
Side-Channel Extraction of Dataflow AI Accelerator
Hardware Parameters

Guillaume Lomet∗, Rubén Salvador†, Brice Colombier‡, Vincent Grosso‡, Olivier Sentieys∗, Cédric Killian‡
∗ Univ Rennes, Inria, IRISA, Rennes, France

† CentraleSupélec, Inria, CNRS, IRISA, Rennes, France
‡ Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516

F-42023, SAINT-ETIENNE, France

Abstract—Dataflow neural network accelerators efficiently pro-
cess AI tasks on FPGAs, with deployment simplified by ready-
to-use frameworks and pre-trained models. However, this con-
venience makes them vulnerable to malicious actors seeking to
reverse engineer valuable Intellectual Property (IP) through Side-
Channel Attacks (SCA). This paper proposes a methodology
to recover the hardware configuration of dataflow accelerators
generated with the FINN framework. Through unsupervised
dimensionality reduction, we reduce the computational overhead
compared to the state-of-the-art, enabling lightweight classifiers
to recover both folding and quantization parameters. We demon-
strate an attack phase requiring only 337 ms to recover the
hardware parameters with an accuracy of more than 95% and
421 ms to fully recover these parameters with an averaging of 4
traces for a FINN-based accelerator running a CNN, both using
a random forest classifier on side-channel traces, even with the
accelerator dataflow fully loaded. This approach offers a more
realistic attack scenario than existing methods, and compared to
SoA attacks based on tsfresh, our method requires 940× and 110×
less time for preparation and attack phases, respectively, and gives
better results even without averaging traces.

I. INTRODUCTION

In recent years, artificial intelligence (AI) powered by deep
neural networks (DNN) has become pervasive in various fields,
including autonomous systems, image processing, the medical
domain, or generative AI. However, these algorithms require
substantial computational power and large datasets, driving the
development of more powerful and efficient solutions beyond
classical computer hardware (HW). One solution is using
FPGAs, which can create reconfigurable accelerators optimized
for specific tasks and requirements without the need to design
a custom chip for each solution.

In several use cases, such as video stream processing or
large-scale image batch processing, dataflow accelerators have
emerged as one of the most efficient solutions. FPGAs have also
become more accessible through remote instances with shared
HW and frameworks for end-to-end DNN design, reducing
costs and providing ready-to-use development environments.
However, DNN accelerators are valuable targets for attacks
because of the high value of their intellectual property (IP) and
the significant cost associated with creating and training mod-
els. Furthermore, remote FPGA instances like cloud servers or
embedded systems are vulnerable to physical attacks, which can
bypass traditional security measures within these devices [1].

Attacking DNNs using side-channel attacks (SCA) follows a
sequence of steps, where each stage requires specific knowledge

depending on its position in the attack flow. To penetrate the
black box of a DNN accelerator, the first crucial element to
understand is the HW architecture, which is the root of all
the SCA strategies, from model recovery to stealing inputs.
In FPGAs, this architecture is configurable, and users can
tune parameters such as the parallelism or the arithmetic used.
Although these parameters need to be captured to mount a
successful weight recovery through SCAs, most attack models
assume the attacker knows the HW architecture.

This work proposes a methodology to remotely reverse-
engineer elements of the HW architecture in a dataflow
accelerator implemented on FPGAs. This is achieved by
comparing the traces captured from the accelerator to a dataset
of patterns corresponding to traces from accelerators with
known architectures. The attack uses unsupervised dimension-
ality reduction of the traces, and then the transformed data are
classified by each HW parameter. Our contributions include:

• To the best of our knowledge, we are the first to recover
multiple HW parameters simultaneously from SCA
traces: the folding, which is the parallelization of data
(SIMD) and processing elements (PE), and the quantiza-
tion used in the accelerator. For this study, we only focus
on the folding of the PE and the quantization, and with
an averaging of 4 traces with random inputs to reduce
noise, we can fully recover these parameters.

• Using an unsupervised dimensionality reduction tech-
nique like principal component analysis (PCA), we lower
the computational cost, enabling the use of more classi-
fiers for extracting the HW parameters and improving the
performance of the parameter recovery.

• Compared to the state-of-the-art (SoA), our methodology
enables a more realistic attack model and can be used
as a first step to learning the HW architecture, which
was an assumption made by previous attacks.

This paper is organized as follows: Section II discusses the
necessary background, including SCA on FPGA NN accelera-
tors. Section III presents the attacker model, while Section IV
explains the experimental methodology. Results are presented
in Section V before concluding in Section VI.



II. BACKGROUND

A. DNN accelerators on FPGA

Two framework types are typically used to accelerate DNN
computation on FPGA. First, sequential accelerators compute
specific operations like tensor multiplications and activations
layer-by-layer, similar to CPUs/GPUs (e.g., Vitis AI, TVM-
VTA [2], Gemmini [3]). Second, dataflow accelerators pro-
cess layers in parallel as soon as inputs are available (e.g.,
FINN [4]). Dataflow accelerators have proven efficient for tasks
like large batch or data stream inference [5], often outperform-
ing GPUs or specialized ASICs [6]. However, they require more
custom work during DNN model creation, increasing their IP
value and thus interest to be recovered through, e.g., SCA.

B. Remote sensors in FPGA for SCA

To deploy FPGA DNN accelerators, remote solutions like
in datacenters [7] or embedded systems optimize FPGA usage
by sharing resources, reducing costs, and standardizing tools.
Remote SCAs are possible via embedded sensors [8], simulat-
ing power analysis. While tools protect against some sensors
like ring oscillators, others using Time-to-Digital Converters
(TDC) [9] or arithmetic unit misuse [10] remain hard to
mitigate. Though these sensors are challenging to calibrate re-
motely, recent studies implement automatic calibration systems,
helping attackers get the right sensitivity using TDCs [11], [12].

