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Abstract. Among the fourth round finalists of the NIST post-quantum cryptography
standardization process for public-key encryption algorithms and key encapsulation mech-
anisms, three rely on hard problems from coding theory. Key encapsulation mechanisms
are frequently used in hybrid cryptographic systems: a public-key algorithm for key ex-
change and a secret key algorithm for communication. A major point is thus the initial
key exchange that is performed thanks to a key encapsulation mechanism. In this paper,
we analyze side-channel vulnerabilities of the key encapsulation mechanism implemented
by the Classic McFEliece cryptosystem, whose security is based on the syndrome decoding
problem. We use side-channel leakages to reduce the complexity of the syndrome decod-
ing problem by reducing the length of the code considered. The columns punctured from
the original code reduce the complexity of a hard problem from coding theory. This ap-
proach leads to efficient profiled side-channel attacks that recover the session key with
high success rates, even in noisy scenarios.

Keywords: Post-quantum cryptography - Code-based cryptography - Side-channel at-
tacks.

1 Introduction

Recent developments in quantum computing threaten classical public key cryptography. In-
deed, Shor’s algorithm [22] could be used to break public key schemes such as RSA or Diffie-
Hellman. Therefore, to prepare security in the quantum computing era, in 2016, NIST launched
a standardization process for post-quantum cryptography standards to replace current public-
key standards which are vulnerable to quantum computing. In July 2022, the fourth round of
the standardization process started. Among the four remaining candidates for public key en-
cryption algorithms and key encapsulation mechanisms, three are code-based solutions: Classic
McEliece [2], BIKE [3], and HQC [1].

All three proposals implement a solution for IND-CCA secure key exchange using a Key
Encapsulation Mechanism (KEM) [15]. KEMs are used to exchange private session key over
an insecure channel using public cryptography scheme. To avoid short message and padding
issues while using public-key encryption schemes, a key derivation function is used allowing to
generate the message sent in the right domain and using most of the time a hash function to
derive a uniform random looking secret key, assuming enough entropy in the original message.
The security of the private communication relies on the security of the KEM, assuming that
secure symmetric algorithms are used. Moreover KEM can be seen as a key-exchange protocol
in which only a single message is transmitted, if one of the two parties knows the public key of
the second party.

For both Classic McFEliece and BIKE, the security of the KEM relies on the hardness of the
binary Syndrome Decoding Problem (SDP). Conversely, the security of HQC essentially relies on
the hardness of decoding a general linear code. The binary SDP is an A'P-hard problem stating



the following. Knowing a matrix H € Fénfk)xn, an integer t < n and a vector s* € nglﬁ it is

difficult to recover e € F} such that He = s* and HW(e) = t. The vector s* is usually referred
to as the syndrome. In a KEM, the vector s* is sent, and the secret data e is reconstructed by
the recipient. Thus the encapsulation algorithm consists of a matrix-vector multiplication. The
difficulty of the problem depends on the weight ¢ of e. The problem is difficult when e is of
sufficiently “low weight”.

Some of the best solutions to solve the binary SDP make use of the so-called “information set
decoding” strategy (ISD) [19,23,14,16,4]. The key idea is to exploit the “low weight” property
of e by selecting a sufficient number of columns that do not operate in the computation of s*.
Afterwards, Gaussian elimination can be performed on the other columns. However, selecting
the columns is a challenging phase.

A consequence of the NIST post-quantum cryptography standardization process is to accel-
erate the development of implementations of code-based cryptography algorithms [21,7,18,8].
In particular, Classic McEliece has been implemented on 32-bit microprocessor ARM Cortex-
M4 [7], with the limitation that the public key must be stored in the flash memory, and on a
Xlilinx Artix-7 FPGA [8]. Implementations on constrained platforms, such as micro-controllers
or FPGAs, also lead to physical attacks against different algorithms of code-based cryptog-
raphy [13,5,9,12]. For example, it has been shown that the session key can be recovered by
side-channel attacks with multiple observations during the decapsulation process [13] or with a
single observation during the encapsulation process [9]. Colombier et al. demonstrated the ef-
fectiveness of their method against an implementation on the Chipwhisperer platform, which is
known to allow for low-noise side-channel measurements. The efficiency of the proposed method
in a more noisy setting was later analyzed in [10].

The focus of this article is on Classic McEliece, in particular the matrix-vector multiplication
over Fy used in the syndrome computation. Conversely, BIKE uses polynomial multiplication.
Adaptations are needed to apply the attack against other finalists but this is out of the scope
of this article.

Contribution This article exposes in details the inherent limitations of previously proposed
side-channel attacks against Classic McEliece presented in [9]. In particular, we explain the
performance degradation of the existing approach when large noise levels are considered. Besides
the intrinsic uncertainty of the Hamming weight classifier, we show that, overall, it is mainly due
to an accumulation of errors in the way the integer syndrome is computed, as required by the
attack setting and explained below. We then present a new, more efficient method that achieves
better resistance against noise present in side-channel traces by resorting to a more traditional
divide-and-conquer approach.

This new method is a profiled side-channel attack against Niederreiter-like constructions
using packed matrix-vector multiplications, as used in the round four finalist of the NIST stan-
dardization process Classic McFEliece. Moreover, we also study the feasibility of the proposed
attacks against implementations that use a larger register size, which is a clear trend in embed-
ded software implementations.

