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Abstract. Classic McEliece is one of the three code-based candidates in the fourth
round of the NIST post-quantum cryptography standardization process in the Key
Encapsulation Mechanism category. As such, its decapsulation algorithm is used
to recover the session key associated with a ciphertext using the private key. In
this article, we propose a new side-channel attack on the syndrome computation
in the decapsulation algorithm that recovers the private key, which consists of the
private Goppa polynomial g and the permuted support L. The attack relies on
both practical aspects and theoretical contributions, namely that the side-channel
distinguisher can accurately discriminate elements of the permuted support L, while
relying only on a standard noisy Hamming weight leakage assumption and that there
exists a cubic-time algorithm that uses this information to recover the private Goppa
polynomial g. Compared with previous work targeting the Classic McEliece private
key, this drastically improves both on the assumptions made in the attacker model
and on the overall efficiency of the key-recovery algorithm. We have carried out the
attack in practice on a microcontroller target running the reference implementation
of Classic McEliece, and make the full attack source code available.
Keywords: Post-quantum cryptography · Code-based cryptography · Classic McEliece
· Side-channel attacks

1 Introduction
The potential emergence of the quantum computer in the years to come poses an undeniable
threat to the current asymmetric cryptosystems, such as RSA or ECDSA, which are based
on number theory problems. Indeed, in 1994, Peter Shor proposed polynomial-time
quantum algorithms to solve these problems [Sho94]. Shor’s algorithm can factor large
integers and compute discrete logarithms efficiently, breaking the security assumptions
underlying RSA and ECDSA. While the threat remained distant for many years, recent
technological advancements and renewed interest in the field have made store-now-decrypt-
later attacks increasingly serious. In such attacks, an adversary can store encrypted data
now, expecting to decrypt it later when quantum computers become available.

In response to this emerging threat, the U.S. National Institute of Standards and Tech-
nology (NIST) initiated a standardization process called the Post-Quantum Cryptography
(PQC) Standardization in 2016. This initiative aims at identifying and standardizing
so-called post-quantum cryptographic algorithms, that are resistant to quantum attacks.
After three rigorous evaluation rounds, CRYSTALS-Kyber [SAB+20] emerged as the sole
candidate selected in the public key encryption and Key Encapsulation Mechanism (KEM)
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category. CRYSTALS-Kyber is based on the hardness of the learning-with-errors problem,
a well-studied problem in lattice-based cryptography.

However, three other candidates remain for a fourth round: BIKE [ABB+22], Classic
McEliece [ABC+22], and HQC [AAB+22]. They are all based on hard problems from
coding theory. BIKE and HQC rely on the hardness of decoding quasi-cyclic codes while
Classic McEliece is based on the hardness of decoding random linear codes.

In this article, we focus on the Classic McEliece KEM. It is a code-based cryptosystem
which, despite its name, is actually based on the Niederreiter cryptosystem [Nie86]. The
security of Classic McEliece is rooted in the difficulty of decoding random linear codes, a
problem that has withstood decades of cryptanalytic efforts.

Historically, code-based cryptosystems were subject to side-channel attacks even before
NIST initiated the PQC standardization process [HMP10, MSSS11, AHPT11, CEvMS16].
Side-channel attacks exploit physical information that can be measured during the execution
of cryptographic algorithms on physical systems, such as timing, power consumption, or
electromagnetic emissions. Researchers have developed various countermeasures to protect
code-based cryptosystems from these attacks, including masking techniques, constant-time
implementations, and error detection mechanisms.

As a side benefit of the NIST PQC standardization process, several embedded software
and hardware implementations of Classic McEliece have been published [CC21, CCD+22,
FLZG24]. These implementations are designed to provide practical security against both
classical and quantum adversaries. They are optimized for performance on a variety of
platforms, from low-power embedded devices to high-performance servers. The continued
development and analysis of these implementations are crucial for ensuring the robustness
and efficiency of Classic McEliece in real-world applications.

High-level description of Classic Mceliece Like any KEM, Classic McEliece is built on
three algorithms: Key generation, Encapsulation and Decapsulation.

To generate a private/public key pair (sk, pk), one generates a Goppa polynomial g(x)
and selects a subset of permuted elements of F2m , known as the Goppa support L. The
private key is then (g(x),L), which defines the private Goppa code. Given a parity-check
matrix of this code H ′ one can deduce the public key Hpub, by computing the standard
form of H ′ by Gaussian Elimination. Getting sk from pk boils down to finding both g and
L.

To encapsulate a key, one encrypts a message à la Niederreiter, i.e. computes z =
Hpube

T where e is a binary vector of weight wt(e) = t. The resulting key is the hash value
of e and z. The decapsulation process decodes z using g(x) and L. This step implies the
computation of a syndrome, solving a key equation and finding the roots of the error locator
polynomial σ(x). Optimized implementations use the Fast Fourier Transform (FFT) for
syndrome computation and roots extraction [CC21].

Related Work The smaller parameters of Classic McEliece, compared with other code-
based cryptosystems, coupled with the advent of larger embedded devices, have encouraged
the advancement of both implementations and attacks on implementations of Classic
McEliece.

A few key-recovery side-channel attacks on Classic McEliece have already been pub-
lished. Guo et al. presented a key-recovery side-channel attack during the decapsulation
step [GJJ22]. Their attack requires to observe the decapsulation of n invalid ciphertexts,
where n is the security parameter of Classic McEliece. Seck et al. presented a partial
key-recovery side-channel attack during the decapsulation. In their work, only the private
polynomial g is recovered, from side channel observation while the polynomial coefficients
are loaded [SCD+23]. Brinkmann et al. posted a preprint presenting a key-recovery
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Table 1: Comparison of key-recovery attacks on the Classic McEliece KEM.

Article Step Scenario Attack type Implement.
(Algorithm) and hardware

[BCM+23] Gauss. Elim. 1 trace a Side-channel (sim.) Ref. & Botan
(KeyGen) Full key recovery N/A

[GJJ22] FFT σ(x) n traces Side-channel Ref. & optim.
(Decaps.) wt(e) = 1 Full key recovery FPGA & ARM

[SCD+23] load(g) 1 trace b Side-channel Optimized
(Decaps.) Partial key recov. ARM

[PGD+22] σ(x) / Valid. no CCA2 Fault inject. (sim.) Reference
(Decaps.) Faults in σ Alternate key recov. RISC-V RTL

This Syndrome comp. 1 trace c Side-channel Reference
article (Decaps.) Full key recovery ARM

a Assuming a maximum 0.4 bit-flip error probability
b On the ChipWhisperer [OC14]
c On the ChipWhisperer [OC14] and with a Hamming weight classifier accuracy higher than 0.945

side-channel attack during the key generation [BCM+23]. They rely on software-simulated
leakages that could occur during the Gaussian elimination.

It is noteworthy that these practical works have led authors to propose novel algorithms
for attacking code-based cryptography. Kirshanova and May presented several methods
for performing a full key recovery against Classic McEliece, assuming that an attacker
has access to various parts of the secret [KM23]. These parts are referred to as “hints”.
However, the actual means by which an attacker could obtain these hints is not discussed,
particularly with respect to their practical feasibility in the context of physical attacks.