C. SCA for DNN reverse engineering on FPGA

Valuable data and IP, like the architecture and trained weights
from DNN models, can be extracted via SCA [13]. Sensitive in-
puts, e.g., medical data, can also be recovered using knowledge
of the trained model [14]. However, FPGA’s reconfigurable HW
makes SCAs strongly dependent on knowing the accelerator’s
architecture. We identify four categories of data and IP recovery
attacks through SCA on FPGA, ranging from closest to black-
box to closest to white-box scenarios.

1) Hardware architecture: Attacks on the HW architecture
include the framework type used [15], [16], data and processing
parallelism [17], and the arithmetic type used (number repre-
sentation, precision). To the best of our knowledge, there is still
no work in the last category, which is one of the focuses of this
work. Unlike other categories, attacks on the HW architecture
are based on reverse engineering using SCA (SCARE) [18] on
the circuit, rather than retrieving secrets.

2) Model architecture: These attacks target elements of the
neural network (NN) model: number of layers, type of layers,
model structure, and layer configuration [15], [19].

3) Model parameters: Several works focus on SCA to
extract model parameters, including weights and normaliza-
tion [16], [19]–[21].

4) Inputs: The last category considers retrieving inputs used
at inference time [22] [23].

To get closer to a black-box scenario, attackers need to
know the HW architecture of the accelerator, as parallelism
can disturb model recovery due to increased noise [17]. Some
attacks are linked to the arithmetic used [14], or exploit
information from the implementation tool [16]. The closest

work [10] to our approach to extracting HW parameters from
dataflow accelerators also targets FINN [4]. It extracts the
number of parallel PEs in a matrix-vector-accumulation unit
to aid in recovering neurons in fully connected layers, using a
profiling attack based on power traces and a machine learning
classifier. Despite their key role in model parameter extraction,
arithmetic parameters have yet to be known during the SCA.
This attack [10] also requires computationally heavy statistical
analysis, which will be difficult to generalize to other HW
parameters. Similarly, EM-based SCA reverse-engineering was
used to recover the structure and operation scheduling (input
partitioning, channel/pixel-level parallelism, and spatial map-
ping of input/output channels and HW) of the AMD-Xilinx
DPU encrypted DNN commercial accelerator [16].

Conversely, our attack is the first to recover the arithmetic
type (number representation, precision) [cat. 1] and to relax
the assumption of knowing the HW architecture [cat. 2, 3].

D. Machine Learning based SCA

Machine learning has been shown to improve SCA attacks,
e.g., using convolutional neural networks (CNN) for profil-
ing attacks without trace realignment [24]. Another approach
reduces trace dimensions by transforming them into smaller
vectors for profiling. Early works on cryptographic accelerators
have used RNN-based auto-encoders [25], [26] to reduce trace
dimensionality, improving noise elimination by preserving key
features. However, to recover DNN elements in FPGA accel-
erators, the primary method used is feature selection [17], [27]
using tsfresh [28]. While this method is effective and relies
on deterministic algorithms, (1) its reliability depends on fixed
statistical elements, which can sometimes limit the number of
relevant features [29]; and (2) it takes up to three orders of
magnitude more time compared to our approach using PCA
and lightweight classifiers, as we show in this work.

III. ATTACKER MODEL

We focus on a DNN accelerator embedded in an FPGA
with remote sensors, aiming to recover key parameters such
as the folding strategy and quantization levels used in the
victim’s model through SCA. Table I summarizes the attacker’s
knowledge, capabilities, constraints, and results.

The attacker is assumed to have knowledge of the framework
used, as well as all the configurable accelerator parameters.
Additionally, the attacker can deploy a clock-synchronized
sensor on the same FPGA, allowing precise monitoring of
the accelerator’s activity through power side channels. This
synchronized setup provides the attacker with a detailed view
of the accelerator’s internal operations.

Our method stands out from SoA approaches [17] in several
key ways, offering a model that requires less effort from
the attacker, making it easier to implement and thus more
effective. In our case, the data is processed in batches, meaning
that when we capture power traces, the accelerator’s dataflow
pipeline is already fully loaded. In this scenario, the noise
and complexity increase, making it harder to interpret traces
directly. Additionally, since we do not have access to the input
data, we cannot capture repeated traces of the same data for



TABLE I
COMPARISON OF ATTACKER MODELS IN [17] AND THIS WORK.

Attack Parameter Our method [17]

Attacker
knowledge

Framework used Yes Yes
Possible configurations of the victim Yes Yes
Victim model Yes Yes

Constraints CPU activity impact traces Yes No
Capture traces in loaded dataflow Yes No

Attacker
capabilities

Can implement synchronized sensors Yes Yes
Attacker has access to inputs/outputs No No
Uses batches of inputs Yes No

Results Recovers the folding Yes Yes
Recovers the quantization Yes No

Host ServerFPGA SoC

Traces

DDR
Memory

Leakage

Predictions

Sync

NN
Accelerator

TDC
Sensor

Traces

Data

Batch Size

SSH
Host

Programable Logic Programable Software

SCA
Traces 

ncomponents

PCA

NN
Parameter 1

Classifier
1

Extracted NN architecture

Unsupervised Supervised

NN
Parameter n

Classifier
n

Predictions
Data

µP

Fig. 1. Overview of the attack system.

averaging but only traces with different inputs; however, we
show how this still helps to reduce noise. Lastly, the CPU
in the SoC FPGA remains active during our attack running
Linux OS and a Jupyter server, introducing additional noise
into the traces. This makes our approach more realistic, as it
better reflects typical deployments on remote FPGAs where the
CPU is not isolated, leading to non ideal and noisier conditions.

Despite these challenges, our method remains effective. We
successfully recover the folding and quantization parameters
by capturing traces in this noisier, fully loaded dataflow state
and using a data-independent approach. This highlights the
robustness of our attack in extracting several key model details,
even in more complex and realistic FPGA environments.