Organization This article is organized as follows. Section 2 describes existing message-recovery
attacks on the packed matrix-vector multiplication as used for the syndrome computation in the
Classic McEliece cryptosystem. The inherent limitations of these attacks, in particular when it
comes to error propagation, are detailed in Section 3. In Section 4, we introduce a divide-and-
conquer strategy that efficiently limits the propagation of errors. Experimental results are given
in Section 5 and we conclude in Section 6.



2 DMessage-recovery attacks on the packed matrix-vector
multiplication

This section introduces code-based KEMs and the target algorithm of the proposed side-channel
attack: Classic McEliece. In particular, we focus on the matrix-vector multiplication performed
during the encapsulation step. We also present previous side-channel attacks that recover the
shared session key.

Notations The following notations are used in this article. A finite field is denoted by F.
Matrices and vectors are written in bold capital, respectively small letters, e.g. a vector of
length n is ¢ = (¢1,...,¢,) and a k X n matrix is H = (hi,j)(i,j)eN;xN;- Let H; (j_1)w+1:jw be
the j*" block of size w of the i*" row of the H matrix. The concatenation of the vectors a and b
is written as a || b. The Hamming weight of a binary vector HW(e) is the number of its non-zero
coordinates. The Hamming distance between two vectors @ and b is written as HD(a, b).

2.1 Classic McEliece encapsulation

Like others KEMs, Classic McEliece includes three operations: key generation, encapsulation
and decapsulation. We focus on the encapsulation step in this work. This is detailed in Algo-
rithm 1, where the target operation of the proposed attack is annotated. This target operation
performs a matrix-vector multiplication over Fy and its implementation is detailed in the next
subsection.

Algorithm 1 Classic McEliece encapsulation

1: function ENcaP(H)

2: Generate a uniform random vector e € Fy with HW (e) = ¢.

3 Compute C <+ He > target operation
4: Compute K < H(1 || e| C) > session key
5 return (C, K)

2.2 Packed matrix-vector multiplication

Algorithm 2 shows the pseudo code of a software implementation of the matrix-vector multi-
plication over Fo. This implementation is referred to as “packed” since multiple bits are stored
together in the same machine word. The size of the machine word w is a parameter in this
algorithm. In the reference implementation of the Classic McEliece submission [2], w = 8. In
the ARM Cortex-M4 implementation by Chen and Chou [7], w = 32. In the vectorized imple-
mentation of the Classic McEliece submission [2], w = 64. Boolean instructions then operate
over the full machine word to perform operations in parallel. That is the key operation of the
encapsulation step in the Classic McEliece KEM. As shown in [9], the strongest side-channel
leakage occurs for line 5, when the intermediate variable b is updated by repeatedly adding the
logical AND of a matrix entry and a vector entry. To be able to refer to specific intermediate
values later, we write these intermediate variables as if they were stored in a matrix: b; ;. In
actual implementations, a single machine word is used.

2.3 Message recovery attack

We describe the method introduced in [9], to recover session keys on cryptosystems based on
the binary syndrome decoding problem. This attack uses side-channel information obtained
during the encapsulation step. The message recovery attack is composed of four steps, which
we describe hereafter.



Algorithm 2 Packed matrix-vector multiplication over Fo

Require: A binary (n,n—k) matrix H, and a binary vector e of n elements, the register size w (should
be a power of 2)
Ensure: A binary vector s* = He

1: 8«0

2: for i < 1 to (n—k) do

3: bi,O ~— 0

4: for j <~ 1to ;- do

5: bij+ bij—1 Hi,(j—l)w+1:jw N e;
6: t 3

7 while ¢t > 0 do

8: bz,ﬁ < bL% (&) (b%% > t)

9: te 1L

X ((bi,2 A1) < (i mod w))

g[3

11: return s*

1. Side-channel analysis: the goal of this first step is to estimate the Hamming weight of the
successive intermediate values of b during the matrix-vector multiplication, as shown on
line 5 in Algorithm 2. For the loop index 4, j, we denote by HW(b; ;) the best guess for
the Hamming weight of b; ;. In [9], authors use a random-forest classifiers for this step, but
other classifiers can be used.

2. Derivation of the integer syndrome: with the Hamming weight information obtained in the
first step, the attacker may estimate the values of the syndrome s in N, in addition to
the binary syndrome s* which is public. This is done by summing the differences of the
maximum of each value found in the previous step, as detailed in Equation (1).

n

1<i<iok) &= |[AWb,,) - EW(b,,) 1)

j=1

This computation requires a good estimation of the Hamming weight of the intermediate
values. In addition, it only works under additional conditions between b; ; and b; ;_;. If those
conditions are not met, it can lead to derive an erroneous value for the integer syndrome.
We discuss these issues in more details in Section 3.

3. Sort columns: the next step is to separate the columns into two sets. The first set consists
of the columns whose indexes are in the support of e. The second set consists of the other
columns. However, this separation is a difficult task. In [9], authors compute a score for each
column and sort columns according to this score. The score for the column j, based on the
work of Feige and Lellouche [11], is defined in Equation (2).

Viel,n], ¢;8)=H_, §+H ;-3 (2)

where H is the complementary of the matrix Hand § = ¢t — §, where ¢ is the weight of e as
dictated by the security parameters. In [10], the efficiency of this score function is analyzed
in the presence of errors.

