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Abstract—Code-based cryptography received attention after
the NIST started the post-quantum cryptography standardization
process in 2016. A central NP-hard problem is the binary
syndrome decoding problem, on which the security of many code-
based cryptosystems lies. The best known methods to solve this
problem all stem from the information-set decoding strategy. A
recent line of work considers augmented versions of this strategy,
with hints provided by side-channel information. In this work,
we consider the integer syndrome decoding problem, where the
integer syndrome is available but might be noisy. We study how
the performance of the decoder is affected by the noise. We
provide experimental results on cryptographic parameters for
the Classic McEliece and BIKE cryptosystems, which are in the
fourth round of the NIST standardization process.

Index Terms—Code-based cryptography, Syndrome decoding
problem, Information-set decoding

I. INTRODUCTION

With an increasing practical feasibility of a quantum com-
puter, the threat posed by Shor’s algorithm [1] on number
theory base cryptosystems grows significantly. To address this
threat, NIST began a standardization process in 2016 for
post-quantum cryptography. In July 2022, three code-based
candidates (McEliece [2], BIKE [3], HQC [4]) qualified for the
fourth round.Their security relies on the NP-hardness of the
binary syndrome decoding problem (SDP) [5]. Given a parity-
check matrix H of a binary linear code, a binary syndrome
vector s∗ and an integer t, the SDP consists in finding a binary
vector x of Hamming weight t such that Hx = s∗. The best
known strategy to solve the SDP is referred to as information-
set decoding (ISD). Originally proposed by Prange [6], it has
been incrementally refined since [7], [8], [9], [10], [11], [12],
[13].The complexity of the ISD method has been used to better
tune the parameters of the cryptosystems according to the
required security levels [14].

a) Syndrome decoding with hints: Recently, modified
versions of the SDP, with additional information, obtained via
side-channel analysis, was considered. In [15], authors study
the case where parts of the error are known, or only their
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Hamming weight. The case where the integer syndrome s
is available, as if the matrix-vector multiplication had been
performed in the integer ring instead of the binary finite
field, is considered in [16]. One method to obtain the integer
syndrome is by laser fault injection attack [17]. The problem
one has to solve in this case is the integer syndrome decoding
(N−SDP), where the input is the parity-check matrix H , the
integer syndrome vector s and the weight of the solution t.
The same question is raised, does Hx = s admits a solution
of weight t? This problem can be tackled down by means
of Integer Linear Programming [17] or probabilistic methods
[18]. Another method of obtaining s, much more feasible and
realistic than laser fault injection, is by side-channel analysis
[19]. However, due to physical factors, the estimation of s
might not be perfectly accurate. Hence, in the N − SDP in
the presence of noise, we are given a noisy integer syndrome
s̃ = s + ϵ, where ϵ models the noise. The solution proposed
in [19] uses a combination of ISD techniques and the score
decoder from [18]. In [19] only simulations are provided to
assess the performance of this algorithm.

b) Learning with errors and hints: Not only code-based
cryptosystems are vulnerable to such attacks. Similar results
were obtained in the context of lattice-based cryptosystems
by Bootle et al. [20]. The BLISS cryptosystem was cryptanal-
ysed by means of similar hybrid attacks, where side-channel
attacks revealed an Integer version of the Learning with Errors
(ILWE). The ILWE problem is the lattice-based equivalent of
the N-SDP. However, ILWE was solved with another technique
that does not seem to work for N-SDP. Nevertheless, it points
out that such scenarios are not only applicable to code-based
cryptosystems.

c) Quantitative Group Testing: Quantitative Group Test-
ing (QGT) is an active field of research, lately boosted by
the the COVID-19 epidemic. In the QGT we are given a
large population out of which some individuals suffer from
a disease, and the goal is to identify the infected individuals.
Possible applications of QGT go from bio-informatics [21],
traffic monitoring [22] and confidential data transfer [23], [24]
to machine learning [25], [26]. The N-SDP can be also seen
as a QGT in presence of noise. As we shall demonstrate, the
algorithm we propose here, solves a noisy QGT instance, by
adapting and improving (using coding theory tools, such as



ISD techniques) a recent solution to the classical QGT [18].
Contributions: In this article, we analyze in detail the

algorithm proposed in [19], referred to as ISD-score decoder,
and provide the following contributions. First, we demonstrate
that the ISD-score decoder finds a solution to the N − SDP
in the presence of noise with high probability, as long as
the weight is sufficiently sub-linear in n, more exactly, t ≤
O
(

n−k
log(n−k)

)
, where n is the code length and k the dimension.