IV. METHODOLOGY

Our proposed attack methodology targets an implementation
of a DNN accelerated on an FPGA, as illustrated in Fig.1, and
requires the use of a remote sensor located on the same chip
as the accelerator and synchronized with the latter. Through
leakage, the sensor will capture the power activity resulting
from the calculations of the DNN accelerator.

The proposed method consists of three phases as outlined in
Algorithm 1: i) trace acquisition, ii) offline attack preparation,
and iii) online attack. Traces captured during trace acquisition
by a remote sensor are stored in the FPGA and then trans-
ferred via SSH for analysis. The attack involves dimensionality
reduction of the traces via PCA and classification to identify
the accelerator parameters, with one classifier used for each
parameter type. The method is detailed in the following.

A. Trace collection

The acquisition phase consists of two stages: first, creating
the labeled database DB for attack preparation, which requires
the ability to choose the accelerator parameters; second, per-
forming the attack to recover these parameters without prior

knowledge of the configuration. In both phases, the acquired
traces are preprocessed as follows:

1) Windowing traces: Traces must contain at least all the
samples corresponding to the the slowest stage of the dataflow
DNN accelerator. This stage timing can be determined, for in-
stance, through the FINN accelerator generation reports. During
dataset construction, we set the minimum number of samples
Ns min to capture all relevant data from the slowest accelerator
considered in our dataset, i.e., the one with less parallelism.
This is computed using the slowest stage latency Tdataflow and
the sensor frequency Fs from Ns min = Tdataflow × Fs.

2) Removing dataflow loading: Initial samples are skipped
to ensure the dataflow is fully loaded. In a remote context,
we consider that when triggering a blind measurement, it
is unlikely that this would start at the exact same time as
the accelerator with an empty dataflow. During the dataflow’s
loading phase, there is less noise, which would facilitate SCAs.
Thus, in our case, our attack remains effective even in a more
complex scenario where each stage of the dataflow is active
simultaneously and loaded with different data. This is computed
using the latency of one complete inference Tinf of the slowest
accelerator with Nload = Fs × Tinf. The two previous steps are
referred to as Trim the trace in Algorithm 1.

3) Averaging traces: Averaging traces by a factor naverage
helps reduce noise, such as that from the CPU on SoC FPGAs.
Since our attack model does not allow for input control,
averaging is done between traces with different random inputs
from the same victim. This parameter must be determined
during the offline phase, as explained below.

4) Normalizing traces: To remove the artifacts due to the
automatic sensor calibration, we remove the mean of each trace:

xnormalized = xi −X, ∀i ∈ {1, 2, . . . , n}
where xnormalized represents the normalized value of the trace,
xi is the i-th time sample in the trace and X is the mean of
all samples in the trace

B. Features extraction and classification

The core idea of our attack methodology consists of two
parts, as detailed in Algorithm 1: i) Dimensionality reduction
of traces using feature extraction with PCA, ii) Classification
of the extracted features using the dataset labels.

The PCA transformation is an unsupervised process that
reduces the dimensionality of the traces while amplifying
the variability between traces corresponding to different DNN
parameter configurations. PCA computation, which transforms
the trace samples into ncomp (number of components), requires
a fitting step performed during the preparation phase. It is
described next.

1) Offline phase (preparation): The PCA is computed (fit)
on a part of the database DBtraining and produces (transform)
a dimension reduction from Ns min samples to ncomp PCA
components, which must be selected according to the classifier
performance. Regarding the selected classifier type, we tune it
through a grid search to find the best combination of ncomp and
classifier parameters. For each combination, we measure the
accuracy of the prediction thanks to DB. Finally, we perform



a validation of the best combination as follows using a PCA
reduction (transform) on DBtest followed by a classification. We
keep the combination of the results with the best accuracy.

2) Online phase (attack): To perform the attack, we acquire
one or several traces, followed by preprocessing and PCA
transformation. The ncomp are then passed to the classifier,
which outputs the most probable accelerator configuration.

Algorithm 1: Acquisition and Attack Phases
Output: DBtraining and DBtest
Acquisitions

for all possible NN accelerator configurations do
repeat

capture a side-channel trace;
label the trace;

until Ntraces;

Split DB into DBtraining and DBtest;
Offline phase (preparation)

Input: DBtraining, DBtest, ncomp max, naverage
Output: Configuration with the best test accuracy
Common preprocessing (trimming + averaging + PCA)

Trim the trace to the Normalized Window Size;
Normalize traces;
if averaging is required then

average over naverage traces;

Apply PCA on DBtraining and keep the top ncomp max
components;

Classifier tuning
for ncomp ∈ [1, ncomp max] do

Keep ncomp components;
for selected classifier configurations (grid search) do

Tune the classifier on DBtraining with the selected
configuration;

Save (ncomp, config classifier, accuracy);

Classifier validation
Apply PCA on DBtest;
for classifier configurations with best accuracy do

Classify DBtest;

Online phase (attack)
Input: config classifier, ncomp, naverage
Output: Most probable NN accelerator configuration
for each parameter of the NN accelerator do

Capture a new side-channel trace (or more);
Apply preprocessing with ncomp and naverage;
Perform classification with config classifier;

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We used a PYNQ-Z2 FPGA board with a Xilinx Z7020
SoC containing an Artix-7 FPGA and a dual-core Arm Cortex-
A9 CPU, both sharing 512 MB of DDR3 RAM and running
Ubuntu OS with a Jupyter Notebook server. The considered
DNN model is a 5-layer CNN trained on the MNIST dataset
(28x28-pixel monochromatic images) to recognize handwritten
digits, as detailed in Fig. 2(a). The associated victim accelerator
is based on FINN (version 0.9) with the following HW configu-
ration: no DSP, same folding and quantization size for all layers,
and all parameters stored on embedded cache (LUTRAM and
BRAM) at synthesis. Only the Direct Memory Access (DMA)
used to push data in the input and to pull the data from the
output of the accelerators communicates with the DRAM and
the CPU. The designed accelerator parameters are: folding

(b)(a)

