10] L. Bossuet and C. A. Lara-Nino, “Advanced Covert-Channels in Modern
SoCs,” in 2023 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 80–88, IEEE, 2023.

[11] R. Elnaggar, S. Chen, P. Song, and K. Chakrabarty, “Securing SoCs With
FPGAs Against Rowhammer Attacks,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 41, no. 7, pp. 2052–2065, 2022.

[12] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in 2014 USENIX Security
Symposium, pp. 719–732, USENIX Association, 2014.

[13] L. Bossuet and E. M. Benhani, “Security Assessment of Heterogeneous
SoC-FPGA: On the Practicality of Cache Timing Attacks,” in 2021
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 1–6, IEEE, 2021.

[14] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth,
and B. Sunar, “JackHammer: Efficient Rowhammer on Heterogeneous
FPGA-CPU Platforms,” IACR Trans. Cryptogr. Hardware Embedded
Syst., vol. 2020, no. 3, p. 169–195, 2020.

[15] M. Zhao and G. E. Suh, “FPGA-Based Remote Power Side-Channel
Attacks,” in 2018 IEEE Symposium on Security and Privacy (S&P),
pp. 229–244, IEEE, 2018.

[16] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An
Inside Job: Remote Power Analysis Attacks on FPGAs,” IEEE Des.
Test, vol. 38, no. 3, pp. 58–66, 2021.



13

[17] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “HECTOR-V:
A Heterogeneous CPU Architecture for a Secure RISC-V Execution
Environment,” in 2021 ACM Asia Conference on Computer and Com-
munications Security (AsiaCCS), pp. 187–199, ACM, 2021.

[18] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “CURE: A Security Architecture with CUstomiz-
able and Resilient Enclaves,” in 2021 USENIX Security Symposium,
pp. 1073–1090, USENIX Association, 2021.

[19] C. Andriamisaina, F. Thabet, J.-R. Coulon, G. Chauvon, A. C. Aldaya,
N. Tuveri, M. C. Martı́nez-Rodrı́guez, and P. Brox, “Secure platform
for ICT systems rooted at the silicon manufacturing process,” in 2023
RISC-V Summit Europe, RISC-V International, 2023.

[20] A. Fitch, “Arm-Based Chips Make Inroads With Apple,
Amazon,” 2023. [Online] https://www.wsj.com/articles/
arm-based-chips-make-inroads-with-apple-amazon-11674436002.

[21] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: The Case of AES,” in 2006 Cryptographers’ Track at the
2006 RSA Conference (CT-RSA), pp. 1–20, Springer, 2005.

[22] AMD-Xilinx, “Programming ARM TrustZone Architecture on the Xil-
inx Zynq-7000 All Programmable SoC,” User Guide UG1019 (v1.0),
AMD-Xilinx, Santa Clara CA, USA, 2014.

[23] ARM, “AMBA AXI and ACE Protocol Specification,” White paper
ARM IHI 0022H (ID040120), Arm Limited, Cambridge, England, 2020.

[24] A. Shabani and B. Alizadeh, “Enhancing Hardware Trojan Detection
Sensitivity Using Partition-Based Shuffling Scheme,” IEEE Trans. Cir-
cuits Syst. II Express Briefs, vol. 68, no. 1, pp. 266–270, 2021.

[25] M. Sabri, A. Shabani, and B. Alizadeh, “SAT-Based Integrated Hard-
ware Trojan Detection and Localization Approach Through Path-Delay
Analysis,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 8,
pp. 2850–2854, 2021.

[26] M. Hagan, F. Siddiqui, and S. Sezer, “Policy-Based Security Modelling
and Enforcement Approach for Emerging Embedded Architectures,” in
2018 IEEE International System-on-Chip Conference (SoCC), pp. 84–
89, IEEE, 2018.

[27] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic
implementation of SoC security policies,” in 2015 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 536–543,
ACM, 2015.

