Set-swapping Attack on the Classic McEliece Cryptosystem PQ-TLS project – Axis 3

Brice Colombier

June 5, 2024

Joint work with:

- Pierre-Louis Cayrel (SESAM team, LabHC, Saint-Étienne)
- Vlad-Florin Dragoi (Univ. Arad, Romania)
- Vincent Grosso (SESAM team, LabHC, Saint-Étienne)
- Alexandre Menu (SAS team, EMSE, Gardanne)
- Lilian Bossuet (SESAM team, LabHC, Saint-Étienne)

Classic McEliece Encapsulation

 Syndrome decoding problem (which is NP-complete)
 How to make it "easier" to solve and actually solve it

3 Practical aspects

How to make it happen by way of physical attacks

Classic McEliece encapsulation

Classic McEliece encapsulation

Classic McEliece is a Key Encapsulation Mechanism

•
$$Encap(H_{pub}) \rightarrow (s, k_{session})$$
 • $Decap(s, k_{priv}) \rightarrow (k_{session})$

The Encapsulation procedure (Niederreiter encryption [Nie86]) establishes a shared secret.

[[]Nie86] H. Niederreiter. "Knapsack-Type Cryptosystems and Algebraic Coding Theory". In: Problems of Control and Information Theory (1986) 4 / 35

Classic McEliece encapsulation

Classic McEliece is a Key Encapsulation Mechanism

•
$$Encap(H_{pub}) \rightarrow (s, k_{session})$$
 • $Decap(s, k_{priv}) \rightarrow (k_{session})$

The Encapsulation procedure (Niederreiter encryption [Nie86]) establishes a shared secret.

[[]Nie86] H. Niederreiter. "Knapsack-Type Cryptosystems and Algebraic Coding Theory". In: Problems of Control and Information Theory (1986) 4 / 35

Classic McEliece parameters

п	k	(n-k)	t
3488	2720	768	64
4608	3360	1248	96
6688	5024	1664	128
6960	5413	1547	119
8192	6528	1664	128

The public key H_{pub} is very large.

Hardware implementations

Embedded/hardware implementations are now feasible: [RKK20] [CC21] [Che+22] [NM24] Several **strategies** exist to store the (very large) keys:

- Streaming the public key from somewhere else,
- Use a structured code,
- Use a very large microcontroller.

New threats

That makes them vulnerable to physical attacks (fault injection & side-channel analysis)

[RKK20] Johannes Roth, Evangelos G. Karatsiolis, and Juliane Krämer. "Classic McEliece Implementation with Low Memory Footprint". In: CARDIS. 2020

[CC21] Ming-Shing Chen and Tung Chou. "Classic McEliece on the ARM Cortex-M4". In: IACR TCHES (2021)

[Che+22] Po-Jen Chen et al. "Complete and Improved FPGA Implementation of Classic McEliece". In: IACR TCHES (2022)

[NM24] Cyrius Nugier and Vincent Migliore. "Acceleration of a Classic McEliece Postquantum Cryptosystem With Cache Processing". In: IEEE Micro (2024)

Syndrome decoding problem

Syndrome decoding problem

Input: a binary parity-check matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) imes n}$ a binary vector $\mathbf{s} \in \mathbb{F}_2^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that: $\mathbf{H}\mathbf{x} = \mathbf{s}$

Known to be an NP-complete problem [BMT78].

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. "On the inherent intractability of certain coding problems (Corresp.)". In: IEEE Transactions on Information Theory (1978)7 / 35

Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary parity-check matrix $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{F}_2^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \mathbb{F}_2^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that: $\mathbf{H}\mathbf{x} = \mathbf{s}$

Integer syndrome decoding problem (\mathbb{N} -SDP)

Input: a binary parity-check matrix $\mathbf{H} \in \{0,1\}^{(n-k) \times n}$ a binary vector $\mathbf{s} \in \mathbb{N}^{n-k}$ a scalar $t \in \mathbb{N}^+$

Output: a binary vector $\mathbf{x} \in \{0,1\}^n$ with a Hamming weight HW(\mathbf{x}) $\leq t$ such that: H $\mathbf{x} = \mathbf{s}$

$\mathbb{N}\text{-}\mathsf{SDP}$ as an optimisation problem

Option 1: Consider $H_{pub}e = s$ as an **optimization problem** and solve it.