TABLE II
A ADAPTER DANS CE STYLE ? ON PEUT ENLEVER DU DÉTAIL

Layer type Data shape
Image Input-0 [28, 28]

Conv-1 [16, 24, 24]
ReLu-2 [16, 24, 24]CONV-1
Pool-3 [16, 12, 12]
Conv-4 [16, 8, 8]
ReLu-5 [16, 8, 8]CONV-2
Pool-6 [16, 4, 4]
Conv-7 [16, 2, 2]
ReLu-8 [16, 2, 2]CONV-3
Pool-9 [16, 1, 1]
Lin-10 [16]FC-1 ReLu-11 [16]

FC-2 Lin-12 [10]

V. EXPERIMENTS

A. Experimental Setup

For our study, we used a PYNQ-Z2 FPGA board, using a
Xilinx Z7020 SoC which combines an Artix-7 FPGA with
a dual-core Arm Cortex-A9 processor, both sharing 512 MB
of DDR3 RAM, and running the Pynq OS. The considered
NN model is the Lenet-5 CNN trained on the MNIST dataset
(monochromatic images of 28x28 pixels) to recognize hand-
written digits. The model is detailed in Fig. 2-a . The associated
victim accelerator is based on FINN (version 0.9) with the
following hardware configuration: no DSP, same folding and
quantization size for all layers, separated activation layers
and all the parameters are stored on embedded cache (LU-
TRAM and BRAM) at synthesis. Only the Direct Memory
Access (DMA) used to push data in the input and to pull the
data from the output of the accelerators communicates with the
DRAM and the processor.

For the sensors, we use a modified version of the TDC from
SCABox [12] with a length of 128 latches. Both the accelerator
and TDC sensors use a clock frequency of 100 MHz. To capture
the TDC sensor output, we modified the SCABox FIFO and
added a DMA module to move the captured traces to the
external DRAM memory. The DMA ensures a synchronized
capture with the accelerator when latter this starts. Among
the four implemented sensors, we selected the most sensitive
one, determined by visual analysis. It ensures that every traces
collected are at the same timing, making the study easier. The
floorplan of the complete system is shown in the figure ??-b.

B. Data acquisition

Following the methodology explained in Section IV, the
traces observations, and the FINN report, we estimate the
minimal length for the sample window around 129k samples.
Also, we need to trim at least twice this window to ensure a
fully loaded dataflow.

All the traces are collected on the FPGA, then sent by SSH,
to reduce the network activity impact on power traces by having
only a few elements running alongside the FPGA during the
capture. For our experiments, Ntraces = 800 traces are collected
per NN accelerator configuration to have enough data for our
dataset. The final dataset of traces is a total of:

Ntotal = Ntraces ⇥Nfolding ⇥Nquantization

(a)

TABLE II
MODEL CONFIGURATION OF THE VICTIM.

Layers Filters size Input size
Conv 1 5 � 5 � 16 28 � 28

MaxPool 1 2 � 2 24 � 24
Conv 2 5 � 5 � 16 12 � 12

MaxPool 2 2 � 2 8 � 8
Conv 3 3 � 3 � 16 4 � 4

MaxPool 3 2 � 2 2 � 2
Linear 1 1 � 16 1 � 1
Linear 2 16 � 10 1 � 16

TABLE III
A ADAPTER DANS CE STYLE ? ON PEUT ENLEVER DU DÉTAIL

Layer type # Data Data shape
Image Input-0 784 [28, 28]

Conv-1 4704 [6, 28, 28]
ReLu-2 4704 [6, 28, 28]CONV-1
Pool-3 1176 [6, 14, 14]
Conv-4 1600 [16, 10, 10]
ReLu-5 1600 [16, 10, 10]CONV-2
Pool-6 400 [16, 5, 5]
Flat-7 400 [400]
Lin-8 120 [120]FC-1
ReLu-9 120 [120]
Lin-10 84 [84]FC-2 ReLu-11 84 [84]

FC-3 Lin-12 10 [10]

B. Data acquisition

Following the methodology explained in Section IV, the
traces observations, and the FINN report, we estimate the
minimal length for the sample window around 129k samples.
Also, we need to trim at least twice this window to ensure a
fully loaded dataflow.

All the traces are collected on the FPGA, then sent by SSH,
to reduce the network activity impact on power traces by having
only a few elements running alongside the FPGA during the
capture. For our experiments, Ntraces = 800 traces are collected
per NN accelerator configuration to have enough data for our
dataset. The final dataset of traces is a total of:

Fig. 2. Implementation diagram inside the FPGA: Finn accelerator in green,
TDC sensors in red, communication components in light blue.

0 50k 100k 150k 200k 250k 300k
−0.6
−0.4
−0.2

0
0.2
0.4

0 50k 100k 150k 200k 250k 300k

−0.6
−0.4
−0.2

0
0.2
0.4
0.6

0 50k 100k 150k 200k 250k 300k
−1

−0.5

0

0.5

folding 1x folding 4x folding 8x

(a)

(b)

(c)
Number of acquisitions

N
or

m
al

iz
ed

 A
m

pl
itu

de

Normalized
Window Size

Pipeline Loading 1x

Pipeline Loading 4x

Pipeline Loading 8x

Fig. 3. Traces compacted with a mean of 400 traces and synchronized with
the Finn accelerator. For the lowest folding parameter, we need to wait two
dataflow iteration to get it fully charged, and our minimal window of point is
defined by the latency of the bottleneck stage in the dataflow.

Ntotal = Ntraces ⇥Nfolding ⇥Nquantization�
Nfolding = Number of different folding
Nquantization = Number of different quantization

Corresponding in our case to 800⇥4⇥2 = 6400 traces: 5120
traces for the training dataset and 1280 traces for the testing
dataset, balanced within all the configurations. Result of the
trace acquisition is shown in Fig. 3, with 6-bit quantization
and folding factors of 1, 4, and 8. For better visibility, noise on
the traces was reduced by averaging over 400 traces. However,
for the attack phase, the averaging will be much more limited,
ranging from 1 to 4 in our case study.

