
 

1 

  
Abstract — Design and reuse has become a very common practice 
in the electronics design industry. IP cores are easily sold by 
designers to system integrators. However, several cases of 
counterfeiting and illegal copying have been reported and design 
protection techniques have been developed in response. Among 
these techniques, we focus on modifications at logic level aimed at 
active design protection. This is the first paper to provide a 
formal description and definition of the following techniques 
used to protect integrated circuits and IP cores against theft, 
counterfeiting, cloning and illegal copy: logic encryption, logic 
obfuscation, logic masking, and logic locking. In the second part 
of the paper, we present a new technique to insert gates in the 
data path of a logic circuit in order to lock it. Based on graph 
analysis, this method involves low overhead implementation and 
is more than ten thousand times faster than former fault analysis-
based logic masking techniques when it comes to selecting the 
nodes to modify. Finally, we discuss the design requirements of a 
strong design protection scheme. 
 

Index Terms—Intellectual property protection, logic 
encryption, logic obfuscation, logic functional locking. 

I. INTRODUCTION 

ROTECTION of the intellectual property of IP core designers 
is a hot topic and remains an open question. Because of 
the ever increasing complexity of electronic systems, full 

in-house design is no longer the norm. IP core designers 
provide system integrators with a wide IP portfolio in which 
they can select the functional block best suited to their needs. 
EDA companies offer IP cores that are accessible directly 
from their design software. Online marketplaces are 
expanding, and system integrators can use them to compare a 
whole range of different IP cores, and choose the most 
appropriate for their system. This paradigm helps reduce time-
to-market because the IP cores have been thoroughly tested, 
are “silicon-proven” and can be integrated all together in a 
more complex system. From the integrator’s point of view, 
this is a great help. The IP core designer, however, is faced 
with a problem: since the IP core is made available as a data 
file, how can the designer control how many times the IP core 
is actually instantiated? To cut a long story short, how can 
overusing be prevented? In addition, another problem is 
counterfeiting, which is not specific to IP cores, but also 

 
 

occurs with standard integrated circuits. Illegal copying, 
cloning and theft are long known threats to design data. 
Logic protection schemes have been developed to counter 
these risks. They can be classified as passive and active 
protection schemes. Passive protection detects but does not 
prevent an illegal action, whereas active protection techniques 
make the illegal action much harder to carry out or even 
pointless. Both types of protection schemes can act at different 
design levels. Here, we focus on logic protection schemes. 
They consist in modifying the RTL description of the design, 
and adding extra elements to protect it. However, there is 
currently a lack of formal classification of logic protection 
schemes. 
Once a protection scheme is selected by the designer, the 
second point to be addressed is the method used to select 
which parts of the design should be modified. Here we 
propose a new method, based on graph analysis, to select the 
nodes of a netlist to modify to achieve logic locking. We 
compare our method with the state-of-the-art selection 
technique used for logic masking proposed in [1], which uses 
fault-analysis techniques. 
The remainder of this article is organized as follows. In 
section II, we provide a formal framework for logic protection 
schemes by defining logic encryption, logic obfuscation, logic 
masking and logic locking and give examples of techniques for 
each. In section III, we present a new graph-based algorithm 
that selects the optimal nodes to be modified to achieve logic 
locking of a combinational netlist. In section IV, we present 
the results of implementation, specifically the logic resources 
overhead and analysis time. In section V, we evaluate the 
proposed method and develop associated metrics. In section 
VI we describe a threat model and perform a security analysis 
of the protection schemes considered. In section VII, we 
discuss design considerations. In particular, we emphasize the 
need to introduce a cryptographic primitive to ensure security, 
and to not rely on the logic/masking module to fulfill this 
objective. 

II. A FORMAL FOUNDATION FOR LOGIC PROTECTION 

SCHEMES 

An increasing number of works are trying to find a way to 
protect the intellectual property of IP designers and fabless IC 
designers by acting on logic. Unfortunately, most of these 
works make incorrect use of the terminology, i.e., logic 
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encryption, logic obfuscation, logic masking and logic locking 
are used without a formal definition. This paper takes the 
opportunity to propose a formal foundation for logic 
protection schemes. In this section, we provide formal 
descriptions and definitions of the logic protection schemes in 
order to strictly evaluate their different contributions to the 
literature.   

In all the following sub-sections, the original (not protected) 
n-input, l-output logic function is formalized by a Boolean 

function	��0, 1�� → �0, 1�
. 
A. Logic encryption  

The term “logic encryption” is used when a specific 
symmetric encryption function ξf of GF(2l) is applied to f. 
Formally, it’s not logic encryption. The term is not specific. 
Encryption of the Boolean function f is the correct expression. 
The result of this encryption is the Boolean 

function	�′�0, 1�� → �0, 1�
. �′ is given by the following 
expression, where k is the secret key: 

�� = ����, �� 
ξf is a symmetric encryption function if and only if an 

inverse function ψf exists that uses the same secret key k for 
decryption, and is defined as follows: 

������ = �������, ��, �� = �  (1) 

Functions ξf and ψf must meet the following requirements: 

∀��� , ��� ∈ ��0, 1��, �0, 1���, �� ≠ �� 			 
 ����, ��� ≠ 	 ����, ���                         (2) 

�������, ���, ��� ≠ 	 �����, ���, ���    (3) 

Functions ξf and ψf also have to satisfy the following 
requirements, where Corr is the function that computes 
Pearson’s correlation coefficient: 

∀	� ∈ �0, 1��											���������, ��, �� ≅ 0   (4) 

∀	� ∈ �0, 1��			����  �������, ��, ��, ����, ��! ≅ 0    (5) 