Integer syndrome decoding problem (\mathbb{N} -SDP)

Input: a matrix
$$H_{\text{pub}} \in \mathcal{M}_{n-k,n}(\mathbb{N})$$
 with $h_{i,j} \in \{0,1\}$ for all i, j
a vector $\mathbf{s} \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^+$

Output: a vector
$$\mathbf{e}$$
 in \mathbb{N}^n with $x_i \in \{0, 1\}$ for all i
and with a Hamming weight $HW(\mathbf{x}) \leq t$ such that: $H_{pub}\mathbf{e} = \mathbf{s}$

ILP problem

Let $\mathbf{b} \in \mathbb{N}^n$, $\mathbf{c} \in \mathbb{N}^m$ and $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{N})$ then:

$$\begin{split} \min\{\mathbf{b}^{\mathcal{T}}\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\}\\ \text{with } \mathbf{b} = (1, 1, ..., 1) \text{ and } \mathbf{x} \in \{0, 1\}^{n} \end{split}$$

$\mathbb{N}\text{-}\mathsf{SDP}$ as an optimisation problem

Option 1: Consider $H_{pub}e = s$ as an **optimization problem** and solve it.

Integer syndrome decoding problem (\mathbb{N} -SDP)

Input: a matrix
$$H_{\text{pub}} \in \mathcal{M}_{n-k,n}(\mathbb{N})$$
 with $h_{i,j} \in \{0,1\}$ for all i, j
a vector $\mathbf{s} \in \mathbb{N}^{n-k}$
a scalar $t \in \mathbb{N}^+$

Output: a vector
$$\mathbf{e}$$
 in \mathbb{N}^n with $x_i \in \{0, 1\}$ for all i
and with a Hamming weight $HW(\mathbf{x}) \leq t$ such that: $\mathbf{H}_{pub}\mathbf{e} = \mathbf{s}$

ILP problem

Let $\mathbf{b} \in \mathbb{N}^n$, $\mathbf{c} \in \mathbb{N}^m$ and $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{N})$ then:

$$\begin{split} \min\{\mathbf{b}^{\mathcal{T}}\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{c}, \mathbf{x} \in \mathbb{N}^{n}, \mathbf{x} \geq 0\}\\ \text{with } \mathbf{b} = (1, 1, ..., 1) \text{ and } \mathbf{x} \in \{0, 1\}^{n} \end{split}$$

Solved by **integer linear programming** (using Scipy.optimize.linprog for example)

Integer Linear Programming

For *Classic McEliece*: 3488 < *n* < 8192

Required fraction of faulty syndrome entries

We observed that only a fraction of the faulty syndrome entries is enough to solve the problem.

For *Classic McEliece*, **less than** 40 % faulty syndrome entries is enough.

Experimental results

When considering the **optimal fraction**, time complexity drops from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$. The largest parameters can be attacked in **a few seconds** on a desktop computer.

12 / 35

Considering the $\mathbb{N}\text{-}\mathsf{SDP}$ as an optimization problem $[\mathsf{Cay}{+}21]$

- if easy to express,
- i allows to use a generic ILP solver,
- is reasonably efficient,
- **I** does not tolerate **errors** in the integer syndrome.

[Cay+21] Pierre-Louis Cayrel et al. "Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem". In: EUROCRYPT. 2021 13 / 35 **Option 2**: Reframe $H_{pub}e = s$ as the Quantitative Group Testing problem [FL20]

Abstract

Given a random Bernoulli matrix $A \in \{0, 1\}^{m \times n}$, an integer 0 < k < nand the vector y := Ax, where $x \in \{0, 1\}^n$ is of Hamming weight k, the objective in the *Quantitative Group Testing* (QGT) problem is to recover x.