In these traces, a repeating pattern can be observed. The
repetition frequency of this pattern is proportional to the folding
factor, clearly indicating that the power consumption of the NN
accelerator leaks information through side channels.

The traces are triggered at the same time as the accelerator
is launched. Thus, the initial samples show the NN’s activity
with an empty pipeline. This loading phase of each stage is
identified in Fig. 3 as ”Pipeline Loading,” and its duration is
inversely proportional to the folding factor. It corresponds to
the duration of a single inference on the same data. During this
phase, the activity pattern differs significantly from that of a
fully loaded pipeline. As noted in the methodology section, it
is unlikely that SCA in a cloud environment would capture this
event. Therefore, the regions identified as ”Pipeline Loading”
should be removed from the acquired samples, as detailed in
Section IV.

In Fig. 3, we have also highlighted the Normalized Size
Window, which corresponds to the duration of the slowest
pipeline stage of the slowest accelerator configuration. In this
case, the slowest accelerator is the one with a 1x folding (no
parallelism). It is important to note that during the duration of

(b)

Fig. 2. Overview of the experimental setup. (a) Lenet-5 CNN victim model,
(b) FPGA victim implementation of FINN victim accelerator: accelerator in
green, TDC sensors in red, communication components in light blue.

0 50k 100k 150k 200k 250k 300k
−0.6
−0.4
−0.2

0
0.2
0.4

0 50k 100k 150k 200k 250k 300k

−0.6
−0.4
−0.2

0
0.2
0.4
0.6

0 50k 100k 150k 200k 250k 300k
−1

−0.5

0

0.5

folding 1x folding 4x folding 8x

(a)

(b)

(c)
Number of acquisitions

N
or

m
al

iz
ed

 A
m

pl
itu

de

Normalized
Window Size

Pipeline Loading 1x

Pipeline Loading 4x

Pipeline Loading 8x

Fig. 3. Traces compacted with a mean of 400 traces and synchronized with
the Finn accelerator. For the lowest folding parameter, we need to wait two
dataflow iteration to get it fully charged, and our minimal window of point is
defined by the latency of the bottleneck stage in the dataflow.

with Nfolding and Nquantization the nomber of possible folding
and quantization, respectively. Corresponding in our case to
800⇥ 4⇥ 2 = 6400 traces: 5120 traces for the training dataset
and 1280 traces for the testing dataset, balanced within all
the configurations. Result of the trace acquisition is shown
in Fig. 3, with 6-bit quantization and folding factors of 1, 4,
and 8. For better visibility, noise on the traces was reduced by
averaging over 400 traces. However, for the attack phase, the
averaging will be much more limited, ranging from 1 to 4 in
our case study.

In these traces, a repeating pattern can be observed. The
repetition frequency of this pattern is proportional to the folding
factor, clearly indicating that the power consumption of the NN
accelerator leaks information through side channels.

The traces are triggered at the same time as the accelerator
is launched. Thus, the initial samples show the NN’s activity
with an empty pipeline. This loading phase of each stage is
identified in Fig. 3 as ”Pipeline Loading,” and its duration is
inversely proportional to the folding factor. It corresponds to
the duration of a single inference on the same data. During this

Fig. 2. Overview of the experimental setup. (a) CNN victim model, (b) FPGA
implementation of FINN victim accelerator: accelerator in green, TDC sensors
in red, communication components in light blue.

1x, 2x, 4x, 8x and quantization 4-bits, 6-bits for a total of
8 different accelerator versions.

For the sensors, we use a modified version of the TDC from
SCABox [12] with a length of 128 latches. Both the accelerator
and TDC sensors use a clock frequency of 100 MHz. To capture
the TDC sensor output, we added a DMA module to store
the captured traces in the external DRAM memory. The DMA
ensures synchronized capture of traces with the accelerator
when it starts. Fig. 2(b) shows the complete system floorplan.

B. Data Acquisition

Following the methodology from Section IV, through trace
observations and FINN reports, we estimate the minimal length
for the sample window around 129k samples. Also, as ex-
plained in Section IV-A, we trim the dataflow loading phase
from the trace, corresponding to 129k × 2 = 258k samples.

All the traces are collected on the FPGA and then sent
through SSH after each acquisition. For our experiments,
Ntraces = 800 traces are collected per accelerator configuration
to have enough data for our dataset. The final dataset of traces
includes a total of Ntotal traces with

Ntotal = Ntraces ×Nfolding ×Nquantization

where Nfolding and Nquantization are the number of possible fold-
ing and quantization, respectively. In our case study Nfolding =
4, Nquantization = 2, hence a total of 6400 traces for DB. We
use 5120 traces for DBtraining and 1280 traces DBtest, balanced
within all the configurations.

Fig. 3 shows an example trace with 6-bit quantization and
folding factors of 1 and 8. To improve visibility in the figure,
we reduced noise by averaging 800 traces. However, in the
attack phase, averaging is limited to 1 to 4 traces in our case
study. Without this averaging step the difference between the
cases is not visible at first sight. These traces reveal a repeating
pattern, with the pattern frequency proportional to the folding
factor. This clearly indicates that the DNN accelerator’s power
consumption leaks information through side channels.

Trace capture is triggered when the accelerator is launched,
so the initial samples capture the NN’s activity with an empty
dataflow. This loading phase, labelled as Dataflow Loading in
Fig. 3, has a duration inversely proportional to the folding factor
and corresponds to the time taken for a single inference on
the same data. As detailed in Section IV, remote SCAs are



0 50k 100k 150k 200k 250k 300k
−1

−0.5

0

0.5

1

0 50k 100k 150k 200k 250k 300k
−1

−0.5

0

0.5

1

200k 202k 204k 206k 208k 210k 212k 214k

−0.5

0

0.5

folding 1x folding 8x

(a)

(b)

(c)
Number of acquisitions

N
or

m
al

iz
ed

 A
m

pl
itu

de

Normalized
Window Size

Dataflow Loading 1x

Dataflow Loading 8x

Fig. 3. Average of 800 traces for 6-bit quantization and folding 1× (a) and
8× (b) and (c). Light-coloured traces represent raw traces without averaging.

unlikely to capture this event, so the dataflow loading regions
are excluded from the acquired samples in the experiments.