One of the consequences of the last expression is that the 
mean of the Hamming distance between the input and the 
output of the encryption/decryption functions is close to 50% 
(ideally exactly 50%) as described by the following 
expressions when the mean of the Hamming distance is 
computed for all the inputs of the Boolean function f: 

∀	� ∈ �0, 1�� 									∑#$������0,1�%,��,��0,1�%�2%−1 ≅ 50%  (6) 

∀	� ∈ �0, 1�� 				∑#$*+, -,���0,1�%,��!,-,���0,1�%,��.2%−1 ≅ 50%  (7) 

Some works [1,2,3] consider this last property as proof of 
security. This is a mistake, since it is possible to obtain the 
same result with a function that does not achieve encryption. 
For instance, inverting the first n/2 bits of the output of f leads 
to a 50% Hamming distance. Similarly, inverting every input 

of odd order leads to the same result. In both cases, the mean 
of the Hamming distance as described in (6) is equal to 50% 
but the correlation defined in (4) is not zero. These works are 
presented as “logic encryption”, even though this is absolutely 
not the case. The authors of these works defined “logic 
encryption” as: “logic encryption hides the functionality and 
the implementation of a design by inserting some additional 
gates called key-gates into original design” [2]. With this 
definition, logic encryption does not respect the expressions 
(1) to (7). Consequently, we claim that all works presented as 
“logic encryption” are inaccurate because in fact, they only 
propose to mask the logic functionality. The security level of 
such masking functions is very low compared with proper 
encryption. 

A didactic example of true “logic encryption” is given by 
considering the following 3-input Boolean function �	�0, 1�/ → �0, 1�0: 

��1, 2, �� = 1 ⋅ 2 ⋅ � 

Figure 1 is a schematic diagram of the encrypted logic 
circuit. This includes the original logic circuit that computes 
the Boolean function f, the encryption function ξf that 
computes the encrypted Boolean function f’  using an 
embedded secret key k, and the decryption function ψf that 
outputs the correct result of the Boolean function f if and only 
if the correct key k is applied on the external key input. 

 

Fig. 1. Example of logic encryption 

This didactic example shows that the area overhead of true 
logic encryption is always prohibitive since it requires the 
implementation of encryption and decryption functions. Note 
that the security level of such a protection depends on the key 
size. Now, an efficient symmetric encryption has to use at 
least a 128-bit key. All protection schemes that include a 
secret key that has only a few bits (3, 5, 10 etc.) fail to provide 
the designer with any security because of the feasibility of a 
brute force attack. 

B. Logic obfuscation  

Logic obfuscation comes from the field of computer science 
in which developers wish to protect source codes against 
unauthorized reading and understanding. The following 
definition of code obfuscation is proposed by Hachez [4]: 
“Transform a program P into another program P’ harder to 
reverse engineer with the same observable behavior. If P fails 
to terminate or terminates with an error, then P’ fails to 
terminate or terminates with an error. Otherwise, P’ must 
terminate and produce the same output as P”. Hardware 
obfuscation consists in applying this definition to the hardware 
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field, by changing the logic, FSM, or other part of a design 
without changing the system behavior. 

When the logic part of a circuit is obfuscated, a design 
modification 4f is applied to f. The result of this design 

modification is the Boolean function	�′′�0, 1�� → �0, 1�
. The 
function 4 f must meet the following requirement for any input 5 ∈ �0, 1�
	: 

4���� = ��� 
∀5 ∈ �0, 1�																	�′′�5� = ��5�    (8) 

 
Some works present logic obfuscation but do not fulfill the 

requirement (8) [5,6]. Most of these works use a secret key 
that changes the behavior of the original logic function. 
Although authors refer it as “functional obfuscation”, these 
works are typical cases of logic masking. 

It is possible to try to perform obfuscation at the logic-gate 
level but this usually implies a large overhead. Indeed, 
obfuscation techniques aim to increase reverse-engineering 
time. The time is at least linear with the area [7]. Increasing 
the area increases the time needed for reverse engineering. As 
a consequence, the main design modification rule for 
obfuscation is to not follow the usual design rules for efficient 
implementation of a Boolean function. Usually, laws and 
theorems of Boolean logic are applied to Boolean functions in 
order to reduce the number of gates (i.e. the area) of the final 
hardware implementation. To obfuscate an implementation of 
a Boolean function, these laws and theorems are followed in 
the opposite way, i.e. they increase the size of the hardware 
implementation. 

Two strategies are used in the first step of obfuscation: 
develop and obscure. To develop a Boolean function, the 
designer can use the canonical disjunctive normal form (also 
called minterm canonical form) in which the Boolean function 
is represented and implemented as a sum of minterms.  

As an example, let us consider the following 3-input 

Boolean function �	�0, 1�/ → �0, 1�0: 

��1, 2, �� = 1 ⋅ 2 ⋅ � 

The obfuscation strategy we use here is for didactic purpose 
only. We only give a simple example in order to demonstrate 
the proportional increase of reverse-engineering time and area 
overhead. 

This Boolean function could be developed using the 
following canonical disjunctive normal form (first obfuscation 
step). 

�′′�1, 2, �� = 1 ⋅ 2 ⋅ � 	+	1 ⋅ 2 ⋅ � +	1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ �+ 1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ � 

f and f’’  follow requirement (8). Figures 2-a and 2-b show 
the logic schematics of the two functions with only 2-input 
AND and OR gates and invertors (other types of gates could 
also be used). 

