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Agenda

1 Classic McEliece

� Encapsulation

2 Syndrome decoding problem (which is NP-complete)

: How to make it “easier” to solve
and actually solve it

3 Practical aspects

W How to make it happen by way of physical attacks
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Classic McEliece encapsulation

Classic McEliece is a Key Encapsulation Mechanism

• KeyGen() -> (Hpub, kpriv)

• Encap(Hpub) -> (s, ksession) • Decap(s, kpriv) -> (ksession)

The Encapsulation procedure (Niederreiter encryption [Nie86]) establishes a shared secret.

• Encap(Hpub) -> (s, ksession)
Generate a random vector e ∈ Fn

2 of Hamming weight t ((n; t): security parameters)
Compute s = Hpube
Compute the hash: ksession = H(1, e, s)

[Nie86] H. Niederreiter. “Knapsack-Type Cryptosystems and Algebraic Coding Theory”. In: Problems of
Control and Information Theory (1986)
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Classic McEliece parameters

Hpub

e

= s

n

n − k n − k

n k (n − k) t

3488 2720 768 64

4608 3360 1248 96

6688 5024 1664 128

6960 5413 1547 119

8192 6528 1664 128

The public key Hpub is very large.
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Hardware implementations

Embedded/hardware implementations are now feasible: [RKK20] [CC21] [Che+22] [NM24]
Several strategies exist to store the (very large) keys:

• Streaming the public key from somewhere else,

• Use a structured code,

• Use a very large microcontroller.

New threats

That makes them vulnerable to physical attacks (fault injection & side-channel analysis)

[RKK20] Johannes Roth, Evangelos G. Karatsiolis, and Juliane Krämer. “Classic McEliece Implementation
with Low Memory Footprint”. In: CARDIS. 2020

[CC21] Ming-Shing Chen and Tung Chou. “Classic McEliece on the ARM Cortex-M4”. In: IACR TCHES
(2021)

[Che+22] Po-Jen Chen et al. “Complete and Improved FPGA Implementation of Classic McEliece”. In:
IACR TCHES (2022)

[NM24] Cyrius Nugier and Vincent Migliore. “Acceleration of a Classic McEliece Postquantum
Cryptosystem With Cache Processing”. In: IEEE Micro (2024)



Syndrome decoding problem



7 / 35

Syndrome decoding problem

Syndrome decoding problem

Input: a binary parity-check matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x) ≤ t such that: Hx = s

Known to be an NP-complete problem [BMT78].

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the inherent
intractability of certain coding problems (Corresp.)”. In: IEEE Transactions on Information Theory (1978)
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Syndrome decoding problem

Binary syndrome decoding problem (Binary SDP)

Input: a binary parity-check matrix H ∈ F(n−k)×n
2

a binary vector s ∈ Fn−k
2

a scalar t ∈ N+

Output: a binary vector x ∈ Fn
2 with a Hamming weight HW(x) ≤ t such that: Hx = s

Integer syndrome decoding problem (N-SDP)

Input: a binary parity-check matrix H ∈ {0, 1}(n−k)×n

a ���binary vector s ∈ Nn−k

a scalar t ∈ N+

Output: a binary vector x ∈ {0, 1}n with a Hamming weight HW(x) ≤ t such that:
Hx = s
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N-SDP as an optimisation problem

Option 1: Consider Hpube = s as an optimization problem and solve it.

Integer syndrome decoding problem (N-SDP)

Input: a matrix Hpub ∈ Mn−k,n(N) with hi ,j ∈ {0, 1} for all i , j
a vector s ∈ Nn−k

a scalar t ∈ N+

Output: a vector e in Nn with xi ∈ {0, 1} for all i
and with a Hamming weight HW(x) ≤ t such that: Hpube = s

ILP problem

Let b ∈ Nn, c ∈ Nm and A ∈Mm,n(N) then:

min{bTx | Ax = c, x ∈ Nn, x ≥ 0}

with b = (1, 1, ..., 1) and x ∈ {0, 1}n

Solved by integer linear programming
(using Scipy.optimize.linprog for example)
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Integer Linear Programming
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For Classic McEliece: 3488 < n < 8192
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Required fraction of faulty syndrome entries

We observed that only a fraction of the faulty syndrome entries is enough to solve the problem.

t =
√
n

103 104

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

pe
rc

en
ta

ge
 o

f s
yn

dr
om

e
en

tr
ie

s 
co

ns
id

er
ed

t =
√
n log n

103 104

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

Classic McEliece parameters

34
88

46
08

66
88

69
60

81
92

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

For Classic McEliece, less than 40% faulty syndrome entries is enough.
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Experimental results
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When considering the optimal fraction, time complexity drops from O(n3) to O(n2).
The largest parameters can be attacked in a few seconds on a desktop computer.
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N-SDP as an optimization problem: summary

Considering the N-SDP as an optimization problem [Cay+21]

m easy to express,

m allows to use a generic ILP solver,

m is reasonably efficient,

l does not tolerate errors in the integer syndrome.