We consider two noise models, i.e., Binomial centered in zero
and Bernoulli variables. The ISD-score decoder can tolerate
noise levels that are linear in the weight of the solution t. For
that we partially build our demonstration on the techniques
used in [18]. We incorporate the noise models into these
techniques and, by using sharper inequalities, determine a
much clearer condition for having a higher probability of
success. One consequence of this new method is that when
the noise is null and the ISD part is ignored, equivalently the
ISD-score decoder boils down to the algorithm proposed in
[18], the conditions we obatain for t are larger that those from
[18]. This gives a lower bound on the number of syndrome
entries required to find a solution, known as the information
theoretic bound.

Due to page limitations, all proofs have been omitted, the
full version of the article being available on eprint.iacr.

II. PRELIMINARIES

Notations: A finite field is denoted by F, and the ring
of integers by Z. We write N∗

n = {1, . . . , n} and Z−n,n =
{−n, . . . , 0, . . . , n}. For p ∈ [0, 1] and n ∈ N we denote the
Bernoulli distribution by Ber(p) and the Binomial distribution
by B(n, p). We denote by W (x) the Lambert W function.
Matrices and vectors are written in bold capital, respectively
small letters. Also, HW(c) and Supp(c) denotes the Hamming
weight and the support of the vector c.

Integer syndrome decoding problem: Let us recall the
formal definition of N− SDP as already stated in [17], [16].

Definition 1 (N− SDP).
Inputs: H ∈ {0, 1}(n−k)×n, s ∈ Nn−k, t ∈ N∗.
Output: x ∈ {0, 1}n, s.t. Hx = s, and HW(x) = t.

To define N−SDP in the presence of noise as generally as
possible, we model the noise ϵ = (ϵ1, . . . , ϵn−k) as a vector
of random variables ϵi ∼ D, where D is a discrete probability
distribution. In the N− SDP in the presence of noise we are
given a noisy syndrome s̃ = s + ϵ and the value s∗ = s
(mod 2) (component-wise).

Definition 2 (N− SDP in the presence of noise ϵ).
Inputs: H ∈ {0, 1}(n−k)×n, s̃ ∈ Zn−k

s∗ ∈ {0, 1}n−k, t ∈ N∗

Output: x ∈ {0, 1}n, s.t. Hx = s⋆ with HW(x) = t
s⋆ = s mod 2, and s̃ = s+ ϵ.

Remark that N−SDP in presence of noise is the SDP with
additional information. Under certain conditions, we hope that,
given (H, s∗, t, s̃), we can find x, solution to the SDP. Also,
when the noise is zero we face the classic N− SDP.

III. ISD-SCORE DECODER

A. Score decoder

The idea of assigning a score to each column was already
used for the N − SDP in [19]. The goal is to distinguish
columns of H in Supp(x) from columns outside Supp(x),
where x is a solution. We shall begin by defining a particular
efficient score decoder, introduced by [18]. For a better illus-
tration of the nice features of the decoder in the presence of
noise, we will express it in function of the noiseless decoder.
As we shall see, this method allows not only to derive a
particularly simple relation between those two, but also to
deduce conditions on the tolerated noise level.

Definition 3. Let H ∈ {0, 1}(n−k)×n, s ∈ Nn−k and t ∈ Z∗

be the input of N− SDP. Then define the score of a column:
∀i ∈ N∗

n ψi(s) =
∑n−k

ℓ=1 (hℓ,isℓ + (1− hℓ,i)(t− sℓ))) .