In order to obscure a Boolean function, the designer can 
apply to f’’  some of the Boolean logic laws (absorption, 

complementary, common identities, etc.) and DeMorgan’s 
theorem to increase the number of gates used in the hardware 
 
 
 
Fig. 2. Logic circuits to implement Boolean functions f (a), f ’’  after one step 
of obfuscation (b) and f ’’  after two steps of obfuscation (c). 

implementation. For example, by also using some redundant 
logic operations, f’’ is described by the following Boolean 
expression: 
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����1, 2, �� = 1 ⋅ 2 + 1 ⋅ 2 +	1 ⋅ 2 + 27 ⋅ �̅ + 1̅ ⋅ �̅ + 1 ⋅ �+ 27 ⋅ � + 1̅ ⋅ � + 2 ⋅ � + 1̅ + 27 + �+ 1 ⋅ 2	7777777 + 1⊕ � + 1⊕ 2 + 1 ⋅ �̅777777 + 2 ⋅ �̅777777 

Again, f and f’’  meet requirement (5). Figure 1-c shows the 
logic schematic of f’’ after this second step of obfuscation. 
The designer can also insert dummy logic to further increase 
the reverse engineering effort. 

Table I shows the logic resources required for each logic 
circuit in figure 2. For each circuit, the number of gates is 
shown for each type (inverter, 2-input AND gate, 2-input OR 
gate and 2-input XOR gate), along with the gate equivalent 
metric. The area overhead is given for the two hardware 
implementations of f’’ . As mentioned above, the increase in 
reverse-engineering time for each obfuscated logic circuit (in 
comparison with the original logic circuit) is supposed to be 
equal to the area overhead.  For example, the time required to 
reverse engineer circuit 2-c is 14.58 times greater than the 
time required to reverse engineer the original circuit. 

TABLE I 
LOGIC RESOURCE REQUIREMENTS AND TIMING OVERHEAD FOR REVERSE 

ENGINEERING OF THE CIRCUITS DESCRIBED IN FIGURE 1 

Boolean 

function 

Logic 

circuit 

Logic gate requirement 

Gate 

Equivalent 

Area / 

Reverse 

engineering 

time 

overhead 

INV AND OR XOR 

f 1-a 1 2   4.01 - 

f’ after the first 

step of 

obfuscation 

1-b 3 14 6  35.41 + 883 % 

f’ after the 

second step of 

obfuscation 

1-c 6 12 17 2 58.47 + 1 458 % 

Due to the high area overhead, such logic obfuscation is not 
suitable for most applications. Moreover, the hardware design 
of the obfuscated circuit has to be performed by hand to avoid 
logic optimization by the synthesis tool. It is possible to mix a 
light logic obfuscation with obfuscation at another level. 
Indeed, hardware obfuscation is also possible at the level of 
HDL [8,9] and at the level of the layout [10,11]. 

  The above description of logic encryption and logic 
obfuscation allows us to affirm that none of the published 
works that present “logic encryption” or “logic obfuscation” 
meet the formal requirements of these two techniques. Most of 
these works in fact describe “logic masking” or “logic 
locking”. In the remainder of this section we present logic 
masking and logic locking techniques. 

C. Logic masking  

Logic masking consists in inserting xor or xnor gates in the 
data path of the logic circuit of a Boolean function in order to 
change the logic behavior of the circuit if the wrong masking 
key is applied. It was first proposed in [12]. Let us consider 

that a Boolean function ��0, 1�� → �0, 1�
 could be 
represented as a set of i Boolean sub-functions {f 0, f 1, …, f i-1}. 
Logic masking of the Boolean function f by using the i-bit 

masking key k={k0, k1, …, ki-1} is described by the following 

expression, where f’’’  is a Boolean function �0, 1�� → �0, 1�
 
and ⊖ is the xor or xnor Boolean operator: 

���′ = ��; ⊖; �;, �0 ⊖0 �0, … , ��=0 ⊖�=0 ��=0� 
∀> ∈ �0, ? − 1�	@ ?�	∮� ≡ 5�� ⟹ �� = 1 ⇒ ��∮ �� = ��?�	∮� ≡ %5�� ⟹ �� = 0 ⇒ ��∮ �� = �� (9) 

The correct masking key k is found by using the laws in (9), 
and considering the type of inserted gate. 

As a didactic example, let us consider the following 3-input 

Boolean function �	�0, 1�/ → �0, 1�0: 

��1, 2, �� = 1 ⋅ 2 ⋅ � 

This Boolean function could also be described by the 
following expression: 

E��1, 2, �� = �0��;�1, 2�, ���;�F, G� = F ⋅ G�0�F, G� = F ⋅ G777777  

A didactic example of logic masking of the Boolean 
function f is given in figure 3, where ⊖; is an xnor gate and ⊖0 is a xor gate. According to the laws in (9), we can 
determine the correct masking k={0,1} needed to obtain the 
original logic behaviour. In figure 3, additional masking gates 
are in grey. 

 
Fig. 3. Example of logic masking 

Efficient insertion of the masking scheme has to be 
achieved without reducing performance (mainly by limiting 
the insertion of gates on the critical path) or increasing area 
overhead (by limiting the number of additional gates without 
using too few bits for the masking key k). For example, works 
presented in [13] and [1] propose to use heuristics to reduce 
overhead. 