Contributions

First side-channel full key-recovery attack against the syndrome computation in
the reference Classic McEliece implementation with a realistic attacker model In the
first step of the decapsulation, one computes the syndrome vector given the received
ciphertext and the private parity-check matrix. In [CC21] an optimized implementation of
this step, based on the Fast Fourier Transform was proposed. However, as pointed out in
[GJJ22] such implementations leaks information about the private key. Hence, we focus
on the syndrome computation as performed in the reference implementation of the Classic
McEliece KEM. We carry our attack in practice on all Classic McEliece parameter sets and
show that, when implemented on the arguably low-noise ChipWhisperer [OC14] platform,
a single side-channel trace allows one to completely retrieve the private key of the scheme.
Compared with existing key-recovery attacks on the Classic McEliece we stress out two
main advantages of our approach.

1. Compared with [SCD+23], which has an exponential time complexity, the proposed
attack relies on a cubic-time algorithm. On a laptop, the private key is recovered in
a few seconds for the lowest security parameters and 5 min for the highest.

2. Compared with [BCM+23], the attacker model we consider is much more realistic.
We target the decapsulation step which is performed every time a session key in
needed, whereas [BCM+23] targets the key generation algorithm, a more complex
scenario to be set up in practice.
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Hamming weight Vandermonde distinguisher We show how to use a general Ham-
ming weight leakage model applied to the syndrome computation in order to retrieve pairs
of elements of the form (α, g(α)) where α are elements in the support L of the private
Goppa code. For that, we define a new distinguisher for the elements of the finite field F2m .
More precisely, we show that, with high probability, one can identify each pair (α, g(α))
by means of its Vandermonde-type weight vector

(
g−2(α), αg−2(α), . . . , αdg−2(α)

)
for a

sufficiently large integer d.

A cubic-time optimized algorithm for breaking Goppa codes with hints In the
literature, two distinct scenarios for breaking Goppa codes with hints exist: knowing the
Goppa polynomial g(x) or knowing a set of elements α in the private Goppa support
L. The first scenario is exploited in [BCM+23] by means of the well-known Support
Splitting Algorithm [Sen00], while the second was proposed in [KM23]. Here, not only do
we recover a set of points (α, g(α)) by means of the proposed side-channel distinguisher,
we also describe a new cubic-time algorithm for breaking Goppa codes with hints, which is
more efficient than state-of-the-art solutions. Its time complexity is O((t log2 n)3), which
becomes O(n3) under the assumption that t = n/ log2 n.

We summarize the different steps of the attack in Algorithm 1, and give in comments
the associated sections in the paper. The complexity of the main steps in analyzed in
Subsection 3.5.

Algorithm 1 Overview of the proposed attack.
Input: A side-channel trace of the execution of the Classic McEliece Decapsulation
Output: The private key sk = (g,L)
1: Estimate the Hamming weight of

(
αig−2(α)

)2t−1
i=0 ∀α ∈ L . Subsection 3.2

2: Recover mt+ δ pairs (α, g(α)) . Subsubsection 3.3.1
3: Recover polynomial g from t pairs (α, g(α)) via interpolation . Subsubsection 3.3.2
4: Construct the Vandermonde matrix V using g and the mt+ δ pairs . Subsection 3.4
5: Compute the change-of-basis S using V and Hpub
6: Recover Hprivg = S−1Hpub

7: Recover the full permuted support L = Hprivg[1:]
Hprivg[0:]

(
= αjg(αj)

g(αj)

)

Remark 1. From line 2 in Algorithm 1, it is possible to use mt + 1 elements α and the
method presented by Kirshanova and May [KM23]. However, since the proposed side-
channel attack recovers both α and g(α) for a large number of α, we propose a more
efficient technique adapted to this additional information.

Organization This article is organized as follows: Section 2 presents the necessary
background, providing definitions and notations from coding theory and code-based
cryptography. Section 3 describes the different steps of the attack. Section 4 provides
experimental results. Countermeasures are discussed in Section 5 and Section 6 concludes
the article.

Reproducibility Wemake the proposed attack fully reproducible by providing the firmware
source code and compilation scripts used to program the target microcontroller, as well as
scripts that record the side-channel trace and carry out the attack. In case someone wants
to reproduce the attack but does not own a ChipWhisperer [OC14], we also provide a way
to simulate the side-channel trace following a Hamming weight leakage with an accuracy
that can be adjusted. This is available on a GitLab repository.1

1https://gitlab.univ-st-etienne.fr/sesam/tches-2025-1-full-key-recovery-cubic-time-temp
late-attack-on-classic-mceliece-decapsulation

https://gitlab.univ-st-etienne.fr/sesam/tches-2025-1-full-key-recovery-cubic-time-template-attack-on-classic-mceliece-decapsulation
https://gitlab.univ-st-etienne.fr/sesam/tches-2025-1-full-key-recovery-cubic-time-template-attack-on-classic-mceliece-decapsulation
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2 Background
2.1 Notations
This section introduces the notations used in this article, some are extracted from the
design document of round-4 Classic McEliece [ABC+22].

Integers are denoted using lowercase letters, while intervals of integers will be denoted
by Ja; bK. We employ bold uppercase letters for matrices and bold lowercase letters for
vectors. Let v be a vector, then vi represents its ith coordinate and vT its transpose. Also,
we shall denote by sup(v) the set of positions where vi 6= 0.

Let H be a matrix, then hij is the coefficient of H located at the ith row and jth

column. A sub-matrix of H indexed by a set of rows I and a set of columns J will be
denoted by H [I,J ]. Also, a row or a column of a matrix H will be denoted by H [i :] and
H[: j], respectively.

Let A be a set, then #A is the number of elements of A. Finite fields of order q will
be denoted by Fq. Here, we will deal with objects defined over F2m , which is constructed
as an extension of F2 using an irreducible polynomial f(x) ∈ F2[x] with deg(f) = m.
Hence, given α a primitive root of f(x), i.e. F2m = 〈α〉 (α is generator), we naturally
associate to any element β ∈ F2m its vector form in F2 by β = (β0, . . . , βm−1) ∈ Fm2 with
β =

∑m−1
i=0 βiα

i.

2.2 Code-based cryptography
Definition 1 (Linear code). A linear code C of length n and dimension k is a vector
subspace of dimension k of the vector space Fnq . Such a linear code is called an [n, k]q code.
An element c = (c0,. . .,cn−1) ∈ C is called a codeword.

A constructive way of defining a linear code C is by setting a basis, which we call a
generator matrix (G) for C , where Rank(G) = k. We say that a generator matrix G is in
standard form if G = (Ik | V ) . While having many generator matrices, a code can possess
a single standard-form generator matrix.

Definition 2 (Hamming weight). Let C be a [n, k]q linear code and c ∈ C be a
codeword. Then the Hamming weight of c is defined by wt(c) = #{i ∈ J0;n− 1K |ci 6= 0}.

Definition 3 (Parity-check matrix). Let C be a [n, k]q linear code and H be an
(n− k)× n matrix such that

∀c ∈ C ⇔HcT = 0.
Then H is called a parity-check matrix of C .
Also, for any v ∈ Fnq , one can define the syndrome of the vector v with respect to H by
the vector s = HvT .

Notice that a code admits several parity-check matrices, since there are as many bases
for the code as there are invertible matrices of size k over Fq. However, as we shall quickly
see particular bases/parity-check matrices lead to efficient decoding algorithms. Before
delving into decoding strategies, let us introduce the core code family studied in this article,
the binary irreducible Goppa codes [Gop70].