[Cay+21] Pierre-Louis Cayrel et al. “Message-Recovery Laser Fault Injection Attack on the Classic McEliece
Cryptosystem”. In: EUROCRYPT. 2021
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Quantitative Group Testing

Option 2: Reframe Hpube = s as the Quantitative Group Testing problem [FL20]

We want to find which columns of Hpub contributed the most to s.

[FL20] Uriel Feige and Amir Lellouche. “Quantitative Group Testing and the rank of random matrices”. In:
CoRR (2020). arXiv: 2006.09074

https://arxiv.org/abs/2006.09074


15 / 35

The score function

Example: t = 2 = HW(e)

Hpube =

(
0 1 1
1 0 1

)
.e =

(
1
2

)
s =

(
1
2

)
(
0
1

)
(
1
0

)
(
1
1

)

The dot product [FL20] can be used to compute a score for a column:

Score function

ψi (s) = Hpub[,i ] · s+ H̄pub[,i ] · s̄ with H̄ = 1−H and s̄ = t − s

ψ0(s) = 3 ψ1(s) = 1 ψ2(s) = 3

[FL20] Uriel Feige and Amir Lellouche. “Quantitative Group Testing and the rank of random matrices”. In:
CoRR (2020). arXiv: 2006.09074

https://arxiv.org/abs/2006.09074
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From the score to the support

Algorithm 1 Permutation from score

1: for i ← 0 to n − 1 do
2: Compute ψi (s)

3: Π← sort ψ(s) in descending order
4: Return Π

Best-case scenario: t-threshold decoder

Hpub

e

= s

HpubΠ

eΠ

$

t−1∑
i=0

(HpubΠ)[,:t] = s ✓
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Information-set decoding-based strategies

Rank-threshold score decoder: Information Set Decoding à la Prange [Pra62]

Hpub

e

= s

HpubΠ

eΠ
(n−k

t

)

n − k

n − k

R

RHpubΠ = In−k | X $ HW (R−1s) = t ✓

Can be improved by allowing δ ones
in the last k positions of eΠ

and use more advanced ISD variants.

[Pra62] Eugene Prange. “The Use of Information Sets in Decoding Cyclic Codes”. In: IRE Transactions on
Information Theory (1962)
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Solving N-SDP with the score function

Solving N-SDP with the score function [Col+22]

m is computationally efficient

m tolerates some errors in the integer syndrome

m gets more efficient with larger cryptographic parameters

l does not cope so well with high noise levels

[Col+22] Brice Colombier et al. “Profiled Side-Channel Attack on Cryptosystems Based on the Binary
Syndrome Decoding Problem”. In: IEEE TIFS (2022)



Practical aspects: physical attacks
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Objective

N-SDP framework: compute s = Hpube over N instead of F2

Algorithm 2 Schoolbook matrix-vector multiplication over F2

1: function Mat vec mult schoolbook(mat, vec)
2: for row ← 0 to n − k − 1 do
3: syn[row] = 0 ▷ Initialization

4: for row ← 0 to n − k − 1 do
5: for col ← 0 to n − 1 do
6: syn[row] ^= mat[row][col] & vec[col] ▷ multiply-accumulate

7: return syn
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Option 1: laser fault injection attack

Targeting the XOR operation, considering the Thumb instruction set.
bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EORS: Rd = Rm ⊕ Rn 0 1 0 0 0 0 0 0 0 1 Rm Rdn

EORS: R1 = R0 ⊕ R1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Laser fault injection in flash memory : mono-bit, bit-set fault model [Col+19][Men+20].
ADCS: R1 = R0 + R1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

[Col+19] Brice Colombier et al. “Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption
on a 32-bit Microcontroller”. In: IEEE HOST. 2019

[Men+20] Alexandre Menu et al. “Single-bit Laser Fault Model in NOR Flash Memories: Analysis and
Exploitation”. In: FDTC. 2020
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Multiple faults

Three independent delays must be tuned to fault the full matrix-vector multiplication:

tinitial initial delay before the multiplication starts

tinner delay in the inner for loop

touter delay in the outer for loop

execution
starts X

O
R

X
O
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X
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R

X
O
R

X
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R

X
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X
O
R

X
O
R

X
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X
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X
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X
O
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tinitial tinner touter

time

Outcome

After n.(n − k) faults, we get an integer syndrome s ∈ Nn−k
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Packed matrix-vector multiplication

Objection: the schoolbook matrix-vector multiplication algorithm is highly inefficient!
Each machine word stores only one bit: a lot of memory is wasted.