D. Logic locking  

Logic locking allows the designer to insert or or and gates 
in the data path of the logic circuit of a Boolean function in 
order to lock the output to a fixed logic level (0 or 1) if the 
wrong unlocking key is applied. Let us consider that a 

Boolean function ��0, 1�� → �0, 1�
 can be represented as a 
set of i Boolean sub-functions {f 0, f 1,…, f i-1}. Logic locking of 
the Boolean function f by using the i-bit unlocking key k = {k0, 
k1, …, ki-1} is described by the following expression when f’’’’  

is a Boolean function �0, 1�� → �0, 1�
 and ⊙ is the and or or 
Boolean operator: 

���′′ = ��; ⊙; �;, �0 ⊙0 �0, … , ��=0 ⊙�=0 ��=0� 
∀> ∈ �0, ? − 1� I?�	 ⊙�≡ J%K ⟹ �� = 1 ⇒ �� ⊙�� = ��?�	 ⊙�≡ �� ⟹ �� = 0 ⇒ �� ⊙�� = ��  (10) 
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The correct unlocking key k is found by using the laws in 
(10), depending on the type of inserted gate. 

As a didactic example, let us consider the following 3-input 

Boolean function �	�0, 1�/ → �0, 1�0: 

��1, 2, �� = 1 ⋅ 2 ⋅ � 

This Boolean function could be expressed by the following 
expression: 

E��1, 2, �� = �0��;�1, 2�, ���;�F, G� = F ⋅ G�0�F, G� = F ⋅ G777777  

A didactic example of logic locking of the Boolean f is 
given in figure 4 where ⊙; is an and gate. In this very simple 
example, only one gate is used to lock the logic behavior of 
the circuit. By following the laws in (10), we can determine 
the correct masking k=1 to obtain the correct behavior. In 
figure 4, the additional locking gate is in grey. 

 

Fig. 4. Example of logic locking 

Like for logic masking, the insertion of the locking gates 
has to be achieved without reducing performance and 
increasing area overhead. In the following section, we present 
a new method based on graph analysis of an RTL netlist, 
which achieves efficient and secure logic locking. 

Like in logic obfuscation and masking, it is possible to lock 
a circuit by acting on parts/levels other than the logic level. 
For example, recent works propose to lock the finite-state-
machine [14,15] or the input/output ports [16]. 

III.  PROPOSED GRAPH ANALYSIS-BASED LOGIC LOCKING 

SCHEME 

As mentioned in section II-d), what we propose here is a new 
technique to select the nodes to include in the logic locking 
process. Indeed, since logic locking requires the insertion of 
extra logic gates, it is necessary to find the optimal spots in the 
combinational netlist on which these extra gates should be 
inserted. According to the previously proposed definition, 
logic locking can be the propagation of a fixed logic value 
from an internal node to one or several output(s). To achieve 
this, we need to identify sequences of gates that could 
propagate such a logic value. To this end, we represent the 
netlist as a graph. This representation is a convenient way of 
analyzing relations between logic gates and finding the 
optimal paths in a netlist that could propagate the logic 
locking value. 

A. Implementation of logic locking 

Before building the graph, we must identify the characteristics 
leading to the propagation of a locking value in a sequence of 
logic gates. First, it is worth noting that a specific controlling 
value exists for non-linear logic gates. If this controlling value 
is applied to one of the logic gate’s inputs, then the output is 
forced to a fixed, known value. For instance, setting one of the 
inputs of an and gate to 0 will set the output to 0. Table II 

summarizes the controlling values for the four 2-input non-
linear logic gates. 
 

TABLE II 
CONTROLLING VALUE AND THE ASSOCIATED OUTPUT VALUE FOR ALL 2-INPUT 

NON-LINEAR LOGIC GATES 

Logic 

gate 

Controlling 

value 

Output value1 

AND 0 0 

NAND 0 1 

OR 1 1 

NOR 1 0 

1when the controlling value is applied to one of the inputs 

 
Next, for every node in the netlist, we define two values: L
MNOP and L�MQNRS . L
MNOP is the controlling value of the gate 
that comes after this node. For instance, if a node is the input 
of an or gate, then L
MNOP = 1. L�MQNRS is the value to which the 
node will be forced. For instance, if a node is the output of an 
or gate, then L�MQNRS = 1. It should be noted that, sometimes, L
MNOP = �0, 1�, if the node has a fan-out higher than one and 
spans gates with different controlling values. 
A node is useful for logic locking if it is forced to the 
controlling value of the following gate. Therefore, for 
sequences of nodes that can propagate a locking value, all the 
nodes meet the following criterion: 
 

Criterion 1 : L�MQNRS ∈ L
MNOP  
 

If criterion 1 is verified for all the nodes in a sequence of 
nodes, then this sequence is able to propagate a locking value. 
In this case, forcing the first node to its controlling value will 
set all the nodes in the sequence at a fixed logic value. This is 
illustrated in figure 5. Here, forcing one of the inputs of the 
first or gate to a 1 logic value forces the output of the and gate 
on the right to 0. 
 

 
Fig. 5. Propagation of a locking value in a sequence of logic gates 

 
With this in mind, one can see how an output can easily be 
forced to a fixed logic value. By inserting logic gates at 
specific locations in the netlist, the designer will be able to 
force the outputs to a fixed value by controlling the value of 
specific internal nodes. The aim here is to select the most 
appropriate nodes, namely those at the beginning of sequences 
of gates like the one presented in figure 6. To achieve this aim, 
graph exploration techniques are used, and are presented in the 
following sections. 

B. Graph building 

The original design file is an RTL description of the 
combinational netlist. The first step is to convert it into a 
directed acyclic graph. We chose to represent the netlist’s 
nodes as vertices and the Boolean functions as edges. An 
example of conversion from logic gates to graph elements is 
shown in figure 6. 