We want to find which columns of H_{pub} contributed the most to s.

[[]FL20] Uriel Feige and Amir Lellouche. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074 14 / 35

The dot product [FL20] can be used to compute a score for a column:

Score function							
$\psi_i(\mathbf{s}) = \mathbf{H}_{pub[,i]} \cdot \mathbf{s} + \bar{\mathbf{H}}_{pub[,i]} \cdot \bar{\mathbf{s}}$	with $ar{f H}=1-{f H}$	and $ar{\mathbf{s}} = t - \mathbf{s}$					
$\psi_0(\mathbf{s}) = 3$	$\psi_1(\mathbf{s}) = 1$	$\psi_2(\mathbf{s}) = 3$					

[FL20] Uriel Feige and Amir Lellouche. "Quantitative Group Testing and the rank of random matrices". In: CoRR (2020). arXiv: 2006.09074 15 / 35 Algorithm 1 Permutation from score

- 1: for $i \leftarrow 0$ to n-1 do
- 2: Compute $\psi_i(\mathbf{s})$
- 3: $\mathbf{\Pi} \leftarrow \mathsf{sort} \ \psi(\mathbf{s})$ in descending order

4: **Return Π**

Best-case scenario: t-threshold decoder

Information-set decoding-based strategies

Rank-threshold score decoder: Information Set Decoding à la Prange [Pra62]

 $[{\rm Pra62}] \ {\rm Eugene \ Prange.} \ \ "The \ Use \ of \ Information \ Sets \ in \ Decoding \ Cyclic \ Codes". \ In: \ IRE \ Transactions \ on \ Information \ Theory \ (1962) \ 17 \ / \ 35$

Information-set decoding-based strategies

Rank-threshold score decoder: Information Set Decoding à la Prange [Pra62]

Can be improved by allowing δ ones in the last k positions of $e\Pi$ and use more advanced ISD variants.

[Pra62] Eugene Prange. "The Use of Information Sets in Decoding Cyclic Codes". In: IRE Transactions on Information Theory (1962) $$17\/35$$

- Solving \mathbb{N} -SDP with the score function [Col+22]
- is computationally efficient
- i tolerates some errors in the integer syndrome
- dets more efficient with larger cryptographic parameters
- does not cope so well with high noise levels

[Col+22] Brice Colombier et al. "Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem". In: IEEE TIFS (2022) 18 / 35

Practical aspects: physical attacks

 $\mathbb{N}\text{-}\mathsf{SDP}$ framework: compute $\boxed{\mathbf{s}=\mathbf{H}_{\mathsf{pub}}\mathbf{e}}$ over \mathbb{N} instead of \mathbb{F}_2

Algorithm 2 Schoolbook matrix-vector multiplication over \mathbb{F}_2

```
1: function Mat_vec_mult_schoolbook(mat, vec)
```

2: for row
$$\leftarrow 0$$
 to $n - k - 1$ do

3:
$$syn[row] = 0$$
 \triangleright Initialization

4: for row
$$\leftarrow 0$$
 to $n - k - 1$ do

5: **for** col
$$\leftarrow$$
 0 to $n-1$ **do**

```
6: syn[row] ^= mat[row][col] & vec[col] ▷ multiply-accumulate
```

```
7: return syn
```

 $\mathbb{N}\text{-}\mathsf{SDP}$ framework: compute $\boxed{\mathbf{s}=\mathbf{H}_{\mathsf{pub}}\mathbf{e}}$ over \mathbb{N} instead of \mathbb{F}_2

Algorithm 2 Schoolbook matrix-vector multiplication over \mathbb{F}_2

```
1: function MAT_VEC_MULT_SCHOOLBOOK(mat, vec)
```