Definition 4 (Goppa Code). Let L = {α0, . . . , αn−1} with αi ∈ F2m and αi 6= αj for
i 6= j. Let g(x) ∈ Fq[x],deg(g) = t such that ∀α ∈ L, g(α) 6= 0. Then the set

G (g,L) =
{
c = (c0, c1, . . . , cn−1) ∈ Fn2 :

n−1∑
i=0

ci
x− αi

≡ 0 mod g(x)
}

is called a Goppa code with parameters L and g(x).
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In the literature, the parameter g(x) is called the Goppa polynomial, and when g(x) is
irreducible, the code is known as a binary irreducible Goppa code. The code parameters
are n for its length and k = n−mt for its dimension. Hence, a parity-check matrix for the
binary Goppa code has mt rows.

The degree of the Goppa polynomial has a significant relevance for the code properties,
more precisely, it gives the decoding capacity of the Goppa code. Because we are dealing
with a cryptographic context, we consider unique decoding strategies. In the case of
Goppa codes, there are at least three well-known decoding algorithms: Berlekamp-Massey
[Ber15, Mas69], Patterson [Pat75], or the latest interpolation with errors for Goppa
decoding by D. J. Bernstein [Ber24].

The unique decoding problem refers to recovering two vectors e, c ∈ Fn2 from z = c+ e
assuming wt(e) ≤ t and c ∈ G (g,L). All decoders mentioned previously start by computing
the syndrome polynomial sz(x) =

∑n−1
i=0

zi

x−αi
and then solve a key equation in order

to retrieve the error locator polynomial σe(x) =
∏
i∈sup(e)(x− αi). While the Patterson

algorithm primarily employs g(x) for the modular operations, Berlekamp-Massey and
Bernstein methods use g2(x) in order to achieve the same decoding capacity. Consequently,
the parity-check matrix for Patterson decoding has t rows while the parity-check matrix of
the other decoders has 2t− 1 rows. More details can be found in [Ber24].

Now, let us move to the core application of the Goppa codes, namely code-based
cryptography, with a particular emphasis on the Classic McEliece KEM. It should be
noted that in several implementations of Classic McEliece, in particular in the reference
implementation, the Berlekamp-Massey decoder is used.

2.3 The Classic McEliece KEM
Introduced in 1978 by Robert J. McEliece, the McEliece cryptosystem was the first code-
based cryptosystem [McE78]. It relies on a randomly chosen binary irreducible Goppa
code. Its security is based on the hardness of decoding a general linear code, which is
NP−complete [BMvT78]. In 1986, Harald Niederreiter proposed a variant of the McEliece
cryptosystem, called the Niederreiter cryptosystem [Nie86], that uses a parity-check matrix
for the encryption algorithm instead of a generator matrix. In its original version, the
Niederreiter cryptosystem used generalized Reed-Solomon codes, but it was proved to be
insecure in [SS92]. However, when using binary Goppa instead of Reed-Solomon codes, it
is equivalent, in terms of security, to the McEliece cryptosystem [LDW94].

Classic McEliece [ABC+22] is a KEM based on the Niederreiter cryptosystem. The
different sets of parameters for Classic McEliece are shown in Table 2. This table also
includes a smaller parameter set, referred to as toyeliece which has already been considered
in prior works [BCM+23].

Table 2: Classic McEliece [ABC+22] and toyeliece [BCM+23] parameter sets.

Parameter set toyeliece mceliece mceliece mceliece mceliece mceliece
51220 348864 460896 6688128 6960119 8192128

m 9 12 13 13 13 13
n 512 3488 4608 6688 6960 8192
t 20 64 96 128 119 128

2.3.1 Algorithms

As a KEM, Classic McEliece is composed of three algorithms: Key generation, Encapsula-
tion, and Decapsulation.
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Key generation This algorithm generates the pair (pk, sk) of public and private keys used
by the encapsulation and decapsulation algorithms. Algorithm 2 describes the different
steps of the algorithm.

Algorithm 2 The key-generation algorithm of the Classic McEliece KEM.
Input: The Classic McEliece security parameters (m,n, t)
Output: The private key sk = (g,L) and the public key pk = T
1: Generate a set L = {α0, . . . , αn−1} of random elements of F2m with #L = n
2: Generate an irreducible monic polynomial g ∈ F2m [x] of degree t
3: Compute the t× n parity-check matrix H 2

H =

 g−1(α0) . . . g−1(αn−1)
...

. . .
...

αt−1
0 g−1(α0) . . . αt−1

n−1g
−1(αn−1)


4: Transform H to an mt× n binary matrix H ′ . Using the F2m → Fm2 mapping
5: Transform H ′ in standard-form Hpub = (Imt | T )
6: return sk = (g,L) and pk = T

Line 4 in Algorithm 2 is completed using the representation of F2m given by a fixed
extension polynomial f(x), where deg(f) = m and f(x) is irreducible. Regarding line 5,
there might be cases where on the first mt = n − k positions H ′ is not invertible, and
thus one can not compute the identity block. In this case, permute some columns and
implicitly αi until we obtain an invertible block (see [ABC+22]). The reordered elements
αi are part of the private key.

Encapsulation The encapsulation algorithm, shown in Algorithm 3, generates both a
ciphertext z and a session key K.

Algorithm 3 The encapsulation algorithm of the Classic McEliece KEM.
Input: The public key pk = T
Output: The ciphertext z and the session key K
1: Generate a random vector e ∈ Fn2 with wt(e) = t
2: Compute z = (Imt | T ) eT
3: Compute K = hash(1|e|z)
4: return z and K

Typically, lines 1 and 2 of Algorithm 3 are the Niederreiter encryption algorithm [Nie86].
The ciphertext z allows the holder of the private key to compute a session key that is
identical to the one returned by the encapsulation algorithm.

Decapsulation The decapsulation algorithm, shown in Algorithm 4, computes a syndrome
polynomial using the Vandermonde basis of the Goppa code to decode the ciphertext z
and derive the session key K.

2We have simplified the notations and used H instead of Hg,L although the latter is a more appropriate
way of identifying the parity-check matrix since H depends on both g and L.



374 Full Key-Recovery Cubic-Time Template Attack on Classic McEliece Decapsulation

Algorithm 4 The decapsulation algorithm of the Classic McEliece KEM.
Input: The ciphertext z and the private key sk = (g,L)
Output: The session key K
1: Compute the vector v = (z, 0, . . . , 0) by padding z with n−mt zeros
2: Compute the parity-check matrix

Hprivg2 =

 g−2(α0) . . . g−2(αn−1)
...

. . .
...

α2t−1
0 g−2(α0) . . . α2t−1

n−1 g
−2(αn−1)


3: Compute the syndrome s = Hprivg2vT

4: Compute the error locator polynomial σ(x) with the Berlekamp-Massey algorithm
5: Compute (σ(α0), . . . , σ(αn−1)) for αi ∈ L and recover the error vector e
6: Compute K = hash(1|e|z)
7: return K

2.3.2 Security aspects

Let us briefly recall the security arguments on which the public key - private key relation
is built on. The private Goppa code is the code specified by g(x) and the set of points
L ⊆ F2m . The public Goppa code is defined by the parity-check matrixHpub. As presented
in Algorithm 2 one has SH ′ = Hpub where S is a mt-square binary invertible matrix.
This is computed by means of Gaussian elimination, as shown in line 5 in Algorithm 2.
Moreover, the elements in L are chosen from F2m in a random order. Therefore, although
anyone can compute the set of elements F2m (e.g. {αi | i ∈ J0; 2m − 2K} where α is a
primitive element of F2m) the order of these elements in L is unknown. We thus face a
classical code equivalence problem, in this particular case, the Goppa code equivalence
problem [Sen00].