1
1 0

0
0
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Fig. 6. Conversion from logic gates to graph elements 

 
This is repeated for all logic gates of the netlist. A toy example 
of a netlist converted into a graph is shown in figure 7: 

Fig. 7. Conversion from netlist to graph 

 
In order to identify which nodes satisfy criterion 1, L
MNOP and L�MQNRS are computed for all the nodes in the netlist (i.e. all the 
vertices in the graph). This is done as follows: outgoing edges 
are used to compute L
MNOP, while incoming edges are used to 
compute L�MQNRS . By convention, for the sake of the following 
computations, L
MNOP is set to �0, 1� for the outputs. Table III 
shows L
MNOP and L�MQNRS  values computed for all the vertices 
of the graph shown in figure 7. 

TABLE III L
MNOP AND L�MQNRS VALUES FOR ALL THE NODES OF THE NETLIST SHOWN IN 

FIGURE 7 

Node L�MQNRS L
MNOP Node L�MQNRS L
MNOP 
G1 - 1 G9 1 0 

G2 - 1 G10 0 0 

G3 - 0 G11 1 1 

G4 - 0 G12 1 0 

G5 - 0 G13 - 0 

G6 - 0 G14 0 0 

G7 1 1 G15 1 {0, 1} 

G8 - 1 G16 0 {0, 1} 

 
The next step is to identify which nodes cannot propagate the 
locking value. This means they do not fulfill criterion 1. If a 
node does not meet this criterion, its incoming edges are 
deleted. Thus in the previous example, incoming edges are 
deleted for G9 and G12.  
What is obtained at this stage is a highly disconnected graph, 
because the vast majority of vertices do not fulfill criterion 1.  

Since we want to achieve logic locking, connected 
components that do not contain any output must be removed 
from the graph. After applying this method to the graph in the 
previous example, we obtain the one shown in figure 8. The 
original netlist is disregarded, and a path that can propagate a 
locking value is highlighted. 
 

 

 

Fig. 8. Final graph and the original netlist showing a path that can propagate a 
locking value 

 
The final graph obtained at this stage comprises nodes that can 
all propagate a locking value to the output if they are forced to 
a specific logic value. Some of them, however, are better 
candidates, because they span a larger number of outputs or 
are more deeply integrated in the netlist. The selection 
algorithm we used to identify the best nodes to act on is 
described in the following section. 

C. Graph analysis for selection of optimal locking nodes  

At this stage, the graph is composed of several connected 
components. They all include at least one output, and are 
made up of vertices that represent nodes able to propagate a 
locking value. These connected components can be classified 
in the four different categories depicted in figure 9. 
 

 
(a) 

One source vertex 

 
(b) 

Multiple source vertices 
One output 

 

 
(c) 

Multiple source vertices 
Multiple outputs 

One (or more) source vertex spans 
all the outputs 

 
(d) 

Multiple source vertices 
Multiple outputs 

No vertex spans all the outputs 

 
Fig. 9. Different types of connected components found in the final graph 

A

B
C A B

A

B
C

A

C

B D

G1

G2

G3

G4

G5

G6

G8

G7
G11

G14

G9

G10

G12

G13

G15

G16

G1

G2

G3

G4

G5

G6

G8

G7
G11

G14

G9

G10

G12

G13

G15

G16



 

7 

 
In the first situation, shown in figure 9.a, there is only one 
source vertex. Therefore, since the graph is directed, it 
necessarily spans all the outputs, and can lock them all. It is 
consequently selected as the node to lock. 
The second possibility, shown in figure 9.b, occurs when a 
connected component comprises multiple source vertices but 
only one output. In order to embed the locking node as deeply 
as possible in the netlist, the distance between all source nodes 
and the output is computed. The furthest node from the output 
is selected as the node to lock. 
In the case depicted in figure 9.c, there are multiple source 
vertices too. Some source vertices, however, do not span all 
the outputs. In order to lock as many outputs as possible with 
the smallest number of nodes to be modified, only the nodes 
spanning all the outputs are retained. If many nodes span all 
the outputs, then, as previously, the one furthest from the 
output is selected. 
In the last situation, shown in figure 9.d, multiple source 
vertices span multiple outputs, but none spans them all. The 
way to proceed here is to sort the source vertices according to 
the number of outputs they span. Next, they are greedily 
selected and added to the list of nodes to lock. This process is 
carried out until all the outputs are locked. 
The node selection process is summarized in figure 10. 
 

 
Fig. 10. Flowchart of the node selection process 

Note that the situations described above are sorted according 
to their computational complexity. The last case, which is the 
most computationally expensive, is also by far the least 
frequent. 
One we have a list of nodes to modify, the last step is to add 
the extra locking gates that will be responsible for forcing 
these nodes to a specific value if the wrong key is applied. 

D. Netlist modification 

Now that we know which nodes to act on, the extra logic gates 
must be inserted. They will force these nodes to a specific 
value. The value to which each node must be forced is given 
by L
MNOP. If a node must be forced to 0, then an and gate is 
used. If a node must be forced to 1, than an or gate is used. 
The associated key-bit is the inverse of the controlling value 
of the inserted logic gate. This is shown in figure 11. 
 

 L
MNOP = 0 T = 1 
L
MNOP = 1 T = 0 

 
Fig. 11. Type of gate to insert according to L�MQNRS value 

 
Coming back to the previous example, the nodes to be 
modified are G1 and G13. For G1, L
MNOP = 1 and for G13, L
MNOP = 0. Then the associated unlocking key (T0T;) is 01. 
An or gate is used to force G1 to 1 if the wrong key bit is 
applied, in this case: 1. An and gate is used to force G13 to 0 
if the wrong key bit is applied, in this case: 0. The final, 
lockable netlist is shown in figure 12: 
 

 
 

Fig. 12. Lockable netlist, locking gates are in dark grey. 