Algorithm 3 Packed matrix-vector multiplication

1: function Mat vec mult packed(mat, vec)
2: for row ← 0 to ((n − k)/8− 1) do
3: syn[row] = 0 ▷ Initialisation

4: for row ← 0 to (n − k − 1) do
5: b = 0
6: for col ← 0 to (n/8− 1) do
7: b ^= mat[row][col] & vec[col]

8: b ^= b >> 4
9: b ^= b >> 2 ▷ Exclusive-OR folding

10: b ^= b >> 1
11: b &= 1 ▷ LSB extraction
12: syn[row/8] |= b << (row % 8) ▷ Packing

13: return syn

Hpub

e

= s

n
8

n − k n−k
8
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Option 2: side-channel analysis

Algorithm 4 Packed matrix-vector multiplication
1: ...
2: for col ← 0 to (n/8− 1) do
3: b ^= mat[row][col] & vec[col]

4: ...

b = 00000000

b = 00000000

b = 00001000

b = 00001000

b = 00001010

HD = 0

HD = 1

HD = 0

HD = 1

HW=0

HW=0

HW=1

HW=1

HW=2

Integer syndrome from Hamming distances or Hamming weights

sj =

n
8
−1∑

i=1

HD(bj ,i ,bj ,i−1)

=

n
8
−1∑

i=1

∣∣ HW(bj ,i )− HW(bj ,i−1)
∣∣ if HD(bj ,i ,bj ,i−1) ≤ 1

b = 00001000

b = 00000100
HD = 2

HW=1

HW=1

Happens if:
HW(mat[r][c] & vec[c]) > 1
Unlikely since HW(e) = t is low.
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Side-channel analysis for Hamming weight recovery

s = Hpube
Hpub

e

= s
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Side-channel analysis for Hamming weight recovery

b ^= Hpub[j,i ]ei Hpub

e

= s
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Trace reshaping process

traw

nsamples

Trow-wise

≃ nsamples

n−k

(n
−
k
)

Telement

≃ nsamples
n
8
×(n−k)

(n
−
k
)
×

n 8

TLDA

nclasses − 1

(n
−
k
)
×

n 8

Training phase

• Linear Discriminant Analysis (LDA) for dimensionality reduction,

• One trace gives (n − k)× n
8 training samples n = 8192 $ more than 1.7× 106

• Fed to a single RF classifier (sklearn.ensemble.RandomForestClassifier)
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Random Forest classifier

Random Forest classifier training:
• Hamming weight:

• > 99.5% test accuracy,

• Hamming distance:
• ≈ 80% test accuracy.

0 5 10 15 20 25 30

Samples

F
st

a
ti

st
ic

54xHW

HD

Outcome

• We can recover the Hamming weight very accurately,

• but not the Hamming distance...

• We can compute a slightly innacurate integer syndrome.7

7Brice Colombier et al. “Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome
Decoding Problem”. In: IEEE TIFS (2022)
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Summary

N-SDP

Laser fault injection
XOR $ ADD

Side-channel analysis
n
8
−1∑

i=1

∣∣HW(bj ,i )− HW(bj ,i−1)
∣∣

Optimization with ILP solver
min{bTx | Ax = c, x ∈ Nn, x ≥ 0}

Quant. Grp. Test. score function
ψi (s) = Hpub[,i ] · s+ H̄pub[,i ] · s̄

Information-set
decoding-based strategies
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Dealing with errors in the integer syndrome

The integer syndrome, derived from HW side-channel leakage, is often incorrect [Gro+23]:

l double-cancellation errors : same Hamming weight but different value
b = 00001000

b = 00000100
HD = 2

HW=1

HW=1

only gets worse when the register size grows (32, 64)...

l classifier inaccuracy for high noise-levels [Dra+22].

[Gro+23] Vincent Grosso et al. “Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks
Against Classic McEliece”. In: COSADE. 2023

[Dra+22] Vlad-Florin Dragoi et al. “Integer Syndrome Decoding in the Presence of Noise”. In: IEEE ITW.
2022
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Back to SDP
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Back to SDP: punctured syndrome decoding problem

SDP

Hpub

e

= s

Punctured SDP [Gro+23]

Hpub

e

= s

Removing columns associated with an all-zero word in e.
(can be detected by side-channel analysis)

Hpub

e

= s

[Gro+23] Vincent Grosso et al. “Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks
Against Classic McEliece”. In: COSADE. 2023
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Back to SDP: punctured syndrome decoding problem

SDP

Hpub

e

= s

m reduces the code size
• ISD strategies more applicable

l not for large registers (32, 64)
• not enough all-zero words in e

Punctured SDP [Gro+23]

Hpub

e

= s

Removing columns associated with an all-zero word in e.
(can be detected by side-channel analysis)

Hpub

e

= s

[Gro+23] Vincent Grosso et al. “Punctured Syndrome Decoding Problem - Efficient Side-Channel Attacks
Against Classic McEliece”. In: COSADE. 2023
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Back to SDP: t-test attack

Hpub

e

= s

Identify the top t columns of Hpub that best explain the observed power consumption.

Algorithm 5 t-test attack

1: for i ← 0 to n − 1 do
2: for every sample do
3: G0 := subtraces[sample] where H[:, i ] = 0
4: G1 := subtraces[sample] where H[:, i ] = 1
5: t-test(G0, G1)

6: t vals[i] = max(t-tests)

7: Return indexes of top t values in t vals
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Conclusion
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Future works and perspectives

Future works:

• Study the ISD enumeration step starting with the initial permutation

• Better understand the “noise” on the integer syndrome, and remove it?

• Target hardware implementations and exploit Hamming distance leakage

Perspectives:

• Recover long-term secrets too

• Swap the sets on other cryptosystems!

— Questions ? —
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