Conditions3

Given: Hpub,F2m = {αi | i ∈ J0; 2m − 2K} L′ ⊆ F2m ,Lπ = L′
Output: g(x) ∈ F2m [x],L Hpub = SHπ

g,L′

Notice that, since g(x) is unknown, one is required to enumerate all possible irreducible
polynomials of degree t over F2m in order to construct the matrix Hg,L′ . There are
1
t

∑
d|t µ

(
t
d

)
2md ∼ 2mt

t such polynomials (µ denotes the Möbius function) [Lot02]. This
is infeasible in practice for all proposed parameter sets.

One can look at the problem from a general point of view and notice that the difficulty
of solving the code equivalence problem resides in retrieving the pair (S, π). Knowing S
or π makes the problem easy. One the one hand, if we have S then S−1Hpub and H are
two matrices that have the same columns, the mapping between the columns allows to
recover π. On the other hand, if we have π, computing the Gaussian elimination on Hπ

gives Hpub and S.
On a related note, easier instances with partial knowledge of the private key were

proposed in the literature. Table 3 illustrates the existing solutions and the extra informa-
tion/hints required by each algorithm. In addition, we can remark the different complexity
scales for each method, going from polynomial time, when the private polynomial g(x)
and a list of mt+ δ points is known, up to sub-exponential or exponential when incorrect
and correct points are known. The most realistic scenario in the context of physical at-
tacks is given by the Faulty-Goppa algorithm [KM23] that considers correct and incorrect

3π denotes a permutation of the indices in J1; #LK . Such a permutation exists, but is not necessarily
the one used in Key generation.
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points. It employs a Prange-like decoder which induces the highest complexity of the all
the algorithms presented in [KM23]. Conversely, the algorithm proposed requires cubic
computation time.

Table 3: Solving the Goppa code equivalence problem with hints.
Article Hints Complexity4

[Sen00] g(x) O(n3 + 2hn2 logn)

[KM23]

mt+ 1 correct points αi O(n5)
t(m− 2) + 1 correct points αi and g(x) O(n4)
pn incorrect points αi O

(
n5 ( n

mt+1)
(n(1−p)

mt+1 )

)
(1− p)n > mt+ 1 correct points αi

This article mt+ δ correct pairs (αi, g(αi)) O
(
n(mt)c−1), c ≤ 3

When setting practical parameters for the KEM (see Table 2) the complexities are
computed with respect to the best algorithms for breaking the confidentiality of the scheme.
Indeed, breaking the ciphertext has, in general, a complexity cost significantly lower than
key recovery attacks. In our case, message recovery attacks boils down to solving the
syndrome decoding problem for random linear codes which is estimated using the best
information set decoding algorithms [MMT11, BJMM12, BM18, DEEK24].

2.4 Template attacks
Template attacks [CRR03], introduced by Chari et al. are the most popular profiled
side-channel distinguisher. They assume that the leakages can be modeled as multivariate
Gaussian distributions, called templates, and described by a mean vector and a covariance
matrix. These templates are built for each class of sensitive information during the profiling
stage and exploited later in the matching stage.

The profiling stage consists in estimating the parameters of the multivariate Gaussian
distributions for each class. A Gaussian distribution is determined by its two first statistical
moments: mean and variance; higher moments are null. To estimate the mean and the
variance, the attacker uses a similar device to the one they intend to attack, on which they
have full control and can record the physical property of the device. The attacker then
runs the target cryptographic operation many times using different values for the private
parameter, while using random values for the other inputs so that they do not interfere with
the templates creation process, and classifying the resulting traces accordingly. Finally,
the templates parameters are computed.

Once all the templates have been created, a power consumption trace t can be associated
with a given template, therefore to a given class of the private parameter using the
probability density function (PDF) presented in Equation 1.

PDF (t|(µ,Σ)) = 1√
(2π)l × det(Σ)

exp

(
−1

2 (t− µ)T Σ−1 (t− µ)
)

(1)

During the matching stage, the attacker records a given number of power consumption
traces. All the inputs can be changed except the private parameter to recover, which
remains constant. The attacker will then apply the templates on the recorded traces
resulting in a probability ranking on the parameter private value. Finally, the attacker
picks the most probable guess.

4The complexities are given under the assumption that Hpub behaves like a random matrix. For the
Support Splitting Algorithm, h is the dimension of the Hull code, the intersection between C and C ⊥.
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2.5 Related works: key-recovery attacks on Classic McEliece

Although the McEliece [McE78] and Niederreiter [Nie86] cryptosystems have been pub-
lished respectively in 1978 and 1986, the very large keys prevented them from being
implemented in embedded software or hardware for a long time. A first embedded software
implementation was published in 2010 [Hey10], but the author opted for reduced security
parameters to fit inside the device memory. However, since the NIST PQC standardization
process started and larger micro-controllers are available in recent years, several embedded
software [RKK20, CC21, SKE+23] and hardware [WSN18, KRF+21, CLHH22, CCD+22]
implementations of Classic McEliece have been published.

As a consequence of this growing interest in both embedded software and hardware
implementations, various physical attacks have been proposed on Classic McEliece imple-
mentations. We do not consider attacks that recover the message, or short-term secret,
from which the session key is derived. Instead, we focus on attacks that recover the private
key.

In [PGD+22], a key-recovery fault injection attack is proposed. It is a chosen-ciphertext
attack that uses invalid ciphertexts. Additionally, they inject faults during the computation
of the error locator polynomial σ and the validity check.

In [GJJ22], a key-recovery attack is performed on both an ARM Cortex-M4 implemen-
tation [CC21] and an FPGA implementation [WSN18]. This chosen-ciphertext profiled
attack targets the decapsulation algorithm. It relies on a vulnerability in the additive
FFT evaluation of the error locator polynomial that allows to recover it through power
consumption analysis. They first encrypt every error vector ei, which has all zero coor-
dinates except the ith one. The obtained ciphertexts are then used in the decapsulation
algorithm to compute every possible monic error locator polynomial (i.e. every error
locator polynomial of the form σ(x) = x− αi, for i ∈ J0; qK) while measuring the power
consumption. A neural network is then trained by classifying each acquired trace to its
corresponding error locator polynomial. Finally, they attack a device by using the previous
ciphertexts in the decapsulation algorithm while measuring the power consumption during
the additive FFT evaluation. Then, the neural network is used with the acquired traces to
infer the corresponding monic error polynomial, and so, the corresponding α. The Goppa
polynomial g can then be recovered by factorizing one valid ciphertext and choosing an
irreducible factor with weight t. The attack requires n traces, one for each α to recover.
The main drawback of this attack is that the ciphertexts used in the attack are created
from error vectors with a Hamming weight wt(e) = 1, whereas this should be wt(e) = t
for Classic McEliece. A countermeasure could easily detect these malformed ciphertexts
and prevent the attack.