4. Information Set Decoding: as shown in [10] the score function allows to efficiently discrim-
inate most of the columns in the support of e from other columns even in the presence
of noise. However, a few columns may still be wrongly classified. In that case, the score
function is used to provide a “good” initial permutation for ISD methods.

This method achieves a good success rate in a realistic scenario with measurements on a
ChipWhisperer platform [17] for various sets of parameters.



3 Limitation of the CDCG method

In this section, we present errors that can appear in the method of [9] and reduce the efficiency
of the message recovery. We concentrate on side-channel and recombination errors that lead to
an incorrect syndrome in N, i.e., the two first steps presented in section 2.3. Eventually, we
discuss the impact of such errors on scores output by the ¢ score function [11].

3.1 Side-channel analysis error

We first try to identify how side-channel analysis errors alter the estimation of the syndrome s
in N. Due to their nature and noise in measurements, side-channel attacks can output guesses
that are not the targeted sensitive information used in the implementation.

We say that the side-channel distinguisher makes an error if the highest guess score does not
correspond to the Hamming weight of the actual computation: HW (b, ;) # HW(b; ;). We may
rewrite the faulty guess as: -

HW(bl’]) = HW(bl,j) + €ijs
with €i,j 75 0.

Due to the leakage model, the error is generally small: ¢; ; € {—1,1} The Hamming weight
guess is the real Hamming weight plus or minus one. In practice, we observe on real traces that
the error is small for template and random forests when used as side-channel distinguishers.

If the side-channel distinguisher made some errors for the value in row 7 and column j then
the estimated syndrome in N will be flawed in the " position. This is clear when considering
how the i*" component of s is derived from the Hamming weight of the intermediate values:

= [HW(b; ;1) —HW(b; ;)| + €5, (3)
=1

where €, comes from the side-channel error on the i*! syndrome entry.

This ¢; ; value actually appears in two Hamming distances: for j and j—1. As a consequence,
the recombination step given in Equation (3) amplifies the side channel noise.
Remark :s; corresponds to the number of transitions between HAV/V(bm_l) and ﬁTN(bw) for j
going from 1 to n/w.

Ezample 1. For a given row 4, let HW(b; ) = (0,0,1,1,1,2,1,1) be the error-free sequence of
Hamming weights of the intermediate values. Then, the estimation part should give a guess
value of 5; = 3. Indeed, there are 3 transitions 0 - 1,1 — 2 and 2 — 1.

Depending on where the error ¢; ; appears, the consequence on the 5; value differs.

— Let’s assume we observe I/{\\/V(bl) =(0,1,1,1,1,2,1,1), €51 = +1 affects HW(b;1). We
derive s; = 3 and therefore €5, =0

— Let’s assume we observe HW(b; ) = (0,0,1,1,1,1,1,1), ;5 = —1 affects HW(b; 5). We
derive 5; = 1 and therefore e5, = —2

— Let’s assume we observe HW(b; ) = (0,0,1,1,1,2,1,2), ;7 = +1 affects HW(b; 7). We
derive s; = 4 and therefore €5, =1

As shown in the example, a negative or null impact on the estimation of the integer syndrome
entry can happen. However, these cases occur with low probability.

The side-channel error is directly linked to the accuracy of the side-channel distinguisher.
Indeed, the accuracy corresponds to the probability of a correct guess. We see that, with high
probability, any wrong guess of the side-channel distinguisher will lead to an overestimation of
the syndrome entry.



3.2 “Double-cancellation” error

Another error that can appear, as already discussed in [9], was called the “double cancellation”
issue. We recall the problem briefly. We are interested in the successive Hamming weights of the
partial matrix-vector product. However, the observations we get are the successive Hamming
weight of the b value in line 5 of Algorithm 2. Thus, in the CDCG method, the values we are
interested in are estimated with the following approximation of the Hamming distance from the
Hamming weight:

HD(a,b) ~ [HW(a) — HW(b)|.

With this approximation, the 2HW (b A =(a)) part of the Hamming distance computation
is omitted. In our case, we know that both vectors a and b are close due to the low weight of
the input vector. Indeed, if we look at Line 5 in Algorithm 2, we can notice that in our case,
we can consider one vector a to be random, but the second is of the form b = a ® ¢, with ¢ of
low weight. Indeed ¢ corresponds to the bitwise AND between a vector that looks random, a
sub-group of columns of a line of the matrix H, that is indistinguishable from a random matrix,
and a subpart of the vector e of low weight ¢ = H; ; A e;. In particular, HW(c) > 2 implies
HW(e) > 2.

The following theorem gives the weight distribution of the blocks.