[28] N. Singh, S. Pal, R. Leupers, F. Merchant, and C. Rebeiro, “PROMISE:
A Programmable Hardware Monitor for Secure Execution in Zero Trust
Networks,” IEEE Embedded Syst. Lett., pp. 1–4, 2024.

[29] R. Milan, L. Bossuet, L. Lagadec, C. A. Lara-Nino, and B. Colombier,
“Trustsoc: Light and efficient heterogeneous soc architecture, secure-by-
design,” in 2023 Asian Hardware Oriented Security and Trust Sympo-
sium (AsianHOST), pp. 1–6, IEEE, 2023.

[30] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: A new
architecture for secure co-hosting on SoC,” in 2009 International Sym-
posium on System-on-Chip (SoC), pp. 124–127, IEEE, 2009.

[31] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 2009 IEEE Symposium on Security and Privacy
(S&P), pp. 45–60, IEEE, 2009.

[32] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software mit-
igations to hedge AES against cache-based software side channel
vulnerabilities,” Preprint 2006/052, IACR Cryptology ePrint Archive,
2006.

[33] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An
Overview of Hardware Security and Trust: Threats, Countermeasures,
and Design Tools,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 40, no. 6, pp. 1010–1038, 2021.

Raphaële Milan received her Master’s degree in electronics and embedded
systems from the Télécom Saint-Étienne and Ecole Centrale de Lyon in
2021. Since 2021, she has been pursuing her PhD at the Hubert Curien
Laboratory of the University Jean Monnet, France. Her research interests
include reconfigurable architecture and hardware security.

Lilian Bossuet (Senior Member, IEEE) received his MSc degree in electrical
engineering at INSA, Rennes, France, in 2001, and his PhD in electrical
engineering and computer sciences from the University of South Britanny,
Lorient, France, in 2004. Since 2017, he has been a professor at the Jean
Monnet University of Saint-Etienne, where he is the head of the Computer
Science Department of the Hubert Curien Laboratory, he is also the head
of the Secured Embedded Systems and Hardware Architecture Group of this
laboratory. His main research interests include hardware security, security of
embedded systems, IP protection, PUF design and characterization, secure-
by-design crypto-processor, and reconfigurable architecture. He has published
more than 200 refereed publications in these areas.

Loı̈c Lagadec received his Ph.D. in computer science from the University of
Rennes 1, Rennes, France, in 2000, and a Habilitation to Supervise Research
(HDR) from the University of Brest, Brest, France, in 2009. He is a Full
Professor at the Laboratory-STICC (CNRS), ENSTA Bretagne, Brest, where
he is also Head of Research of the IT Department. His current research
interests include software tools for reconfigurable computing, cyber security,
and interpreted languages. Prof. Lagadec has been a Guest Editor for several
special issues of scientific journals.

Carlos Andres Lara-Nino received his Master and Ph.D. degrees in Com-
puter Sciences from CINVESTAV (Mexico) in 2016 and 2020, respectively.
He is a researcher with the Security & Privacy Research Group (CRISES)
of the Rovira i Virgili University (Spain). From 2021 to 2024 he was a
postdoctoral fellow with the Hubert Curien Laboratory of the Jean Monnet
University and the CNRS (France). His academic interests include digital
systems design, data processing with reconfigurable hardware, information
and hardware security, and cryptography.

Brice Colombier received his Master’s degree in electronics and embedded
systems from Télécom Saint-Étienne and INSA Lyon in 2014 and his Ph.D.
degree in microelectronics from the University of Lyon in 2017. Since 2022,
he has been Associate Professor at the Jean Monnet University in Saint-
Etienne, France. He has been an Associate Editor of Journal of Cryptographic
Engineering (Springer) since 2020. His research interests include hardware
security, physical attacks, and post-quantum cryptography.

Théotime Bollengier received the engineering degree from ENSEIRB-
MATMECA, Bordeaux, France in 2013 and his PhD degree his PhD degree in
computer science from the University of Bretagne Loire in 2018. His interests
include hardware design, reconfigurable computing architectures. Since 2018,
he has been an engineer at Lab-STICC laboratory, ENSTA Bretagne, France.