In [SCD+23], the described key-recovery attack focuses on the same ARM Cortex-M4
implementation [CC21] of the decapsulation algorithm as the previous attack. It is also a
profiled attack. It relies on the fact that, during the loading of the polynomial g coefficients,
the power consumption is dependent of the Hamming weight of the coefficients. With this
additional information at hand, an exhaustive search through all monic polynomials of
degree t for which the coefficients satisfy the Hamming weight constraints can be carried
out. The time complexity of this method is exponential.

In the unpublished paper [BCM+23], the authors propose a private key recovery attack
on Classic McEliece during the public key generation algorithm. The private key is
recovered using side-channel leakages during the Gaussian elimination. The attack is
simulated in software and requires a very powerful attacker model, where the attacker can
perform side-channel measurements during the public key generation.
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3 Presentation of the attack
This section first introduces the attacker model as well as the targeted part of the
decapsulation algorithm. The course of the attack is then described.

3.1 Attacker model
The attacker model used in this article is the following:

1. The attacker possesses a clone device where the reference implementation of the
decapsulation algorithm of Classic McEliece can be run as many times as required
with various known inputs, and the power consumption of the device can be measured.

2. The attacker has access to the power trace of a single execution5 of the reference
implementation of the decapsulation algorithm, using the private key they want to
recover, on the device under attack.

3. The attacker has neither control nor knowledge of the ciphertext used as input on
the attacked device.

This attacker model is identical to the one considered in [SCD+23]. It is a simpler
model than the one considered in [GJJ22] since no control over the input ciphertext is
required.

3.2 Recovering Hamming weights in the syndrome computation
As shown in Subsection 2.3, in the decapsulation algorithm as described in reference
implementation, the ciphertext z is first padded with k zeros to get a new vector v =
(z, 0, · · · , 0). This vector is then multiplied with the parity-check matrixHpriv constructed
using g(x), and the permuted support L. Algorithm 5 shows the pseudocode of the reference
implementation [ABC+22] of the syndrome computation.

Algorithm 5 Syndrome computation in the reference Classic McEliece implementation.
Input: The vector v = (z, 0, · · · , 0), the private key sk = (g,L)
Output: The syndrome s = Hprivg2vT, where Hprivg2 is generated from g and L
1: for row ← 0 to 2t− 1 do
2: s[row] ← 0 . Initialization
3: for col ← 0 to n− 1 do
4: b← g−2(L[col])
5: for row ← 0 to 2t− 1 do
6: s[row] ← s[row] + v[col]× b . Syndrome computation
7: b← b× L[col] . Coefficients computation
8: return s

Recall that Hprivg2 is the parity-check matrix constructed from g2(x) and L. Hence,
Algorithm 5 computes the product Hprivg2vT by rebuilding each column i of Hprivg2 and
multiplying it with vi through two nested loops. The first loop, at line 3, iterates over
the n columns of the matrix Hprivg2 . Once a column i of Hprivg2 has been selected, the
coefficient of its first row, i.e. Hprivg2 [0, i] = g−2(αi), is computed. Then, the second
loop, at line 5, iterates over the 2t rows of Hprivg2 [: i]. For each row j, the value sj of

5This assumes that the signal-to-noise ratio (SNR) is high enough to train a side-channel distinguisher
with sufficient accuracy. If this is not the case, averaging can be used to increase the SNR.
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the syndrome is updated by adding the product Hprivg2 [j, i]vi and the coefficient of the
following row is computed by multiplying Hprivg2 [j, i] by αi.

The attack presented in this article targets the implementation of the productHprivg2vT

shown on lines 4 to 7 in Algorithm 5. Specifically, n × 2t Hamming weight values are
estimated to build the matrix of weights Hwt shown in Equation 2.

Hwt =

 wt(g−2(α0)) . . . wt(g−2(αn−1))
...

. . .
...

wt(α2t−1
0 g−2(α0)) . . . wt(α2t−1

n−1 g
−2(αn−1))

 (2)

It is important to note that the order of the columns corresponds to the order of the
elements in the permuted support L.

Given the Classic McEliece parameters shown in Table 2, the total number of Hamming
weight values ranges from 3488× 128 = 446 464 to 8192× 256 = 20 996 096.

3.3 Private key recovery
The objective of this section is to show how one can exploit the matrix of Hamming weights
Hwt to recover both the private Goppa polynomial g(x) and the private permuted support
L. We assume here that the attacker can obtain the matrix of weights Hwt. We will show
in three steps how to recover the whole private key, which is composed of the private
Goppa polynomial g(x) and the private permuted support L.

1. Recover mt+ δ pairs of elements (αi, g(αi))i∈J0;mt+δ−1K. To do so, we will demon-
strate through simulations that the Hamming weight of a Vandermonde-like vector
(αji )j∈J0;dm,tK is an efficient distinguisher if dm,t is large enough.

2. Using only t pairs (αi, g(αi))i∈J0;t−1K, interpolate the private Goppa polynomial g(x).

3. With the knowledge of g(x) and a subset I ofmt points αi, build the binary expansion
of the Vandermonde matrix Hg,I which is a square mt invertible binary matrix.
This allows to recover the initial Gaussian elimination matrix and eventually recovers
the private permuted support L completely.

3.3.1 Recovering pairs of elements (αi, g(αi))

This part corresponds to line 2 of Algorithm 1. The aim is to recover at least mt + δ
pairs (αi, g(αi))i∈J0;mt+δ−1K from the matrix of weights Hwt. As we shall see in Subsub-
section 3.3.2 and Subsection 3.4, only t points are required for polynomial interpolation to
recover g(x) but mt+ δ are necessary to recover the original Gaussian elimination matrix
and the full permuted support.

In this attack step, the objective is to find a unique pair (αi, g(αi)) that matches the
observed list of Hamming weights

(
wt(αiβ)

)
i∈J0;2t−1K. This is done by precomputing all

the possible 2t-long lists of Hamming weights
(
wt(αiβ)

)
i∈J0;2t−1K for α ∈ F∗2m and β ∈ F∗2m .

This amounts to (2m − 1)2 lists. Considering the largest Classic McEliece parameters, this
requires the precomputation of (213 − 1)2 = 67 092 481 Hamming weight lists of length
2t = 256. As experimentally demonstrated in Section 4, this is easily done even on a
laptop. For each Hamming weight list, we store the (α, β) pair which was used to generate
it. Later on, given a Hamming weight list Hwt[: i], one can simply compare it with all the
precomputed ones and obtain the (α, β) pair, which given the target syndrome computation
corresponds to a (α,g−2(α)) pair. In order to obtain g(α), we compute g2(α) = (g−2(α))−1,
and then g(α) =

√
g2(α) = (g2(α))2m−1 .

Considering a given Hamming weight listHwt[: i], three cases can occur when comparing
it with the precomputed ones:
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Zero pair No (α, β) pair matches the Hamming weight list Hwt[: i]. It happens if the
side-channel Hamming weight estimation is wrong for at least one Hamming weight.
With a sufficiently good side-channel estimator, this happens with low probability,
as shown experimentally in Subsection 4.1.

Multiple pairs Several (α, β) pairs match the Hamming weight list Hwt[: i]. If this
happens, Hwt[: i] is discarded. We shall see that this situation happens with low
probability in general in Conjecture 1 and validate this for the parameters of Classic
McEliece and of toyeliece in Subsubsection 3.3.1.

Unique pair A unique (α, β) pair matches the Hamming weight list Hwt[: i]. With a
sufficiently good side-channel estimator, this is the correct (α, g−2(α)) pair. The
case where this might be another valid but incorrect (α, g−2(α)) pair is discussed in
Subsubsection 3.3.2, in particular, how to detect invalid pairs.