ψ can be seen as a correlation measure between the columns
of H and the syndrome, and thus, it reveals those columns that
contributed to the syndrome. For the N−SDP in the presence
of noise we shall use ψi(s̃). The next result, rephrased
from [18], expresses the capability of the score decoder to
distinguish between columns in the support of the solution
vector from columns which are outside the support.

Theorem 1. Let H ∈ {0, 1}(n−k)×n be a random matrix,
with hj,i independent variables s.t. hj,i ∼ Ber( 12 ) and
s ∈ Nn−k such that ∃ x ∈ {0, 1}n with HW(x) = t
satisfying Hx = s. Then ψi(s) follows the distribution{
B((n− k)t, 12 ) , i ̸∈ Supp(x)
B((n− k)(t− 1), 12 ) + n− k , i ∈ Supp(x)

.

From Thm. 1, we deduce that for i ̸∈ Supp(x) we
have E(ψi(s)) = (n−k)t

2 , while for i ∈ Supp(x) we have
E(ψi(s)) =

(n−k)t
2 + n−k

2 . This difference in the mean points
out that ψ can be a distinguisher.In addition, the variance also
differs, a fact that will be used in the tail bounds.

B. Score decoder in the presence of noise

Here, we assume that ϵi are i.i.d. random variables, the noise
does not depend on the distribution of the entries in H and
the distribution D is symmetric.

Proposition 1 ([19]). For j ∈ Z∗
n−k let ϵj be i.i.d. discrete

random variables following a symmetric distribution over the
set Z−d,d, s.t. ϵj and hi,j are independent. Then
Prob (ψi(s̃)− ψi(s) = α) = Prob

(∑n−k
j=1 ϵj = α

)
.

Remark 1. To keep ψi(s̃) − ψi(s) as small as possible, it
is not necessary that the ϵi values are small. Indeed, the ϵi
values may be large, as long as

∑n−k
i=1 ϵi is close to zero.

For a centered binomial noise, we deduce the following.

Corollary 1. Let d ∈ N. If ϵi ∼ −d + B(2d, 12 ) then
ψi(s̃) is a random variable that follows the distribution{
B((n− k)(t+ 2d), 12 )− d(n− k) i ̸∈ Supp(x)
B((n− k)(t− 1 + 2d), 12 )− (d− 1)(n− k) i ∈ Supp(x)
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Fig. 1: Distribution of ψi for ϵ ∼ −d+ B(2d, 12 )

Moreover, E(ψi(s̃)) = E(ψi(s)) and V ar(ψi(s̃)) =
V ar(ψi(s)) + (n− k)d/2.

To maintain the capability to distinguish between positions
inside the support and positions outside the support, the noise
parameter d from B(2d, 12 ) should be restricted.

Corollary 2. Let ϵi ∼ −d + B(2d, 12 ) and
g(n, k, t) a positive unbounded function. Then

Prob

(
|ψi(s̃)− ψi(s)| ≤

√
d(n−k)g(n,k,y)

2

)
≥ 1 −

O( 1
g(n,k,t) ). Moreover, for any d ≤ n−k

8g(n,k,t) , ψ(s̃)

distinguishes positions in Supp(x) from positions outside
Supp(x) w.h.p.

Fig. 1 shows the distribution of ψi values for different levels
of noise, ranging from d = 0, i.e. the noiseless setting, to
a very high noise of B(2t, 12 ). Notice that the distinguishing
capability is much higher for the BIKE parameters [3], as
shown in Fig. 1a, than for the Classic McEliece parameters
[2], as shown in Fig. 1b.