Theorem 1. Let n,t,w be strictly positive integers with t < n and w divides n. Let X; be a
discrete random variable denoting the number of blocks of weight i of a binary string of length
n and Hamming weight t, where each block has length w. For any 2 < j < w let a; € {0,...,t}

J
satisfying Z&yg =t. Then

=1

(ar, ) Fp (w)™
Pr(Xj:aj,...,ngag,Xl:al)Z#H / ) (4)

() &

[

where (Oé1 w Oé,)denotes the multinomial coefficient.
B

Proof. We deal here with a classical combinatorial urn process. It can be described as follows.
We place ¢ balls into I+ urns, where the urns are labeled with respect to the number of balls
contained in the urn. Hence, we can have urns labeled with integers from 0 to w. And we are
interested in how many urns are labeled with the integer j, where 1 < j7 < w. The number of

possible (i, ...,1;) urns labeled with (2,...,j) equals

()

As there are ;> — iz — -+ — i; remaining urns, which are either labeled with 0 or with 1, and
since there are a total of ¢ balls from which 2i5 + - - - + j4; where already extracted, we can place

the remaining balls in the remaining urns in (;5_721227_;1’] ) possible ways. This makes a total of
J

w) (w2 R R R R W i P R P AN w (6)
in is ) i t— 2y — ji; i)

Wlthll :t72227‘72]
Now each urn labeled with j has (IJ”) possible representatives. Thus, we can deduce the
number of positive cases which equal

n J w\
(6. 20
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Moreover, fort = o(n) when n — oo the probability that the weights of the blocks are at most
1 can be approximated by

Corollary 1. The probability that the mazimum weight is 1 equals

~—|

(w—1)t2 (w1t | (w2+w+1)t2 5
6_ 2n <1+ 3 T 6n2 +O<,tT4)

2
In particular, using only the first term in the exponent for block sizes w € {8, 32,64} gives 6_72%,

312 _ 63t2
e 2n and e 2.

Proof. By simply replacing i; = 0 for all j > 2 in the previous theorem, one can deduce that

t(
the probability of having block weight smaller than or equal to 1 is — Sﬁ ) . For the asymptotics,
t
use the Stirling formula for the approximation of factorials to deduce the result.

Remark 1. In the case of Classic McFEliece, we have t = O(;=2—), which implies that the

logyn

probability of having only weights 0 and 1 blocks is roughly eicl"g%", where ¢ is a constant
related to the block size w.

One can deduce that the probability of having at least one block of weight 2 is extremely
high. This result implies that the CDCG method has a very high probability of underestimating
the Hamming weights. One can notice, as shown in Table la, that for block sizes greater or
equal to 32, the probability of having only blocks of weight 0 and 1 is extremely small. For
w = 8 the weight of the blocks is with high probability at most 2. This shows that it is highly
probable that at least one word of the e vector will lead to a recombination error, which will
affect the estimated syndrome. We also know that in such a case, all wrong estimated values
are underestimated.

Table 1: Weight of blocks e; for Classic McEliece parameters: probability of the maximum
weight and lower bound on the average number of blocks with weights larger than or equal to
2.

(a) Pr(max(HW(e;))) (b) [{7 | HW(e;) > 2}|/(n/w)
w|max| (3488,64)  (4608,96)  (6688,128) w (3488,64) (4608,96) (6688, 128)
=1| 0.01378 0.00061 0.00012
<2 0.873 0.767 0.739
81<3 0.997 0.993 0.992 8 3.8/436 6.4/576 7.9/836
<4 0.999 0.999 0.999
<5 0.999 0.999 0.999
=118.69 x 10711 7.59 x 107!° 3.1 x 10722
<2| 0.0804 0.0077 0.0038
32|<3 0.753 0.543 0.519 32 12.6/109 20.0/144 25.9/209
<4 0.974 0.936 0.936
<5 0.997 0.994 0.994
=1 0 0 0
< 2[5.66 x 107° 4.21 x 107° 3.80 x 1071
64/ < 3 0.159 0.021 0.015 64 17.1/54.5 24.2/72 31.7/105
<4 0.715 0.455 0.444
<5 0.947 0.865 0.869

Having many blocks of weight strictly greater than 1 increases the estimation error. There-
fore, determining the expected number of such blocks would be useful.



In Table 1b, we compute a lower bound on the expected value of the number of such blocks.
Notice that for w = 8 the number of blocks having weight larger than or equal to 2 is indeed,
extremely small. Hence in such a scenario, the syndrome estimation should be rather close to
the exact value. On the opposite, for w = 64 around 30% of the blocks are of Hamming weight
greater than or equal to 2. As we shall see, large values of w have a devastating impact on the
success probability of the CDCG method.

3.3 Dependent error

In Section 3.2, we showed that it is highly probable that we have a block of the vector with Ham-
ming weight greater than 1. These blocks are problematic since they will impact approximately
one-fourth of the Hamming weight estimation for the considered block.

Indeed, if HW(e;) = 2 and the H, ; are random words, then approximately one-fourth of the
product for this word column has weight 2. Among this quarter, half of them are underestimated
with the approximation used in the CDCG method if we consider a to be random. Hence, the
double cancelation error will impact several results and the error induces by a word of weight
higher than 1 will lead to dependent errors on the different syndrome estimations.

3.4 Impact of the error on the score computation

After the estimation step, the side-channel analysis error is increased. This error is then propa-
gated with the evaluation of the column score with the ¢ function from [11], as used in [9]. The
score for the column j is defined as:

v] € [[Lnﬂv 1/13(57 = H.,j . g‘i’ﬁ_,j ? (7)

Thus if, the i*" coordinate of § is incorrect, it will modify the score of the whole column. If
H, ; =1, then the left part (H ;- 3) is affected. In that case, the score computed by ¢ for the
column 4 is the error-free score plus ¢;. If H; ; = 0, then the left part (H_; - 5) is affected. In
that case, the score computed by % for the column ¢ is the error-free score minus ¢;.