One possible optimization is to restrict the length of the Hamming weight list from 2t
to dm,t < 2t− 1. This reduces the number of powers in the Vandermonde expansion and
makes comparisons faster.

The dm,t parameter is chosen such the aforementioned comparisons recovers mt+ δ
correct pairs (αi, g(αi)) out of n. The soundness of this algorithm is based on the fact
that the Vandermonde-type Hamming weights represent a powerful distinguisher for the
elements in F2m .

Hamming weight of the Vandermonde matrix as a distinguisher Although a formal
mathematical proof represents a complex and challenging task we provide numerical
evidence of the distinguishing capability. Let us define the Hamming weight Vandermonde-
like matrix βV α =

(
wt(αiβ)

)
i∈J0;dm,tK for (α, β ∈ F∗2m × F∗2m) for an integer d.

Conjecture 1. For almost all degree m monic irreducible polynomials f(x) ∈ F2[x] the
extension F∗2m is such that almost all pairs (α, β) ∈ F∗2m × F∗2m can be fully determined
using βV α as long as dm,t is sufficiently large.

This conjecture is made by observing this phenomenon for small binary field F2m ,
for m ≤ 9. While the lists of Hamming weights vary a lot depending on the irreducible
polynomial f used to build the extension, their relative frequencies remain very close.

We report the results in Figure 1 for m = 8 and m = 9. For those parameters, we
generated all the irreducible polynomials of degree m and calculated the number of unique
pairs while varying the parameter dm,t.

We can observe that most pairs can be uniquely identified by the list of their Hamming
weights indeed. The number of pairs we can identify depends on the irreducible polynomial
used to generate the field. This implies that some polynomials are more sensitive to the
proposed distinguisher than others. In particular, over the 9 irreducible polynomials of
degree 6 over F2, one x6 + x3 + 1 only leads to 43 unique pairs out of (2m − 1)2 = 3969
while all other polynomials allow to identify more than 89.67 % of the pairs. For m = 7,
the percentage increases to 99.22 % and is identical for all the 18 irreducible polynomials.
For m = 8, 2 over the 30 irreducible polynomials lead to distinguish only 167 unique pairs
(x8 + x5 + x4 + x3 + 1 and x8 + x7 + x6 + x4 + x2 + x+ 1) out of 65 025 while all other
lead to around 97.47 % of unique pairs. For m = 9, for all the 56 irreducible polynomials,
the percentage of unique pairs increases to at least 99.19 %.

It is clear from Figure 1 that dm,t is much lower than the maximum length (2t− 1) of
the list of Hamming weights. In addition, the number of unique pairs increases with dm,t
while converging rather rapidly. For m = 6, we only need the first 12 Hamming weights;
for m = 7, the first 23 are required, but in most cases, we need around 16 to uniquely
identify the pair if possible; for m = 8, the first 16 are sufficient; and for m = 9, we require
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Figure 1: Estimation of the number of pairs of elements identified by their list of Hamming
weight for different representations of F28 and F29 .

18 at maximum. Our computations show a linear trend of dm,t in function of m, at least
for small values of m, which is significantly lower than the maximum value.

3.3.2 Recovery of the private polynomial g

This part corresponds to the step 3 of Algorithm 1. Given t distinct pairs (αi, g(αi))i∈J0;t−1K,
the private monic Goppa polynomial g(x) of degree t can be reconstructed using Lagrange
interpolation.

In [Ber24], D. J. Bernstein details an algorithm (Algorithm 4.1.1 called interpolation
with errors following the Reed-Solomon decoding methodology [RS60]) which recovers a
polynomial g(x) ∈ F2m [x] with deg g = n−2t given a vector that matches (g(α1), . . . , g(αn))
on at least n−t positions. We can use this algorithm to recover the private monic polynomial
g(x) in a scenario where some of the pairs (αi, g(αi))i∈J0;t+2γ−1K are incorrect. We need to
have at least t+ γ correct pairs in a set of t+ 2γ pairs, where γ is the number of incorrect
pairs. This should be less than the mt+ δ pairs needed to recover the permuted support L.

3.4 Full recovery of the private permuted support L
We require here a subset I ⊂ J0;n− 1K with #I = mt and Rank(H ′[: I]) = mt, where H ′
is the binary extension of the Vandermonde matrix H. Notice that this set corresponds to
the columns of Hpub for which we have retrieved the pairs (αi, g(αi)) before. Notice that
Rank(H ′[: I]) = mt implies Rank(Hpub[: I]) = mt since Hpub = SH ′. Under the assump-
tion thatH ′ is random, the probability that Rank(H ′[I]) = mt equals

∏mt
i=1
(
1− 2−i

)
. For

all the Classic McEliece parameters, we obtain a probability greater than 0.29. To increase
this probability we require having mt+ δ points, more precisely, for a set I of cardinality
#I = mt+ δ the probability that Rank(H ′[: I]) = mt equals

∏mt+δ
i=1+δ

(
1− 2−i

)
. Table 4

illustrates how the probability increases as a function of δ.

Table 4: Probability that Rank(H ′[I]) = mt with #I = mt+ δ for δ ≤ 10.
#I mt mt+ 2 mt+ 4 mt+ 6 mt+ 8 mt+ 10

Pr(Rank(H ′[I]) = mt) 0.289 0.578 0.939 0.984 0.996 0.999

Under the assumption that the points (αi)i∈I are correctly determined, then matrix
S equals (H∗)−1

Hpub[I] where H∗ is the binary representation of the Vandermonde
matrix Hg,I . In addition, the H ′ matrix obtained at line 3 matches with the matrix
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obtained in the Key generation as shown on line 4 of Algorithm 2. One can then map the
coefficients of H ′ from Fm2 to F2m to get H. Finally, the private permuted support L is
obtained by dividing the second row of H by the first one, essentially computing αig(αi)

g(αi)
for i ∈ J0;n− 1K.

Algorithm 6 Full recovery of L.
Input: m, t,Hpub, g(x), I ⊂ L s.t., Rank(H ′[: I]) = mt
Output: L
1: Compute Hg,I =

(
αjg−1(α)

)
j∈J0;t−1K,α∈I . Vandermonde

2: Expand Hg,I into the mt×mt binary matrix H∗ . F2m → Fm2 mapping
3: Compute H ′ = H∗Hpub[I]−1

Hpub
4: Compute H the t× n matrix from H ′ . Fm2 → F2m mapping
5: Compute L = H[1:]

H[0:]

(
= αg(α)

g(α)

)
6: return L

3.5 Complexity analysis
To conclude this section, a complexity analysis of the different parts of the attack is given.
We assume m = Θ(log2 n) and t = Θ( n

log2 n
).

Complexity of the recovery of mt+ δ pairs (αi, g
−2(αi)) Searching for a match for

a list of Hamming weights Hwt[: i] requires (2m − 1)× (2m − 1) comparisons of vectors of
length dm,t. This is repeated until mt+ δ pairs (αi, g−2(αi)) are found.

However, this step can be greatly speed-up by precomputing a hash-table of only the
unique (α, β) pairs for a given field degree m, using the dm,t-long Hamming weight list as a
key and the (α, β) as value. Since a lookup in the hash table has constant time complexity
O(1), then the mt+ δ pairs can be recovered in linear time O(mt+ δ) = O(n).