2: for row
$$\leftarrow 0$$
 to $n - k - 1$ do

3:
$$syn[row] = 0$$
 \triangleright Initialization

4: for row
$$\leftarrow 0$$
 to $n - k - 1$ do

5: **for** col
$$\leftarrow$$
 0 to $n-1$ **do**

```
6: syn[row] ^= mat[row][col] & vec[col] ▷ multiply-accumulate
```

```
7: return syn
```

Targeting the XOR operation, considering the Thumb instruction set.

bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EORS: Rd = $\text{Rm} \oplus \text{Rn}$	0	1	0	0	0	0	0	0	0	1		Rm			Rdn	
EORS: R1 = R0 \oplus R1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Laser fault injection in flash memory : **mono-bit**, **bit-set fault model** [Col+19][Men+20]. ADCS: R1 = R0 + R1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

[Col+19] Brice Colombier et al. "Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller". In: IEEE HOST. 2019 [Men+20] Alexandre Menu et al. "Single-bit Laser Fault Model in NOR Flash Memories: Analysis and Exploitation". In: FDTC. 2020 20 / 35

Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:

 $t_{initial}$ initial delay before the multiplication starts

 t_{inner} delay in the **inner** for loop

 t_{outer} delay in the **outer** for loop

Outcome

After n.(n-k) faults, we get an **integer syndrome s** $\in \mathbb{N}^{n-k}$

Objection: the schoolbook matrix-vector multiplication algorithm is **highly inefficient**! Each **machine word** stores only **one bit**: a **lot** of memory is wasted.

Option 2: side-channel analysis

Algorithm 4 Packed matrix-vector multiplication

```
1: ...

2: for col \leftarrow 0 to (n/8 - 1) do

3: b ^= mat[row][col] & vec[col]

4: ...
```

- b = 00000000
- b = 00000000
- b = 00001000
- b = 00001000
- b = 00001010

Option 2: side-channel analysis

```
Algorithm 4 Packed matrix-vector multiplication
```

```
1: ...

2: for col \leftarrow 0 to (n/8 - 1) do

3: b ^= mat[row][col] & vec[col]

4: ...
```

```
HD = 0 \begin{pmatrix} b = 0000000 & HW=0 \\ b = 0000000 & HW=0 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001000 & HW=1 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001010 & HW=2 \end{pmatrix}
```

Option 2: side-channel analysis

Algorithm	4	Packed	matrix-vector	multiplication
-----------	---	--------	---------------	----------------

1: ...
2: for col
$$\leftarrow$$
 0 to $(n/8 - 1)$ do
3: b ^= mat[row][col] & vec[col]
4: ...

$$HD = 0 \begin{pmatrix} b = 00000000 & HW=0 \\ b = 00000000 & HW=0 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001000 & HW=1 \\ HD = 1 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00001010 & HW=2 \end{pmatrix}$$

Integer syndrome from Hamming distances or Hamming weights

$$\begin{aligned} s_{j} &= \sum_{i=1}^{\frac{n}{8}-1} \ \text{HD}(\mathbf{b}_{j,i}, \mathbf{b}_{j,i-1}) \\ &= \sum_{i=1}^{\frac{n}{8}-1} \ \left| \ \text{HW}(\mathbf{b}_{j,i}) - \text{HW}(\mathbf{b}_{j,i-1}) \right| \ \text{if } \text{HD}(\mathbf{b}_{j,i}, \mathbf{b}_{j,i-1}) \leq 1 \end{aligned} \\ \begin{aligned} &\text{HD} = 2 \begin{pmatrix} \text{b} = 00001000 \ \text{HW} = 1 \\ \text{b} = 00000100 \ \text{HW} = 1 \\ \text{Happens if:} \\ &\text{HW}(\text{mat}[\mathbf{r}][c] \& \text{vec}[c]) > 1 \\ &\text{Unlikely since } \text{HW}(\mathbf{e}) = t \ \text{ is low.} \end{aligned}$$