Fig. 3 highlights the Normalized Window Size, corresponding
to the duration of the slowest stage of the dataflow in the
slowest accelerator configuration (here 1× folding, no par-
allelism). During this period, other dataflow stages continue
operating with different data, allowing us to gain insights into
the activity of the entire NN accelerator. Our method focuses
solely on this duration, which is much shorter than the full
inference on the same data. This can be seen in Fig. 3 by
comparing the Dataflow Loading duration (time for full infer-
ence) to the Normalized Size Window (time when all dataflow
stages execute simultaneously but on different data). During an
attack, as the exact folding value is unknown, we consistently
capture the Normalized Size Window. As a side effect, for the
same number of acquired samples, we capture more pattern
repetitions compared to the lowest folding configuration.

C. Dataset Preprocessing

We apply preprocessing as described in Section IV, discard-
ing the dataflow loading phase and retaining only the samples
from the Normalized Size Window, followed by normalization.
Next, we fit the PCA using the preprocessed training dataset,
employing scikit-learn PCA function with default parameters,
except for ncomp. After fitting the PCA, we transform (DBtraining)
and (DBtest). This PCA transformation reduces the trace di-
mensionality while amplifying the variance between traces
corresponding to different NN parameter configurations.

We plotted the PCA transformation results of the DBtraining
in Fig. 4. A 3D representation (Fig. 4(a)) is provided alongside
2D projections (Fig. 4(b–d)) for clearer point projections.
Each point represents a 129k-sample trace transformed into
3 values, known as components. While more components
can be used (see Section V-D), their graphical representation
becomes more complex. Points are coloured per accelerator
configuration, using equivalent light and dark colours for 4-
bit and 6-bit quantization, respectively. In Fig. 4, traces from
the same accelerator configuration are clustered together. Dark
clusters, separated by folding values, show PCA’s ability to

−20 0 20 40 60

−40
−20

0
20
40
60

−40 −20 0 20 40 60

−40

−20

0

20

40

60

−20 0 20 40 60

−40

−20

0

20

40

60

Fold 1x - 4b Fold 2x - 4b Fold 4x - 4b Fold 8x - 4b

Fold 1x - 6b Fold 2x - 6b Fold 4x - 6b Fold 8x - 6b

1st Comp

2nd Comp

1st Comp

2n
d 

C
om

p
3r

d 
C

om
p

3r
d 

C
om

p

(a)

(b)

(c)

(d)

Fig. 4. First three PCA components. (a) 3D view; projection of components
(b) 1 and 2, (c) 2 and 3, (d) 1 and 3. Each point represents a trace.

detect significant variability among traces for each folding.
This distinct clustering will enable the association of a new
trace from a blind attack with a cluster through a classifier to
recover the corresponding folding. However, this separation is
less pronounced for lower folding values, likely due to greater
amplitude variation in traces at higher folding. Nevertheless,
these clusters remain separable by a classifier.

To compare with SoA folding extraction [17], we adapt
our methodology to use tsfresh instead of PCA. We follow a
similar method, with feature extraction on the full dataset, and
a selection of the top 10 features from our traces, as in [17].

D. Classifier Exploration

After dimension reduction with PCA, our attack is compat-
ible with any supervised classifier. The effectiveness of our
method is emphasized by the simplicity of the classifiers we
can use. The PCA preprocessing step efficiently transforms the
data, separating distinct traces while grouping similar ones.
We explore two computationally simple classifiers: k-Nearest
neighbors (k-NN) and Random Forest (RF). Table II shows
the computation time for each main step of the methodology
for both classifiers during the preparation and attack phases,
excluding acquisition time. The computations rely on a server
with a dual AMD EPYC 7443 24-core CPU at 4 GHz and 512
GB DDR4 3200 MT/s, running CentOS 7. DB preparation took
15.7 seconds for the k-NN and 17.7 seconds for the RF classi-
fiers when using the PCA, whereas using tsfresh took around
4.62 hours, which represents more than 940× compared to the
PCA. The time to run the attack on a single trace was 337ms
for k-NN and 421ms for RF using the PCA, where it takes more
than 110s to attack one trace with tsfresh. This demonstrates
that our methodology is less computationally intensive, thanks
to the efficiency of PCA dimensionality reduction. This also
opens the possibility to improve the results, e.g., using an
average factor of 4 with a small cost in time, as also shown in
Table II.

In the following, we continue to apply our methodology,
as presented in Section IV. Both classifiers will be fed with
DBtraining for tuning and validated with DBtest, through a grid
search process. As mentioned in Section IV, we use multiple



TABLE II
TIME REQUIRED PER STEP OF OUR ATTACK METHODOLOGY.

DB Build Norm. Extract. Folding Quant. Total

Preparation
on DB [s]

K-NN (tsfresh) 7.5 1.7 16650 0.85 0.95 16661
K-NN (PCA) 7.5 1.7 6.5 0.85 0.85 17.4

K-NN (PCA-A4) 7.5 1.7 100 0.85 0.85 110.9
RF (tsfresh) 7.5 1.7 16650 0.95 0.95 16661.1
RF (PCA) 7.5 1.7 8.5 1.0 1.0 19.7

RF (PCA-A4) 7.5 1.7 80 1.0 1.0 91.2

1 trace
attack [s]

K-NN (tsfresh) - 0.003 110 0.25 0.25 110.5
K-NN (PCA) - 0.003 0.28 0.027 0.027 0.337

K-NN (PCA-A4) - 0.003 0.64 0.03 0.03 0.703
RF (tsfresh) - 0.003 110 0.75 0.75 111.5
RF (PCA) - 0.003 0.29 0.06 0.07 0.421

RF (PCA-A4) - 0.003 0.66 0.06 0.07 0.79

lightweight classifiers to recover parameters. One classifier
recovers the folding configuration, while another handles quan-
tization. This approach offers better accuracy than a single,
larger classifier trying to distinguish all classes simultaneously.