Complexity of the recovery of g and L The recovery of the polynomial g using t pairs
(α,g(α)) can be done in O(t2) using polynomial interpolation.

The complexity of the recovery of the private permuted support L (Algorithm 6)
is dominated by the linear algebra operations. Indeed, we compute the inverse of an
mt-binary matrix (O ((mt)c)) 6, we multiply a square mt binary matrix with a mt × n
binary matrix (O

(
n(mt)c−1)) 7, and finally we compute the component-wise multiplication

of two n length vectors in F2m (O(n2)). Consequently, the overall complexity of recovering
of g and L is O

(
n(mt)c−1) = O(n3).

4 Experimental results
In this section, the detailed results of the attack against the reference software implementa-
tion of Classic McEliece submitted to the NIST post-quantum cryptography standardization
process [ABC+22] are presented. We consider the parameter sets shown in Table 2.

The target device is an STM32F303RCT6 microcontroller. It is programmed with only
the syndrome computation function used in the decapsulation algorithm. The software is
compiled with arm-none-eabi-gcc version 9.2.1. To place ourselves in the context of

6c is the matrix multiplication constant, i.e., c ≤ 3, when Strassen algorithm is used c = 2.807.
7To determine the complexity of the multiplication of a square mt matrix with a mt × n matrix

we compute block square matrix multiplications. There are n/mt blocks, and for each block, we do a
multiplication between two square mt matrices. Overall we have O

(
n

mt
(mt)c

)
.
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physical attacks on embedded devices, the firmware is compiled using the -Os optimization
level. This enables all -O2 optimizations except those that often increase code size.

For the side-channel traces acquisition, the open-source Chipwhisperer platform devel-
oped by NewAE [OC14] has been used. All the computation times were measured on a
laptop with 16-core CPU running at 4 GHz and 64 GB of RAM.

Subsection 4.1 describes the recovery of the matrix Hwt through a leakage assessment
followed by a template attack and Subsection 4.2 exploits those Hamming weights to
recover the private key sk which consists of the permuted support L and the polynomial g.

4.1 Hwt recovery
This part corresponds to the line 1 of Algorithm 1. The objective of this step is to
recover the matrix Hwt. A profiled template attack, employing a Linear Discriminant
Analysis (LDA) for dimensionality reduction, is used to achieve this goal. We recall that
the target is the syndrome computation performed in the decapsulation algorithm of the
Classic McEliece KEM.

4.1.1 Leakage assessment

Prior to the attack, a leakage assessment step is followed. This step confirms that the
side-channel trace contains information on the Hamming weights of the coefficient of the
matrix Hprivg2 . Secondly, this step allows us to find Points of Interest (PoI) for the LDA
and template attack phase. The leakage assessment is done with a one-way ANOVA
test [BDGN14]. The F statistic is computed considering the set of possible Hamming
weight values, for every element hij in Hprivg2 .

We acquire 10 000 traces of the syndrome computation for various random private keys
sk and random ciphertext z. These are computed from the public key associated with sk
and a random, valid message of Hamming weight t.

Results are shown in Figure 2 for the toyeliece51220 parameters. This was selected for
readability reasons. We can see different regular patterns in the plot, the first peak close
to an F statistic of 2500, corresponds to the leakage of wt(g−2(α)), i.e. the result of line 4
of Algorithm 5. The part without leakage before that corresponds to the evaluation of
g(α) and the inversion. Finally, we can see a group of 39 smaller peaks, corresponding to
the 2t− 1 remaining power evaluation, i.e. line 7 in Algorithm 5.

Figure 2: Leakage assessment on the Hamming weight of the coefficients of the matrix
Hprivg2 during the computation of Hprivg2vT for the toyeliece51220 (n = 512, t = 20,m =
9) parameters. Only α0, α1 and α2 are shown for readability.
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4.1.2 Template attack

In this part, the leakage found in the power traces is exploited to recover the Hamming
weights. This is done with a standard template attack [CRR03].

Profiling phase Two distinct sets of Hamming weight templates are built:

1. one set corresponding to the evaluation of g in αi, its squaring and inversion, as
shown in line 4 in Algorithm 5. In this case, the Hamming weight templates are
built for wt(g−2(αi)). We refer to the associated training set as Seval_sq_inv. The
number of training samples in this set for a single trace is n: it ranges from 512 for
toyeliece51220 up to 8192 for mceliece8192128.

2. one set corresponding to the multiplication of g−2(αi) by successive powers of αi, as
shown in lines 6 and 7 in Algorithm 5. In this case, the Hamming weight templates
are built for wt(αjig−2(αi)). We refer to the associated training set as Smul_pow. The
number of training samples in this set for a single trace is 2t × n: it ranges from
20 480 for toyeliece51220 up to 2 097 152 for mceliece8192128.

Since we are building Hamming weight templates for values in F2m , m+1 templates are
necessary. However, some values are under-represented in the training sets. For example,
there is only one value of Hamming weight 0 and one value of Hamming weight m. To
account for these imbalanced training sets, we use 1000 traces for the profiling phase.
Thus, even the most under-represented classes contain enough training samples.

Additionally, we perform a standard dimensionality-reduction step using Linear Dis-
criminant Analysis [SA08] and keep only the first component to build univariate Gaussian
templates (µ, σ).

Attack phase After the templates have been built, their accuracy is tested on attack
traces. Since the training sets depend only on the field degree m, we only consider the
toyeliece51220, mceliece348864 and mceliece8192128 parameter sets. The accuracy of the
template distinguishers are given in Table 5. Although the templates we used are univariate,
they achieve very good accuracy. The lowest is 0.9684 for mceliece348864 (m = 12) when
recovering wt(αig−2(α)). How this accuracy affects the ability to recover at least mt+ δ
pairs (α, g(α)) is discussed below.

Table 5: Accuracy of the template distinguishers.
Parameter set m = 9 m = 12 m = 13
accuracy for wt(g−2(α)) 0.9943 0.9940 0.9998
accuracy for wt(αig−2(α)) 0.9714 0.9684 0.9996

4.2 Key recovery

4.2.1 Hash-table precomputation

Given the parameter sets we consider, the field degreem ranges from 9 to 13. Precomputing
the dm,t-long lists of Hamming weights for all possible pairs (α, β) ∈ F∗2m × F∗2m takes
around 2 s for m = 9 up to around 9 min for m = 13. We make these precomputed
hash-tables available on the aforementioned GitLab repository.
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4.2.2 Hamming weight list matching

Proposition 1. In the field proposed in Classic McEliece, for all parameter sets, and
also in toyeliece, the ordered pair (α, β) ∈ F∗2m generates a list of Hamming weights(
wt(αiβ)

)
i∈J0;2t−1K that is unique with high probability.

Proof. We run the algorithm described in Algorithm 7 to verify empirically that the
number of collisions in the list of Hamming weights is small.

Algorithm 7 Collisions in Hamming weight list.
Input: m, t parameters from Classic McEliece
Output: count: the number of unique lists of Hamming weights
1: for (α, β) ∈ F∗2m × F∗2m do
2: tab[α][β] =

(
wt(αiβ))

)
i∈J0;2t−1K

3: count = 0
4: for (α, β) ∈ F∗2m × F∗2m do
5: if ∀(α′, β′) 6= (α, β), tab[α][β] 6= tab[α′][β′] then
6: count+ +
7: return count

We report the number of unique Hamming weight lists in Table 6. One can clearly see
that the Hamming weights lists are unique with very high probability.