 $\mathbf{s}_{j} = \mathbf{H}_{pub_{[j,]}}\mathbf{e}$

b ^= $\mathbf{H}_{pub_{[j,i]}}\mathbf{e}_i$

Trace reshaping process

Training phase

- Linear Discriminant Analysis (LDA) for dimensionality reduction,
- One trace gives $(n k) \times \frac{n}{8}$ training samples $n = 8192 \Rightarrow$ more than 1.7×10^6
- Fed to a single RF classifier (sklearn.ensemble.RandomForestClassifier)

Random Forest classifier

Random Forest classifier training:

- Hamming weight:
 - $> 99.5 \,\%$ test accuracy,
- Hamming distance:
 - $\approx 80\,\%$ test accuracy.

Outcome

- We can recover the Hamming weight very accurately,
- but not the Hamming distance ...
- We can compute a *slightly innacurate* integer syndrome.⁷

⁷Brice Colombier et al. "Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem". In: IEEE TIFS (2022) 26 / 35

The integer syndrome, derived from HW side-channel leakage, is often incorrect [Gro+23]:

IF double-cancellation errors : same Hamming weight but different value

 $HD = 2 \begin{pmatrix} b = 00001000 & HW=1 \\ b = 00000100 & HW=1 \end{pmatrix}$

only gets worse when the register size grows (32, 64)...

! classifier inaccuracy for **high noise-levels** [Dra+22].

[Gro+23] Vincent Grosso et al. "Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks Against Classic McEliece". In: COSADE. 2023 [Dra+22] Vlad-Florin Dragoi et al. "Integer Syndrome Decoding in the Presence of Noise". In: IEEE ITW. 2022

Back to SDP

Back to SDP

Back to SDP: punctured syndrome decoding problem

=

e

H_{pub}

Removing columns associated with an all-zero word in \mathbf{e} . (can be detected by side-channel analysis)

[Gro+23] Vincent Grosso et al. "Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks Against Classic McEliece". In: COSADE. 2023 30 / 35

Back to SDP: punctured syndrome decoding problem

SDP

Punctured SDP [Gro+23]

Removing columns associated with an all-zero word in **e**. (can be detected by side-channel analysis)

- 🖕 reduces the code size
 - ISD strategies more applicable
- not for large registers (32, 64)
 - not enough all-zero words in **e**

[Gro+23] Vincent Grosso et al. "Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks Against Classic McEliece". In: COSADE. 2023 30 / 35

أمروس المراجع المراجع

Identify the top t columns of \mathbf{H}_{pub} that **best explain** the observed power consumption.

Algorithm 5 t-test attack

- 1: for $i \leftarrow 0$ to n-1 do
- 2: for every sample do
- 3: $G_0 := \text{subtraces}[\text{sample}] \text{ where } H[:, i] = 0$
- 4: $G_1 := \texttt{subtraces}[\texttt{sample}] \text{ where } H[:, i] = 1$
- 5: t-test (G_0, G_1)
- 6: $t_vals[i] = max(t-tests)$
- 7: **Return** indexes of top *t* values in t_vals

Experimental results

Fig. 3: Success rate of the three methods for 8-bit words and different noise levels.

Experimental results

Fig. 5: Comparison of the three methods for different register sizes at noise level $\sigma = 0.16$.

Conclusion

Future works:

- Study the ISD enumeration step starting with the initial permutation
- Better understand the "noise" on the integer syndrome, and remove it?
- Target hardware implementations and exploit Hamming distance leakage

Perspectives:

- Recover long-term secrets too
- Swap the sets on other cryptosystems!

Future works:

- Study the ISD enumeration step starting with the initial permutation
- Better understand the "noise" on the integer syndrome, and remove it?
- Target hardware implementations and exploit Hamming distance leakage

Perspectives:

- Recover long-term secrets too
- Swap the sets on other cryptosystems!