1) k-nearest neighbors (k-NN): The first classification ap-
proach employs k-NN classifiers, which are deterministic and
computationally lightweight. Classification requires a prepro-
cessed new trace, a labeled DB for comparison, and a k number
of neighbors for similarity-based classification. Only k and
ncomp need to be explored during the grid search. We limit
grid search exploration to ncomp max = 50 and explore k from
3 to 19. Based on the grid search results, we set the attack
parameters to ncomp = 12 and k = 13.

We evaluate the final accuracy of our attack using DBtest,
first applying the PCA and then using the classifiers. The
results are shown in Table III, which illustrates the classification
accuracy for folding and quantization across different values of
naverage. For folding, our classifier achieves 91.84% accuracy
without averaging and 96.78% accuracy with averaging. This
demonstrates the effectiveness of PCA and shows that the NN
accelerator leaks sufficient information, even with a limited
number of samples relative to the Normalized Window Size
and a simple k-NN classifier. Importantly, our method is
data-independent, as evidenced by the impact of averaging
independent traces, i.e., traces obtained using different inputs.

For better understanding, Table III shows how the classifier
determines the correct implementation parameters from a trace.
For instance, when Folding 1× is combined with 4 bits of quan-
tization, the k-NN dedicated to quantization outputs the correct
result 65.9% of the time. This indicates that classification is
more challenging for quantization with Folding 1× and 2×.
This can be explained by the fact that the clusters for these
folding values are less distinct in the PCA space, as mentioned
in Section V-C and visible in Fig 4. However, with the PCA,
the recovery is globally better than using tsfresh with 90.91%,
both having some difficulties in some cases. To improve these
results, a stronger classifier could be used such as RF.

2) Random Forest: Unlike k-NN, which may struggle with
closely clustered data points, RF should be more effective by
leveraging an ensemble of decision trees to capture complex
decision boundaries, enhancing prediction accuracy, even when
the data clusters are not visually separable. We limit grid search
exploration with ncomp max = 50. The explored parameters are
nestimators in {100, 200, 400}, and minsamples split in {2, 5, 10}.
The best accuracy is found for the parameters: ncomp = 40,
nestimators = 400 and minsamples split = 5. Table III shows signif-
icant improvements over k-NN, achieving 99.7% accuracy for

TABLE III
CLASSIFIER ACCURACY VS. HW PARAMETERS AND LABEL.

Accelerator
parameters

Quant. 4 bits 6 bits AvgFold. 1x 2x 4x 8x 1x 2x 4x 8x
K-NN (tsfresh)
accuracy [%]

Quant. 100 84.1 99.3 100 94.1 99.2 88.3 97.6 90.91Fold. 91.6 70.2 96.7 99.4 80 96.7 75.4 81.9
K-NN (PCA)
accuracy [%]

Quant. 65.9 85.7 89.3 98.7 71.9 77.8 99.3 96.9 91.84Fold. 93.5 98.7 100 100 99.3 92.4 100 100
K-NN (PCA-A4)

accuracy [%]
Quant. 84.6 92.4 100 100 91.7 79.8 100 100 96.78Fold. 100 100 100 100 100 100 100 100

RF (tsfresh)
accuracy [%]

Quant. 100 90 100 99.4 96.4 100 97 98.8 95.72Fold. 98 84.7 94.5 98.1 92.3 99.2 86.1 97
RF (PCA)

accuracy [%]
Quant. 82.7 90.3 94.6 96.3 91.5 98.6 98.1 97.5 96.70Fold. 100 98.2 100 100 100 99.4 100 100

RF (PCA-A4)
accuracy [%]

Quant. 100 99.4 100 100 100 100 100 100 99.96Fold. 100 100 100 100 100 100 100 100

folding and over 93.7% for quantization without any averaging,
and 99.96% for both elements when using an averaging of 4
traces (PCA-A4). Regarding the detail of parameter recovery
with respect to the implemented DNN, Table III highlights that
even for Folding 1× and 4-bit quantization, the classification
accuracy exceeds 96%, confirming that RF can efficiently
identify closely clustered data points while maintaining limited
computation time.

VI. CONCLUSION

This paper proposes an SCA attack methodology for FPGA-
based DNN accelerators using remote sensors. Our approach
leverages PCA dimensionality reduction and demonstrates its
efficiency in enabling the use of lightweight classifiers for
parameter recovery. Our attack model is more robust and
coherent in a remote context compared to SoA solutions and is
data-independent. Experiments show the attack phase requires
only 400 ms to recover over 95% of folding and quantization
parameters of a FINN-based CNN accelerator using an RF
classifier. This is achieved by acquiring one trace with a
duration equal to the slowest dataflow stage, validating our
methodology. Compared to SoA attacks based on tsfresh, our
method requires 940× and 110× less time, for preparation and
attack phases, respectively, and gives better results even without
averaging traces. By leveraging this time gain, we could use an
average of 4 traces to fully recover all the HW configurations
tested within only 800 ms for the attack phase. Lastly, the core
of our method relies on PCA, an unsupervised process that
allows for the use of unsupervised classifiers to distinguish
between different implementations, though recovering unknown
parameters may require additional effort.

ACKNOWLEDGMENTS

This work is partially funded by the French Agence Nationale
de la Recherche (ANR) Young Researchers (JCJC) program,
under grant number ANR-21-CE39-0018 (project ATTILA).