Table 6: Number of unique lists of Hamming weight.
Parameter toyeliece mceliece mceliece mceliece mceliece mceliece
set 51220 348864 460896 6688128 6960119 8192128
# lists 261 121 16 769 025 67 092 481 67 092 481 67 092 481 67 092 481
# unique 259 393 16 676 095 67 084 291 67 084 291 67 084 291 67 084 291
Ratio (cm,t) 0.9934 0.9945 0.9999 0.9999 0.9999 0.9999

4.2.3 Attack success rate

From Table 6, we can estimate a lower bound on the probability of obtaining at least
(mt+ δ) correct elements α. Suppose that each (α, β) can be correctly detected with the
same probability pa,dm,t

which depends on the classifier accuracy a and the dimension
of the vector (αiβ) which was previously defined as dm,t. Additionally, we assume that
the probabilities in Table 6 are uniformly distributed over the possible Hamming weight
lists, i.e., pa,dm,t = adm,tcm,t where cm,t is the probability of non-collision reported in
Table 6 and a is the accuracy of the distinguisher for wt(αig−2(α)) (in practice there is one
component g−2(α) with a higher accuracy than the other dm,t− 1). Hence, the probability
of correctly distinguishing at least mt + δ elements α out of n, that are unique in the
weight lists is given in Equation 3.

psuccess =
n∑

i=mt+δ

(
n

i

)
pia,dm,t

(1− pa,dm,t)n−i (3)

Since we require δ ≤ 10 in our attack (as shown in Table 4), we plot in Figure 3
the success probability as a function of the side-channel distinguisher accuracy. Based
on our observations on the distinguisher, we have set dm,t = 22 for all Classic McEliece
parameters, and dm,t = 18 for toyeliece. For all parameters, we reach 100 % success rate
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Figure 3: Attack success rate as a function of the distinguisher accuracy.

given the experimental accuracy given in Table 5. Our algorithm is thus able to tolerate
classifiers having a lower accuracy, e.g., all cryptographic parameters admit a ≥ 0.945.

4.3 Overall computation time
Table 7 shows the computation time required for each step of Algorithm 1. We report only
the times taken from lines 3 to 6 since the other ones are insignificant in comparison. As
discussed in Subsection 3.5 and as expected, linear algebra operations dominate: lines 4
and 5 are the most computationally expensive. Nevertheless, the attack is still very
computationally efficient. Classic McEliece parameters can be attacked in 0.531 s for
mceliece348864 and less than 7 min for mceliece8192128.

Table 7: Average time (in seconds) required for each step of the proposed attack.
Parameter set line 3 line 4 line 5 line 6 Total
toyeliece51220 0.445 0.042 0.028 0.012 0.531
mceliece348864 0.383 1.153 1.017 0.947 3.505
mceliece460896 0.420 0.264 7.575 7.481 15.75
mceliece6688128 0.454 0.521 12.63 12.60 26.22
mceliece6960119 0.485 0.449 13.28 13.00 27.23
mceliece8192128 0.453 0.619 194.1 202.6 397.8

4.4 Single-trace feasibility
Experimental results demonstrated in this section show that, on the chosen ChipWhis-
perer [OC14] board, the attack can be carried out with a single side-channel trace. One
could argue that this fact is board-dependent, although more advanced boards with even
less noise have been developed since [JGCS24].

The single-trace argument essentially revolves around the accuracy of the classifier. As
experimentally demonstrated, such accuracy is higher than 0.9684 for all Classic McEliece
parameters considered, as shown in Table 5. This is sufficient to carry out the attack with
a single trace, as shown in Figure 3

If the hardware platform has a lower signal-to-noise ratio, then the classifier may not
be as accurate, and the single-trace argument may not hold. In this case, averaging over
multiple side-channel traces8 or performing error correction may be a suitable option, but
is beyond the scope of this article.

8Note that averaging is possible because the attack relies on side-channel leakage from computations
that do not involve the ciphertext.
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5 Countermeasures
This section briefly discusses possible countermeasures that could be implemented to thwart
the proposed attack. These countermeasures are of two types. The first ones are algorithmic
countermeasures, which consists in modifying the Classic McEliece algorithms shown
in Algorithm 2, Algorithm 3 and Algorithm 4. The second ones deal with implementations
of these algorithms.

5.1 Algorithmic countermeasures
The following section presents a series of countermeasures based on the modification of
certain choices made in the Classic McEliece specifications.

Building the extension with a different polynomial f The proposed attack is based on
the ability to extract multiple pairs (α, g(α)), from their Hamming weights list. However,
we have identified instances where some polynomials f used to build the extension lead to
Hamming weight lists that do not allow to distinguish unique values in the Vandermonde
matrix for specific values of m, specifically 6 and 8. This limitation may be addressed
by finding and using such polynomials for m = 12 and m = 13 to build the extension.
However, additional leakages that occur during the evaluation of g and the inversion of
g2(α) could be leveraged to recover g in this case.

Shortening the Vandermonde matrix In the synd function of the reference implementa-
tion, the ciphertext z is first padded with n−mt zeros. Subsequently, the padded vector is
multiplied with the full Vandermonde matrix of size 2t× n, thus the last n−mt columns
of the Vandermonde matrix are multiplied with null coordinates. Another option would
be to use a smaller Vandermonde matrix of size 2t ×mt and multiply it with z. This
would provide the attacker with at most mt pairs. However, as shown in Table 4, the
probability that H ′[I] is invertible is only 29 % in that case. It prevents an attacker from
recovering L and they must then resort to using the Support Splitting Algorithm [Sen00]
or the method proposed by Kirshanova and May [KM23].

5.2 Implementation countermeasures
Classical implementation countermeasures such as masking [ISW03] or shuffling [HOM06]
could also be used.

Masking The evaluation of the polynomial g of degree t may be a challenging part
to mask, especially for implementations where g is not constant. Hence, masking may
require too many resources. Moreover, masking is efficient when sufficient noise is present.
Considering the high accuracy of our simple distinguisher, this might not be enough.

Shuffling Applying shuffling on the row accesses in a given column will lead to an
inefficient implementation, since it computes the successive power of α, by using the result
of the previous loop. Shuffling could be applied to the order of the columns. In that case,
the attacker can still recover (α, g(α)) pairs and interpolate the polynomial g. However, to
compute the change of basis, columns of Hpub are required and this is lost with shuffling.
Again, it prevents an attacker from recovering L and they must then resort to using the
Support Splitting Algorithm [Sen00] or another method [KM23].
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6 Conclusion
In this paper, we describe a cubic-time full key-recovery attack on Classic McEliece.
Assuming a simple Hamming weight leakage model, the proposed attack recovers both
the Goppa polynomial g and the permuted support L which make up the private key sk
with a new algorithm that runs in cubic time. Experimental results on the ChipWhisperer
platform prove that the attack is feasible in practice on the Decapsulation of the reference
implementation of Classic McEliece.

Future works could improve the attack scenario by requiring a less accurate classifier.
Indeed, as highlighted in this article, a rather high accuracy is required for the attack to
succeed. One possible research direction relates to the possibility of correcting errors that
happen when matching the Hamming weight lists if the side-channel distinguisher is not
accurate enough.

The countermeasures put forward should also be thoroughly evaluated, both in terms
of protection level and overhead.
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