C. Combining ISD and score decoder

The idea in [19] was to boost the distinguishing capability
of the score decoder with ISD-like techniques. To this end,
the score decoder is integrated in the “permutation” step of
the ISD method. Indeed, this method starts by performing a
permutation on the columns of H that will hopefully rearrange
the solution in a useful way. More precisely, in the first ISD
algorithm, the Prange decoder [6], a “good” permutation (Π)

is one that satisfies Π−1x =

(
x1

0

)
. Hence, the initial system

becomes HΠΠ−1x = s∗. By Gaussian elimination on HΠ
one can find an invertible matrix A s.t. AHΠ =

(
I∥B

)
.

Hence, the system becomes
(
I∥B

)(x1

0

)
= As∗ which

yields x1 = As∗. In the original ISD methods, permutations
are sampled randomly until a “good” one is obtained. Thanks
to the extra-information provided by s or s̃, the function
ψ allows to construct a permutation which by no means is
random. Indeed, we have seen that ψ, by its nature, allows
one to distinguish between positions in Supp(x) and positions
outside. Hence, the underlying permutation, hopefully is a
“good” permutation. As pointed out in [19], sorting the list of
values ψi(s̃) in descending order is equivalent to generating a

permutation Π. Algorithm 1 finds a solution to the N− SDP
in the presence of noise as long as Π is “good” enough.

Algorithm 1 PRANGE SCORE DECODER(H, s, t)

1: Compute Π from the list ψi(s̃)
2: Compute A∗,H∗ ← rref(HΠ)
3: if HW(A∗s⋆) = t then

4: return x = Π

(
A∗s⋆

0n−r

)
▷ r = rank(A)

The procedure rref(HΠ), which stands for “reduced row
echelon form”, is equivalent to performing a partial Gaussian
elimination over F2. Indeed, there is an (n−k)×(n−k) non-

singular matrix A∗ such that, A∗HΠ =

[
Ir

0n−k−r,r
∥B∗

]
where HΠ = [A∥B] with A a (n−k)× r matrix satisfying

A∗A =

[
Ir

0n−k−r,r

]
, and B∗ = A∗B. In the case of a full

rank matrix A we have A∗A = In−k. From the description
of the algorithm above, the following result can be deduced.

Proposition 2 ([19]). PRANGE SCORE DECODER outputs a
valid solution as long as there exists at least one set L ⊂
N∗

n \ Supp(x) with #L ≥ n − r such that min{ψi(s̃), i ∈
Supp(x)} > max{ψi(x), i ∈ L}.

The overall time complexity of PRANGE SCORE DECODER
is O((n− k)3), since it is dominated by the partial Gaussian
elimination, i.e. the computation of A∗. Since the permutation
Π might not move all the positions in Supp(x) in the first
n − k positions, more powerful ISD methods may be used,
e.g. Lee-Brickell [7], Stern [8] or Dumer [9]. The idea is
to allow a number of δ positions from Supp(x) outside the
first n− k positions. This is equivalent to extending PRANGE
SCORE DECODER so that it covers error vectors with a more
general pattern. The Lee-Brickell score decoder, where δ
positions are searched exhaustively, is thus proposed in [19]
as a possible solution. When the Lee-Brickell variant is used
and δ = O(1), k = O(n), the work factor of the resulting
algorithm becomes polynomial in n. An algorithm allowing δ
out of t positions from Supp(x) in the last n − r positions
will be further called δ-ISD-score decoder or simply ISD-score
decoder.



Proposition 3. The δ-ISD-score decoder outputs a solution as
long as ∃J ⊂ Nn of cardinality n − k and at most δ indices
i ∈ Supp(x) with values ψi(s̃) < ψj(s̃) with j ∈ J .

IV. SUCCESS PROBABILITY OF THE ISD-SCORE DECODER

A. Main results

The following result gives a condition on the parameters for
having a high probability of success for the ISD score decoder
on the N− SDP in presence of noise.

Theorem 2. Let ϵi ∼ −d + B(2d, 12 ). If the interval[√
t+2d
n−kW

(
n−t

n−k−t+δ+1
e
√
2

π

)2

, 1−
√

t+2d−1
n−k W

(
t

δ+1
2e
π

)2
]

is non-empty, then w.h.p. the ISD-score decoder succeeds in
finding a solution.