Therefore, any incorrect estimation during the side-channel analysis will influence all the
results and affect them differently depending on the value of the bit in the H matrix. On
average, half of the columns score will be over-evaluated while the other half will be under-
evaluated.

4 Error propagation limitation

This section presents a different message recovery attack against Niederreiter-like schemes, that
make use of a matrix-vector multiplication in Fs. Our new method does not require estimating
the syndrome in N, as previously done in [5,9]. Moreover, it just looks at side-channel results
locally and does not propagate the error discussed in Section 3.

4.1 Punctured matrices

In order to cope with the error propagation issue, we propose to use both the incorrect and
correct Hamming weight estimations to distinguish between blocks of size w in the error vector
where e; = 0 and e; # 0. We recall that the attacker has access to the estimations of the

Hamming weight ﬁVV(bi)j).

For simplification, we will denote w; ; = HW(b; ;) and the matrix of estimated weights
W = (w; j)1<i<n—k,1<j<=. The j™ column vector of W is w; € N"7F more exactly, w; =
(ﬁ(bm),ﬁv(bg,j), . .,ITV/V(bn_k,j)) Algorithm 3 below determines for which index j we

have e; = 0.



Algorithm 3 ZERO-DISTINGUISHER

Require: W: Hamming weight guess for each intermediate value of the b value in Algorithm 2 and a

the estimate accuracy computed during profiling phase
Ensure A set L of blocks to be punctured

={0}

y=(n—k)(1-a®— 92 4 \/(2a + (1= a)2)(n — k)log(n — k)
if HW(w1) < (n — k)(1 — a) + /2a(n — k) log(n — k) then

L+ Lu{1}
for j +- 2to - do

if HW(w; — w;—1) <y then

L+ LU{j}

return L

If e; = 0 then this implies that, b; ; = b; j_1 for 2 < ¢ < n — k. In other words, for the
first block, the estimated weight vector w; should be equal to zero if the estimation is perfect,
and if the estimation is not perfect, depending on the accuracy, the value of HW(w;) (number
of coordinates different from zero) should be rather small. For all the subsequent blocks, the
condition e; = 0 implies that there should be no difference between w; and w;_; if the Hamming
weight estimation is perfect. In the non-perfect case, the vector w; —w;_; should have a small
Hamming weight, that depends on the classification accuracy. The following theorem gives the
necessary conditions on the accuracy a for Algorithm 3 to successfully output a list of valid
zero-weight blocks. In order to distinguish between the case HW(e;) = 0 and HW(e;) = 1 we
will use the following procedure. Denote the random variable X; = n — k — HW(w; — w;_1)
given HW(e;) =0 and ¥; = n — k — HW(w; — w;_1) given HW(e;) =1 for j > 2 (for j =1
use X; = n —k — HW(w,)). Then we say that one distinghuishes between X; and Y; with
high probability as long as Pr(X, > Y;) is close to 1. To achieve our goal we will use known
results on bounding the tail of binomial distribution and set up a threshold value 5* that acts
as an almost perfect separation between the two distributions. More exactly, we will have that
X; > B* whp. and Y; < 8* w.h.p. This value 8* will depend on the accuracy parameter a.

Theorem 2. Assume that the errors are limited to a distance of 1 and overestimation and un-
derestimation are equally probable. Let X; and Y; be the random variables as previously defined.

Let a1 > % + 40;?5(_71;;)]6) + 8ﬂ¢810g(n7§3;t2§n7k) logm=%) ind as > 0.5 be a solution of the

equation:

n—k 1—i—a2
= Vv (3a% —2 1)
log(n — k)  5a? 4a+1 ( “ ot >

Then Pr(X; >Y;) > 1
j>2.

Moreover, the threshold separation value between the distributions of n —k — X; and n —
k —Y; equals (n — k)(1 — a) + v/2a(n — k) log(n — k) for j =1 and (n — k)(1 — a* — @) +
V(2a2 + (1 —a)?)(n— k)log(n — k) for j > 2.

To prove Theorem 2 we will proceed step by step. We shall assume that errors are limited to a

distance of 1 and overestimation and underestimation are equally probable, and the side-channel
distinguisher accuracy equal to a.

1 1 .
~ k) T oG nm=Ry 48 long as a > ay for j =1 and a > as for

Lemma 1. Given e; = 0 we have

Pr(wg1 =0)=a,V1<{<n-—k,
(1-a)?
2

Pr(wg; —wpj—1 =0) =a® + V1<l<n—kV2<j<

n
U}



Proof. By definition of a we have Pr(w;; =0) =a,V1 <l <n—k.

For the intermediate blocks Pr (wg,j —Wp, ;_, = 0) depends on the estimations at step j — 1
and j. So, either both estimations are correct, with probability a2, or both estimations are
overestimated (resp. underestimates), with probability 15%.

Corollary 2. Given e; = 0 we have HW(wq) ~ n—k — B(n — k,a) and HW(w; — w;_1) ~
n—k—B(n—k,az—i—%).

Lemma 2. Given HW(e;) =1 we have

Pr(wey, =0) = T Vi</i{<n-—k,
1+a? on
Pr(we; —wej—1 =0) = T Vi<ié<n-—k, V2§]§E'

Proof. For the first block, without loss of generality, we assume that e;(i) = 1. We have two
cases to obtain wy,; = 0.