The unlocking word is: T0T; = 01 

IV.  IMPLEMENTATION RESULTS 

A. Logic resources overhead 

The logic locking algorithm was implemented in Python, and 
makes use of the igraph module to handle graphs. We 
implemented the locking scheme on ITC’99 combinational 
benchmarks [17]. The netlists are described in VHDL. These 
benchmarks range from 1 k to 225 k gates. They are good 
reference designs. The logic resources overhead is measured 
as the percentage of logic gates that must be added to the 
netlist in order to make it totally lockable. Results are shown 
in figure 13. The average resources overhead is 2.9%. This is 
acceptable, and almost twice less than the one authors 
obtained in [1]. Another interesting feature here is that the 
overhead remains approximately the same despite the increase 
in the number of gates. Protecting large netlists is 
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consequently no more expensive than protecting smaller 
designs. 
 

 
Fig. 13. Logic resources overhead obtained for functional locking 

B. Analysis time 

Taking a step back, a major feature that will ensure the 
protection schemes are widely adopted is usability. It 
describes how easy it is for a designer to protect the IP core 
once it has been designed. In order to increase usability, a key 
point is the amount of time required to make the netlist 
lockable. Since these protection techniques could be integrated 
in EDA tools, the computation time should be reasonable. In 
figure 13, we provide a comparison of the computation time 
required to protect a netlist with both logic locking and logic 
masking methods. These results were obtained by executing 
the Python scripts on an Intel i5-4570 workstation, operating 
at 3.2GHz and embedding 16Gb of RAM. 
 

 
Fig. 14. Time required to analyze and modify the netlist 

 
As can be seen in figure 14, the logic locking based method is 
more than ten thousand times faster than the method based on 
logic masking. For instance, analyzing a 3,500-gate netlist 
requires four and a half hours with the method proposed in [1], 
whereas with the method we propose, it takes less than one 
second. We extended our study to very large netlists of up to 
225 k gates. It turns out that the computation time increases 
quadratically. However, even for very large netlists, the 
computation time is reasonable. For the largest one that 
includes 225 k gates, slightly more than hour is required to 
make it lockable. 
When it comes to the execution time, the main difference 
between the two protection methods is that the method 
proposed in [1] uses fault simulation to locate the nodes to 
modify. It relies on external tools that employ computationally 
heavy methods. Conversely, our protection technique is based 
on graphs, which are an effective way of representing netlists. 
In the context of EDA integration, our method is thus much 
more suitable and computationally more effective. 
 

C. Impact on the critical path delay 

The impact of the locking gates insertion on the critical path is 
minimal. First of all, non-linear logic gates have a lower 
propagation time than xor gates for example. Moreover, the 
sequences that can propagate a locking value might not be on 
the critical path. Thus the critical path will not remain in the 
final graph and no extra gate will be inserted in it. In case the 
critical path can propagate a locking value, it will require at 
most one extra gate to lock it. Thus the impact on the critical 
path delay will be negligible. 

V. EVALUATION  

A. Correlation 

In [1], the authors evaluate the efficiency of their locking 
scheme using the Hamming distance between the output of the 
original device and the output of the device when the wrong 
key is applied on the key inputs (i.e. when logic masking is 
activated). According to these authors, obtaining a 50% 
Hamming distance on average is proof that the protection 
scheme is efficient. However, we have shown in section II that 
even simple circuits can exhibit such a characteristic, and that 
50% Hamming distance is simply one consequence of a zero 
correlation. We consequently use correlation to evaluate the 
efficiency of the protection scheme. The correlation is 
computed using Pearson’s coefficient. The results are shown 
in Table IV. Since the standard deviation is zero when the 
outputs are locked by logic locking, Pearson’s correlation 
coefficient is not defined. It can be considered as zero because 
when the output is locked, it provides no information about the 
normal behavior. Two methods are compared for logic 
masking: random and fault analysis-based node selection. 
Random selection [12] rapidly becomes inefficient with an 
increase in the size of the circuits. Randomly inserting 128 
XOR gates in a 3,612-node netlist only reduces the correlation 
to 0.761. Fault-analysis based logic masking is more efficient, 
and reduces the correlation faster as the key size increases. For 
large netlists, however, it fails to reduce it significantly. For 
example, the correlation only goes from 0.254 to 0.217 when 
the key size increases from 32 to 128 bits on C7552. For larger 
designs such as the ones considered in section IV, the 
performance will probably be even worse. 

TABLE IV 
PEARSON’S CORRELATION COEFFICIENT COMPUTED FOR DIFFERENT NODE 

SELECTION METHODS AND KEY SIZES 

  Logic masking 
Logic 

locking 

Benchmark Key size 
Random 

[12] 

Fault 

analysis [1] 

Graph 

analysis 

c432 

7 outputs 

189 nodes 

32 bits 0.272 0.012 0 

64 bits 0.153 0.019 0 

128 bits 0.026 0.014 0 

c5315 

123 outputs 

2362 nodes 

32 bits 0.902 0.554 0 

64 bits 0.873 0.357 0 

128 bits 0.820 0.277 0 

C7552 

108 outputs 

3612 nodes 

32 bits 0.952 0.254 0 

64 bits 0.920 0.235 0 

128 bits 0.761 0.217 0 
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We can conclude from this observation that correlation should 
not be used to evaluate a protection scheme. It is a 
cryptographic property, which should be only used in the 
appropriate frame. We give more details about security in 
section VII below. Instead of a correlation, we developed a 
metric to evaluate protection schemes based on the insertion of 
extra logic gates, which is presented in the following 
subsection. 