To give a more sensitive meaning of our result, we
can approximate the value of the Lambert W function
by W (m) = logm − log logm + O( log logm

logm ) when m
tends to infinity. Using only the first term we define

Iβ =

[√
2(t+2d)
n−k log n−t

n−k−t+δ+1 , 1−
√

2(t+2d−1)
n−k log t

δ+1

]
.

Hence, we deduce the following result.

Proposition 4. Let m→∞. If Iβ ̸= ∅ then the probability of
success of the ISD-score decoder is at least1− e

2π

1√
log n−t

n−k−t+δ+1

1− e√
2π

1√
log t

δ+1

 .

The construction of the interval in Thm. 2 comes from
the underlying proof, where two functions depending on a
parameter β ∈ [0, 1] (LbSupp(x), LbSupp(x)c ) are required to
have co-domain [0, 1]. These two functions are

LbSupp(x)c = 1 − e(n−t)√
2πβ(n−k−t+δ+1)

√
t+2d
n−k e

− (n−k)β2

2(t+2d) ,

LbSupp(x) = 1− e.t
π(1−β)(δ+1)

√
t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) .

To fairly compare with state-of-the-art techniques such as
the algorithm in [18], which is only valid for the noiseless sce-
nario, we adapted the conditions from [18] to the noise model
considered here. This gives two similar functions in β, namely

1− n−t
n−k−t

√
t+2d
n−k e

− (n−k)β2

2(t+2d) , and 1−t
√

t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) .

In Fig. 2, we plot the modified functions from [18] (dashed
lines) and LbSupp(x),LbSupp(x)c (solid lines). In dark green
and light green, the valid interval/region for the adapted
functions from [18], and our functions, respectively, is rep-
resented. Notice that for all parameter sets and all noise levels
considered here, our function offers a larger interval. Hence,
this implies that for some sets of parameters, e.g., in Fig. 2d,
the interval is empty w.r.t. conditions in [18], while w.r.t. our
conditions the interval exists.

B. Information-theoretic bounds

1) Bounding the value of t: To see how large t must be the
following estimate can be used.
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Fig. 2: Valid β interval from the bounds in [18] (dashed lines)
and the proposed ones (solid lines)

Theorem 3 (Upper bound on t). Let k ≤ n− t+ δ+1− (n−
t)(δ + 1)/t and d = ct/2. Then Iβ ̸= ∅ as long as we have

t ≤ n− k

8(1 + c)W
(

n−k
8(1+c)(δ+1)

) (1)

Moreover, when n→∞, we have that t ≤ O
(

n−k
log(n−k)

)
.

Using the first term approximation for the Lambert W
function near infinity we have t ≤ n−k

8(1+c) log n−k
8(1+c)(δ+1)

.

Recall that a preliminary condition on d was determined,
more exactly, d ≤ n−k

8g(n,k,t) , where g(n, k, t) is a positive
unbounded function. Taking d = n−k

8 log(n−k) ≤
n−k

8 log log(n−k)

validates the choice in the hypothesis d = ct/2, as per Thm. 3
t ≤ O

(
n−k

log(n−k)

)
. Taking into account this condition and the

hypothesis of Thm. 3, i.e. d = ct/2, we deduce the following
upper bound on t

d =
ct

2
≤ n− k

8 log t
⇒ t log t ≤ n− k

4c
. (2)

This improves the constant term by t ≤ n− k
4cW (n−k

4c )
.

Remark 2. Notice that we cannot decrease the non-constant
factors lower than what we have achieved here. More exactly
we need to have at least t log t

δ+1 ≤
n−k

2(1+c) to possibly make
the interval from Proposition 4 non-empty. Therefore, the mini-
mum number of syndrome entries required for this algorithm to
output a valid solution has to be at least 2(1+c)t log t/(δ+1).
In the noiseless scenario, this becomes 2t log t.
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Fig. 3: Number of ones in the first n−k positions for some of the Classic McEliece and BIKE sets of parameters and different
levels of a centered binomial noise.