1. The i*" bit of the word of the matrix is 0, and we correctly estimate wy,1, the probability is
a

5.
2. The i*® bit of the word of the matrix is 1, and we underestimate wy 1, probability ITTG'

For the intermediate blocks, without loss of generality, we assume e;(i) = 1. Thus, we have
two cases to obtain wg ; — we ;1 = 0.

1. The i*® bit of the word of the matrix is 0, and we made the same error on both evaluations

for j and j — 1. Both correct, with probability %2, both underestimated, with probability
(15—‘1)2, similar for both overestimated, with a probability (15—“)2
2. The " bit of the word of the matrix is 1.

(a) The weight increases (resp. decreases), i.e. HW(by ;) = HW(bs ;j—1) + 1, we correctly

estimate wy ; but underestimate (resp. overestimate) wy ;_1 with a probability %i“a

(resp. 315%a).
(b) Similarly, the error can be on wy ; overestimation or underestimation, and the difference

will be zero depending on the impact on the weight modification, here also, we have two

times probability of %%1_7"@

By summing all cases, we obtain the following:

— o~ a® 1—a\? 11—a
Pr(HW(bz,j)HW@z,j_l)m2+( . ) +4<4 . a>.

Corollary 3. Given HW(e;) = 1 we have HW(w1) ~ n—k—B(n—k, %) and HW(w; — w;j_1) ~
n—k—B(n -k, ).

Proposition 1. Let a > %—i— 40;(()5(:2—)]6) + Bﬁ\/glog(nig()zjzgnik) log(n—k) Then, Pr(X; > Y7) >

L- (nik) - eO((sa—lmn—k))-
Moreover when e; = 0 we have HW(w;) < (n —k)(1 —a) + \/Za(n k) log(n — k).

Proof. Let us first recall that X1 =n — k — HW(w;) given e; =0 and Y7 =n — k — HW(w,)
given HW(e;) = 1. Also, by Lemma 1 X; ~ B(n — k,a) and by Lemma 2 Y7 ~ B(n — k, 142).
Let f* = (n— k‘)%a + . This value will act as the separation between the distributions. More
exactly we will require use the fact that

1+a—|—ﬂ)Pr(Y1<(n—k)1Z

Pr(X; > Y1) > Pr(X; > (n— k) 4 8). (8)



First we need to check the existence of such a value. For that we need to determine if such a
positive integer 3 satisfying (n— k)2 + \/(n — k)2 log(n — k) < (n—k) 2 +8 < (n—k)a—
\/ 2a(n — k) log(n — k) exists. By making the upper bound and lower bound equal7 we obtain

the wanted condition on a. This also implies that 8 < (n — k)34~ — \/2a(n — k) log(n — k).
Second, we will determine the probability in (8). Using Chernoff one gets

1 R

Pr(Y; > (n— )= +§) Se 0T o
1 7((n,—k)a,—(n—k)m_ﬁ)2

Pr(X; < (n—k) —le—a +p0)<e Ta Ry (10)
*1+a/3722 _ (=i et —p)?

Pr(X; >Y1)>1-e (n=k+85 _ ¢ TanoF (11)

Putting 8 = %(n — k) — v/2a(n — k)log(n — k) in the previous equation we deduce
Pr(X; >Yy) > 1 L The threshold value equals, 8* = (n — k)a —

1
T elog(n—k) — cO(Ba—1)(n—Fk)) "

V2a(n — k)log(n — k).

Proposition 2. Let a > 0.5 be a solution of the equation

_k 1+ a2
" = <\/ (3a?2 —2a+1) — +a>.

log(n — k) 4a +1
Then, Pr(X; > Y1) > 1— (nlk) — o L= Moreover, when e; = 0 we have HW(w; —

w;_1) < (n—k)(1 —a%— U522 a) ) +1/(2a2 + (1 —a)?)(n — k) log(n — k).

The proof of this Proposition is identical to the previous one.

Table 2: Distributions of the number of zeros in w; and w; — w;_;.
HW(e;) =0 HW(e;) =1

n—k—HW(w:) B(n—k,5a) B(n—k,42)

n—k—HW(w; — w;_1) B(n—k,a%%) B(n—k, 11“2)

In Table 2, we illustrate the distributions of X; and Yj. Some restrictions on the level
of accuracy are to be examined in details. For example if a = 0.4 the distribution of n — k —
HW (w;—wj;_1) is almost identical when HW(e;) = 0 and HW(e;) = 1. The larger the difference

between the parameters a (respectively a? + %) and %“ (respectively H‘“ ) the better for
the distinguisher. The one-distance error assumption is based on Hamming Welght leakages with
Gaussian noise and assumes univariate attacks. Previous work show that for low-noise setting
this assumption can be fulfilled [20,26)

4.2 T-test based score

The method presented in the Section 4.1 is efficient when considering small registers, or equiv-
alently small sub-matrices. However, as the register size increases, the number of columns kept
is too high to perform an efficient ISD. For that, we propose a method to select a permutation
for the ISD that can be used on the full matrix or its punctured version. Our method is based
on a T-test [24]. The T-test is commonly used for leakage assessment to detect if side-channel
traces are dependent on a parameter. The traces are separated into two sets according to the



known value of a parameter which may have an influence on them. Here, we use the T-test to
identify which columns have an impact on the side-channel traces difference.