B. Logic locking metric 

The intrinsic feature of a protection scheme based on the 
insertion of extra logic gates is altering the outputs using the 
extra gates. Therefore, two characteristics can be used to 
evaluate how effective these schemes are. The first one is: 
how many inputs are spanned by each extra logic gate? This is 
related to the amount of gates that have to be inserted to 
ensure total functional locking. If one gate locks multiple 
outputs, it is obviously more efficient than if multiple gates are 
required. The locking ratio is defined as follows: 
 U�V�?%W	�JX?� = #�ZX[ZX\#]�V�?%W	WJX^\ 

 
Since the locking gates should be inserted as deeply as 
possible into the netlist, a second metric is: how far is the 
inserted gate from the outputs? The number of logic levels 
between the locking gate and the outputs is consequently also 
computed. The average distance between the inserted gates 
and the outputs is computed as the average number of logic 
levels on the shortest path between the inserted gates and 
every output that is reachable from them. The results we 
obtained when applying our graph-based insertion method for 
logic locking are presented in Table V. 

TABLE V 
EVALUATION OF THE PROPOSED NODE SELECTION TECHNIQUE BY LOCKING 

RATIO AND MEAN DISTANCE TO OUTPUTS 

Benchmark 
#logic 

gates 

Locking  

ratio 

Average distance 

to outputs 

(logic levels) 

c432 160 1.75 1.43 

b10_C 172 1.13 1 

b13_C 289 1.13 1.13 

c880 383 1.63 3.39 

b07_C 383 1.32 1.16 

c1355 546 1.03 2 

b04_C 652 1.02 1.11 

b11_C 726 1.03 1.19 

c1908 880 1.04 1 

b05_C 927 1.82 1.52 

b12_C 944 1.1 1.18 

c2670 1193 1.68 2.38 

c3540 1669 1.1 1.82 

c5315 2307 1.68 2.07 

c6288 2416 1.03 1 

c7552 3512 1.16 1.5 

b14_1_C 6569 1.15 1.48 

b15_C 8367 1.12 1.69 

b14_C 9767 1.16 1.42 

b15_1_C 12543 1.12 2.06 

b21_1_C 13898 1.14 1.33 

b20_1_C 13899 1.14 1.32 

b20_C 19682 1.15 1.36 

b21_C 20027 1.14 1.29 

b22_1_C 20983 1.14 1.35 

b22_C 29162 1.15 1.36 

b17_C 30777 1.11 1.76 

b17_1_C 38116 1.11 1.97 

b18_1_C 105102 1.12 1.74 

b18_C 111241 1.12 1.74 

 Average: 1.22 1.56 

 
We can see that the number of outputs spanned by each 
locking gates is very close to 1. This basically means that, 
mostly, one logic locking gate is responsible for forcing one 
output. This is discussed in the following section. We can also 
see that the number of logic levels between the locking gates 
and the locked outputs is low. This could be a problem if the 
attacker has access to the RTL description of the design. 
Indeed, if the locking gates are located very close to the 
outputs, then the attacker can identify them easily and possibly 
modify the netlist to bypass the locking circuitry. This is why 
the locking gates need to be embedded as deeply as possible in 
the netlist. To this end, dummy logic levels can be inserted 
between the locking gate and the output, thereby achieving 
logic obfuscation as described in section II. For instance, an or 
gate can be replaced by the three gates depicted in figure 15. G 
is the node to be forced and K is the locking/unlocking input. 
Another node is picked randomly and used for the dummy 
logic. As depicted, the output value is either 1 or G, which 
means that locking is successful. Obviously, the increase in 
reverse engineering effort comes at the price of an increased 
area overhead. In order to add one logic level, three gates are 
inserted instead of one. If the designer wants to add a second 
dummy logic level, then the structure will have to be 
duplicated. Then five gates are inserted. The logic resources 
overhead is � ∗ �2% + 1�, where � is the number of locking 
gates to be inserted and % is the number of dummy logic 
levels. In order to limit the overhead, dummy logic levels can 
be used only for the nodes that are too close to the outputs. 
 

 
Fig. 15. OR locking gate replacement with an extra logic level 

VI.  SECURITY ANALYSIS 

A. Threat model 

To evaluate the security of logic locking, we must first 
distinguish the threat model from the actual context. Since we 
are trying to protect IP cores against illegal cloning, we must 
assume that the attacker has access to the original design, and 
can implement it. We make a stronger assumption by not 
limiting the number of implementations. Our aim for logic 
locking is only to make illegal copies non-functional. Thus we 
first assume that the designer has access to the unlocking 
inputs, i.e. the inputs to which the key must be applied to 
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unlock the circuit and to use it. In practical terms, the designer 
is able to write in a specific memory inside the chip, which 
will unlock the circuit if the correct value is provided. 
Moreover, since the designer appears to be legitimate at first 
sight, he also has access to test vectors. 

B. Hill-climbing attack 

Considering the threat model described above, a major 
concern expressed in [18] is the ease of a hill-climbing attack. 
It was described as an attack against the logic masking 
technique presented in [12]. However, it turns out to be 
equally efficient against logic locking. This is due to the tight 
link between the masking/locking inputs and the outputs. The 
attack procedure for logic masking described in [18] is as 
follows. First, pick a random key and apply it on the unlocking 
inputs. Compute the Hamming distance between the actual 
and the expected output, given by the test vectors. Flip the first 
bit of the key. If the Hamming distance increases, then flip this 
bit again and repeat the action for all the bits of the key. 
Otherwise, if the Hamming distance decreases, move on to the 
next bit. The method is similar for logic locking, except that 
instead of using the Hamming distance as the function to 
minimize, the number of locked outputs is used. The main 
concern here is that, since there is a gradient towards the 
correct key in the key space, it can be easily recovered. In 
other words, the Hamming distance between the actual and 
expected output grows linearly with respect to the number of 
wrong key bits when logic masking is applied. Similarly, the 
number of outputs that are locked and the number of wrong 
key bits are correlated. 
This is due to the fact that, as shown in Table V, the ratio of 
the number of inserted gates to the number of outputs is close 
to one. In most cases, one gate is responsible for locking one 
output. This is a serious security concern. In this case, the 
security of the protection system is as low as the greatest 
number of key bits influencing one output. If the key bits and 
the outputs are connected pairwise, then the overall security 
level is 1 bit. In the following section, we discuss 
countermeasures against hill-climbing attacks. 