REFERENCES

[1] M. Stojilović, K. Rasmussen, F. Regazzoni, M. B. Tahoori, and R. Tessier,
“A Visionary Look at the Security of Reconfigurable Cloud Computing,”
Proceedings of the IEEE, pp. 1–24, 2023.

[2] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A Hardware-
Software Blueprint for Flexible Deep Learning Specialization,” CoRR,
vol. abs/1807.04188, 2018.



[3] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

[4] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016.

[5] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future Direc-
tions,” Mar. 2018, arXiv:1803.05900 [cs].

[6] F. Hamanaka, T. Odan, K. Kise, and T. V. Chu, “An Exploration of State-
of-the-Art Automation Frameworks for FPGA-Based DNN Acceleration,”
IEEE Access, vol. 11, pp. 5701–5713, 2023.

[7] “Instances F1 Amazon EC2.” [Online]. Available: https://aws.amazon.
com/fr/ec2/instance-types/f1/

[8] O. Glamocanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are cloud
FPGAs really vulnerable to power analysis attacks?” in Proceedings of
the 23rd Conference on Design, Automation and Test in Europe (DATE),
San Jose, CA, USA, Mar. 2020, pp. 1007–1010.

[9] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on FPGAs,” in 2018 Design,
Automation & Test in Europe Conference Exhibition (DATE), Mar. 2018,
pp. 1111–1116, iSSN: 1558-1101.

[10] V. Meyers, D. R. E. Gnad, N. M. Dang, F. Schellenberg, A. Moradi, and
M. B. Tahoori, “Stealthy Logic Misuse for Power Analysis Attacks in
Multi-Tenant FPGAs (Extended Version),” 2023, report Number: 935.

[11] B. Udugama, D. Jayasinghe, H. Saadat, A. Ignjatovic, and
S. Parameswaran, “VITI: A Tiny Self-Calibrating Sensor for Power-
Variation Measurement in FPGAs,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 657–678, 2022.

[12] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. Loubet-Moundi, and O. Francis,
“Remote Side-Channel Attacks on Heterogeneous SoC,” in 18th Interna-
tional Conference on Smart Card Research and Advanced Applications
(CARDIS), Pragues, Czech Republic, Nov. 2019.

[13] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse Engi-
neering of Neural Network Architectures Through Electromagnetic Side
Channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 515–532, qID: Q115407770.

[14] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky Nets: Recovering
Embedded Neural Network Models and Inputs through Simple Power and
Timing Side-Channels – Attacks and Defenses,” IEEE Internet of Things
Journal, 2021.

[15] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and J. Szefer,
“Remote Power Attacks on the Versatile Tensor Accelerator in Multi-
Tenant FPGAs,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), May 2021,
pp. 242–246, iSSN: 2576-2621.

[16] C. Gongye, Y. Luo, X. Xu, and Y. Fei, “Side-Channel-Assisted Reverse-
Engineering of Encrypted DNN Hardware Accelerator IP and Attack
Surface Exploration,” in 2024 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Oct. 2023, pp. 1–1.

[17] V. Meyers, D. Gnad, and M. Tahoori, “Reverse Engineering Neural
Network Folding with Remote FPGA Power Analysis,” in 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). New York City, NY, USA: IEEE, May
2022, pp. 1–10.

[18] C. Clavier, “An Improved SCARE Cryptanalysis Against a Secret
A3/A8 GSM Algorithm,” in Information Systems Security, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, P. McDaniel, and
S. K. Gupta, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
vol. 4812, pp. 143–155, series Title: Lecture Notes in Computer Science.
[Online]. Available: https://hal.science/hal-02487036v1/file/2004-049.pdf

[19] V. Yli-Mäyry, A. Ito, N. Homma, S. Bhasin, and D. Jap, “Extraction
of Binarized Neural Network Architecture and Secret Parameters Using
Side-Channel Information,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), May 2021, pp. 1–5, iSSN: 2158-1525.

[20] H. Weerasena and P. Mishra, “Revealing CNN Architectures via Side-
Channel Analysis in Dataflow-based Inference Accelerators,” Nov. 2023,
arXiv:2311.00579 [cs].

[21] K. Yoshida, M. Shiozaki, S. Okura, T. Kubota, and T. Fujino, “Model
Reverse-Engineering Attack against Systolic-Array-Based DNN Acceler-
ator Using Correlation Power Analysis,” IEICE Trans. on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E104-A,
no. 1, pp. 152–161, Jan. 2021.

[22] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I Know What You See: Power
Side-Channel Attack on Convolutional Neural Network Accelerators,”
in Proceedings of the 34th Annual Computer Security Applications
Conference (ACSAC). Association for Computing Machinery, Dec. 2018,
pp. 393–406.

[23] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote Power
Side-Channel Attacks on BNN Accelerators in FPGAs,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Feb.
2021, pp. 1639–1644, iSSN: 1558-1101.

[24] E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks
with Data Augmentation Against Jitter-Based Countermeasures: Profil-
ing Attacks Without Pre-processing,” in Cryptographic Hardware and
Embedded Systems – CHES 2017, 2017, vol. 10529, pp. 45–68.

[25] K. Ramezanpour, P. Ampadu, and W. Diehl, “SCAUL: Power Side-
Channel Analysis With Unsupervised Learning,” IEEE Transactions on
Computers, vol. 69, no. 11, pp. 1626–1638, Nov. 2020.

[26] Z. Liu, Z. Wang, and M. Ling, “Side-channel Attack Using Word Em-
bedding and Long Short Term Memories,” Journal of Web Engineering,
Jan. 2022.

[27] Y. Zhang, “Stealing Deep Learning Model Secret through Remote FPGA
Side-channel Analysis,” Master’s thesis, UC Irvine, 2021.

[28] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time Series
FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A
Python package),” Neurocomputing, vol. 307, pp. 72–77, Sep. 2018.

[29] T. Henderson and B. D. Fulcher, “An Empirical Evaluation of Time-Series
Feature Sets,” Oct. 2021, arXiv:2110.10914 [cs].