2) Bounding the required ratio of syndrome entries: The
existence of a value such that the ISD-score decoder succeeds
in finding a solution using fewer syndrome entries could be
deduced. It suffices to replace (n−k) with γ(n−k), where γ ∈
(0, 1] represents the percentage of syndrome entries required
to achieve a high probability. This value can be deduced from
Thm. 3. Given n− k, the maximum value of t for which the
success probability is close to 1 also determines the minimum
number of required rows. More exactly, for a fixed value of t
and n − k, we can compute γ(n − k), the value for which t
satisfies 8t(1 + c) log t

δ+1 = γ(n− k). By Thm. 3, with only
γ(n− k) rows, one can recover a solution of weight at most
t w.h.p. Formally, the following holds.

Corollary 3. Let d = ct/2 where c is a constant. The
minimum quantity of information required by the ISD-score
decoder to find a solution is 4(1 + c)t log t

δ+1 . Moreover, in
the noiseless scenario, the minimum quantity of information
becomes 4t log t

δ+1 .

Consequently, the constant term pointed out in Remark 2
may be improved, however not lower than 2(1 + c) log t

δ+1 .

V. EXPERIMENTAL RESULTS

For the simulation we have set the (n, k, t) parameters
according to the specifications of the Classic McEliece [2] and
BIKE [3]. We choose two security levels for both schemes to
illustrate the performance of the ISD-score decoder.

Our experiments look at the number of syndrome entries
required to bring t − δ ones in the first n − k positions, as
dictated by the ISD method. Results are shown in Fig. 3. The
green band is the [t− δ; t] interval for which, given the value
of n, exhaustive search for the correct permutation is feasible,
i.e. [t − 3; t] for Classic McEliece and [t − 1; t] for BIKE.
Let us explain the meaning of the plots, when these are read
horizontally. One way this could be read is as the weight of
solutions retrieved by the ISD-Score decoder with probability
1. For example, when n = 8192 and noise level equal to
t we can hope to retrieve solutions of weight at most 122
(which is smaller that the proposed parameters), while for the

same length and noise smaller than t/2 we can retrieve any
solution of weight at most 128 using the ISD-score decoder
using δ = 3, or equivalently solutions of weight 125 using
the Prange-score decoder. To summarize, except for the case
n = 8192 with noise levels strictly greater than t/2, all the
plots suggests that the ISD-score decoder is able to retrieve
with high probability a valid solution of weight t in presence
of noise.

We can also read the plots vertically. This gives us the
ratio of syndrome entries required to find a solution of given
weight with high probability. The abscissa of the points of
intersection between the curves and the green stripe gives
minimum percentage of syndrome entries required in the
ISD-score decoder to successfully retrieve a valid solution of
weight t. For the BIKE cryptosystem, the ratio of syndrome
entries required to bring at least t− 1 ones in the first n− k
positions ranges is as low as 7.5% in the noiseless setting.
For the Classic McEliece cryptosystem, the ratio of syndrome
entries required to bring at least t− 3 ones in the first n− k
positions ranges from 48% to 62% without noise. In both
cases, moderate noise levels are well tolerated, and prove the
efficiency of the decoder in these settings.

We have also computed the best theoretical lower bound
we could hope for, i.e. the percentage of syndrome entries
should be at least 2(1+c)t

n−k log t
δ+1 . When compared with the

experimental results, we noticed that theoretical values are less
than 10% smaller than the experimental values.

VI. CONCLUSION

This article evaluated the efficiency of the score decoder
for integer syndrome decoding in the presence of noise. We
proved that, even in the presence of noise, this decoder is
indeed able to successfully bring t − δ ones in the first
n − k positions, as required by the ISD-based methods. We
then experimentally validate this capability considering the
parameter sets of two post-quantum cryptosystems, Classic
McEliece and BIKE. Future works could investigate other
types of noise or improve the efficiency of the decoder,
bringing it closer to the information-theoretic bound.
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