To achieve this, for all groups of columns (depending on the implementation and parameter
w), we separate the rows into two multisets according to the Hamming distance recovered
during the side-channel attack (difference of the Hamming weight), the first one Sy for Hamming
distances equal to 0, the second one Sy for the other cases. In an error-free scenario, two cases
occur:

— All rows are in the same multiset (Sp), which means that none of the columns are used in
the computation of the syndrome, and thus, the considered coordinates of the vector e are
Zero.

— The rows are distributed in the two multisets. Hence some coordinates of e are different
from zero. We use a statistical test to determine which columns have a different distribution
in the two multisets. If the coordinate of e is null, then the distribution should be similar
in the two multisets, whereas if the coordinate of e is not null Sy should contain rows with
0, and S should contain rows with 1.

In order to deal with errors, either from side-channel analysis or recombination, we use a
statistical test to deal with the misplacement of rows in the multisets. The method is described
in Algorithm 4. The next step is to use the permutation obtained as an initial permutation for
ISD-based methods.

Algorithm 4 T-test based attacks

Require: W: Hamming weight guesses for each intermediate value of the b value in Algorithm 2 and
a binary (n,n — k) matrix H.
Ensure: A n-permutation ¢ (of the coordinates of the vector e).
1: for j +- 1to I+ do
20 (S0, 51) « ({0}, {0})
3 fori+ 1lton—k do > Separate columns according to side-channel analysis
4 if Wi,5 — Wi j—1 = 0 then
5: So = So U Hj (j_1)wi1:jw
6
7
8
9:

else
S1 ¢+ S1UH; (j_1ywt1:jw
T-score[(j — )w + 1 : jw] < T-test(So ~ S1) > Perform feature selection

return ¢ < argsort(T-score) > Sort in decreasing order

5 Experimental validation

In this section, we compare our method with the CDCG method in various settings, to eval-
uate the different approaches in different case studies. In particular, we want to illustrate the
limitations of the CDCG method we described before in Section 3. Our experimental validation
confirms that our T-test-based approach is better suited than the previous method in low and
large noise settings. For that, we consider simulation leakages and optimal template attacks [6]
, i.e. with perfect modeling. We consider a leakage of the form £, ; = HW(b; ;) + N(0,0?),
where the Hamming weight HW can be on w = 8, 32 or 64-bit values and the noise variance

o? affects the side-channel distinguisher accuracy. To estimate the accuracy of the template
1
2v20 )’
this estimation may not be true for limit case, i.e. HW(b; ;) = 0 or HW(b; ;) = w. We also
evaluate the accuracy of the distinguisher and the one observed in experimental results is close

to the 3-o rule one. This is due to the fact that most of the values of HW(b; ;) are close to ¥,

attack, we use the 3-0 rule a ~ erf ( where erf is the Gauss error function [25]. While



and we consider a relatively low-noise case. Experiments confirm that the puncturing methods
offer better results than the previous method for large registers and/or high noise.

For reproducibility, the source code of the simulation is given in https://github.com/
vingrosso/Side-channel-attacks-Classic-McEliece.git.

5.1 Punctured matrices

In this experiment, we consider the selection method to reduce the ISD problem via the method
presented in Section 4.1. We arbitrary set to 240 binary operations the maximum value of a
computationally feasible attack. All the lower values are part of the so-called computationally
feasible zone.

The idea is to evaluate the resistance to noise of the selection method for different register
sizes. We simulate 100 experiments for the first and last set of parameters of Classic McEliece
(n, k,t) = (3488,2720,64) and (n, k,t) = (8192,6528,128). The results are plotted in Figure 1.
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(a) (n, k, 1) = (3488, 2720, 64). (b) (n,k,t) = (8192, 6528, 128).

Fig.1: Median number of columns selected with the punctured method. The hatching zone
corresponds to the computationally feasible zone.

As expected for small register size w = 8 and high accuracy ¢ = 0.92 (¢ = 0.26), the
punctured method allows for an effective discrimination of a sufficient number of blocks of
columns. Consequently, a simple Gaussian elimination is sufficient to recover the syndrome up
to 0 < 0.29. When the noise variance increases, a reduced syndrome decoding problem can be
solved. However, the number of columns kept becomes rapidly large, close to all the columns,
and requires too much computational power to mount a successful attack.

For large registers (w = 32 and w = 64), each block kept adds 32 or 64 columns for only one
or two selected columns. Hence, even for low noise and high accuracy, the number of columns
kept is too large and compromises the success of an ISD attack.

For the set of parameters of Classic McFEliece the length of the codes are divided into a
number of blocks n/w equal to [436,576, 836, 1024] (for w = 8), [109, 144, 209, 256] (for w = 32)
and [51,72,105,128] (for w = 64). As for the codimension of the code we obtain a number
of blocks (n — k)/w equal to [96,156,208,208] (for w = 8), [24,39,52,52] (for w = 32) and
12,20, 26, 26] (for w = 64).

In Figure 2, we represent an estimated complexity of two ISD variants, Prange [19] and
BJMM [4], when applied on punctured matrices. At each step, we increase by one the number
of blocks of size w = 32 that are to be removed. Hence, we decrease the length of the matrix by
32, while keeping the same co-dimension, i.e. n — k is constant. For example, the Prange variant
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Fig.2: Two ISD variants on punctured matrices (w = 32).

applied on n = 3488 with 80 punctured blocks, gives a complexity smaller than 23°. In this
case, one has to remove 2560 columns out of the information set which is of size k = 2720. The
horizontal solid line at y = 40 points out a rough limit from where ISD techniques become com-
putationally feasible in practice. Computing the intersection points of this line with the BJMM
variants gives a number of blocks to be punctured equal to [69, 89,142, 189]. This implies that
one needs to distinguish [2208, 2848, 4544, 6048] columus, i.e. to select [1280, 1760, 2144, 2144]
columns. Represented as a factor, one has to select [1.66,1.41,1.28,1.28] times (n — k) columns
to perform the BJMM attack with a time complexity of 2*° binary operations.

5.2 Impact of the side-channel distinguisher accuracy

In this experiment, we evaluate the impact of the accuracy of the distinguisher on the success of
three methods: CDCG punctured, CDCG and T-test. We consider Hamming weight 8-bit leak-
ages, which means 0 < HW(b; ;) < 8, and we consider different values of noise o to modify the ac-
curacy. We work with the first set of parameters of Classic McFEliece: (n, k,t) = (3488,2720, 64).
In Figure 3, we can notice that for every accuracy parameter evaluated, the T-test method
achieves a similar success rate, while the success rate of the CDCG method drops rapidly when
the accuracy decreases. Applying the score function 1 on the punctured matrix does not help:
the limit appears as early as for 0 = 0.3 for punctured matrices as shown in the experiments of
Section 5.1.

As discussed in Section 3.1, this was expected since every side-channel error will have an
effect on the syndrome computation, and each incorrect coordinate in the syndrome will have
an impact on all the column scores. By contrast, side-channel error in the proposed method will
only alter the two columns where the incorrect Hamming weight is used, and, thanks to the
large number of rows, we can correct this error efficiently.

In Figure 4, we consider the T-test method only and look at the impact of the accuracy
value. As expected, the lower the accuracy, the less efficient the methods. Finally we can notice
that the size of the population in the T-test method helps in the columns selection step. Indeed,
when considering larger parameter sets, the success rate increases.

5.3 Impact of the register size

In the next experiment, we highlight the recombination error discussed in section 3.2. As dis-
cussed in the previous section, the larger the register, the more likely dependent errors are.
Hence, we expect the success rate of all methods to drop when larger registers are considered.
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Fig.4: Success rate of the T-test method for w = 8 and different noise levels for two Classic
McEliece parameters sets.

We fix the accuracy at 0.99822 for a noise level of o = 0.16 that is close to the accuracy obtained
on the real traces used in [9)].

In Figure 5, as expected, the success rate of all three methods decreases when larger registers
sizes are considered. However, in all cases, the proposed T-test-based method shows a better
success rate than the CDCG method. We refer to Section 3.3 for a more detailed explanation of
the impact of the dependent error on the CDCG method. The proposed method is also affected
by larger register sizes, especially when noise increase as shown in Figure 6. For the noise levels
considered in this figure, the punctured method does not manage to distinguish blocks with
e; = 0 and e; # 0. Thus the T-test is the only solution when considering large registers and
“high” noise scenarios.
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6 Conclusion

In this paper, we analyze and develop techniques to solve the syndrome decoding problem with
noisy information. In particular, we analyze some weaknesses of the method proposed in [9].
The weaknesses are due to the redefinition of the classical syndrome decoding problem into the
integer syndrome decoding problem. We demonstrate that reformulating to integer syndrome
decoding problem propagate errors due to side-channel acquisition.

Next, we present two methods based on a divide-and-conquer approach, to avoid the prop-
agation of the error. The methods presented are based on the fact that the distribution of the
side-channel observations are different when a block of the vector e is 0 or not. The first method
characterizes the distributions of the estimation according to the accuracy and finds the bound



on the number of coordinates equal to 0 to distinguish if the block of the vector e is 0 or not.
The second solution separate the rows of the matrix according to the side-channel leakages and
evaluate if the rows seems to follow a uniform distribution in the two set or follow different
distributions in the two sets. The analysis of the behavior of the two distribution is performed
with a T-test. This allows us to discriminate inside the block which coordinate is more likely to
follow a different distribution, allowing for an even finer analysis than the first method.

We finally validate our approach with various experiments. Both methods presented offer a
better success rate than state-of-the-art attacks and the T-test is generally more efficient when
considering larger registers or a higher level of noise. Compared with existing attack paths, this
method cannot be used when the attacker obtains an integer syndrome only, without partial
information, as done in [5]. In [9], the author suggests using masking as a countermeasure. An
interesting research direction would be to evaluate the efficiency of the different approaches
when masked implementations are considered.

All presented side-channel attack methods on KEM for code-based cryptography so far ex-
ploit profiling. An interesting research direction could be to turn these attacks into a non-profiled
attack. Another path could be to adapt the technique to different rings or fields rather than
the binary field considered. The specific structure of the public key in the BIKE cryptosystem,
a quasi-cyclic moderate density parity check matrix, is not exploited in this work and deserves
more investigations.
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