C. A countermeasure against hill-climbing attack 

In order to avoid hill-climbing attacks, the correlation between 
the unlocking inputs and the outputs has to be reduced. One 
unlocking input should have an impact on multiple outputs, in 
order to hide the internal relation. Similarly, every output 
should be locked by several key inputs. 
One possible countermeasure is to add some redundancy 
between the locking gates and the key inputs. This can be 
achieved by adding inputs to the locking gates. These inputs 
are connected to key inputs that have the same value as the 
first key input of the locking gate. For example, two locking 
gates for which the key bit is 1 can be associated, as depicted 
in figure 16. It follows that in order to obtain the correct 
values for G0mod and G1mod, both K0 and K1 must have the 
correct value. It can be extended to add more key inputs to the 
locking gates, and more redundancy. 
However, this countermeasure is only partially effective. 
Indeed, it only increases the equivalent security level to the 
number of inputs added to the locking gates. Making it secure 

would require the locking gates to have a very large number of 
inputs, which is not feasible. 

 
Fig. 16. Partial countermeasure against hill-climbing attack 

 
When we had another look at the previously described 
characteristic we realized it is very similar to the diffusion 
property of cryptographic functions. This led us to adopt 
another design plan for the protection scheme. Thus the logic 
locking module is only responsible for disturbing the original 
behavior. Security is ensured by using a separate 
cryptographic primitive. The overall architecture is described 
in the following section 

VII.  ARCHITECTURE OF A COMPLETE DESIGN DATA 

PROTECTION SCHEME 

A. Area/locking strength tradeoff 

In order to increase the security of the logic locking scheme, 
multiple locking gates could be inserted to force only one 
internal node. Such a redundant locking strategy strengthens 
the security of the system. Before examining the whole 
protection scheme architecture, let us focus on the 
implementation of the logic locking module. After the graph 
has been built and analyzed, the final graph contains nodes 
that are all able to propagate a locking value. The method 
presented in section III.C to select the best nodes to modify 
selects as few nodes as possible in the connected components 
to ensure total locking, but all the other nodes are also able to 
lock the associated output. Therefore, some extra locking 
gates can be added to increase the locking strength. This is 
presented in figure 17. 
Figure 17-a shows the original netlist and the modified one. In 
the modified version, only one gate is inserted for minimal 
overhead. The locking strength is low, wince the locking value 
is set by one gate only. 
In figure 17-b, the locking value is set by three gates. 
Therefore, all three gates should be unlocked to unlock the 
associated output. Thus the locking strength is higher, but so is 
the area overhead. 
 

 

(a) Original netlist and modified netlist with only one locking gate. 

 

 

(a) Modified netlist with three gates forcing the locking value. 

Fig. 17. Insertion of one or multiple locking gates to lock an output 
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If the locking signal is carried by only one wire, it could be 
subject to side channel attacks such as optical injection [19] 
and its logic value can be flipped. In fact all the nodes found 
in the connected components of the final graph can be 
modified to increase the locking strength. This comes at the 
cost of increased logic resources overhead. This design trade-
off is illustrated in figure 18, where the logic resources related 
to minimum overhead and maximum locking strength are 
given for all ISCAS’85 benchmarks.  
For b15_C for instance, the minimum overhead to achieve 
total functional locking is 4.52%. However, up to 29% extra 
resources can be added to further strengthen logic locking. 
The designer can decide on the acceptable resources overhead 
and increase the associated locking strength accordingly.  

 
Fig. 18. Trade-off between locking strength and resources overhead 

 

B. On the need for a cryptographic primitive 

In [1], the authors claim to achieve security by reaching 50% 
Hamming distance between the original and masked outputs. 
Since in this case, security is not based on a cryptographic 
primitive, it is easily broken and [18] showed how it was 
possible to recover the key using a basic hill-climbing attack. 
Only the system integrators allowed by the designer to unlock 
the IP core should be able to do so. If provable security is 
necessary, there is no other way than using a cryptographic 
primitive to obtain it. Another advantage is that such 
primitives, if chosen carefully, have been subject to a variety 
of attacks. Therefore, their security has been tested. The 
designer can then pick a strong cryptographic primitive that 
has successfully resisted multiple attacks, and implement it 
carefully. This will provide him/her with provable security of 
access to the normal behavior of the IP core. For that reason, 
using a cryptographic primitive is necessary. 

C. Architecture 

Owing to such considerations, we are now able to define the 
general architecture of the design protection scheme. It is 
composed of three main blocks, shown in figure 19. 
The first block is the cryptographic primitive, which ensures 
secure access and avoids simple attacks. Using a lightweight, 
hardware-oriented algorithm is a good option here to limit the 
area overhead. 
The second block is a unique identifier, which is necessary in 
the case of IP distribution to uniquely identify all the instances 
of a particular design. It allows the designer to have a database 
containing all the IP core instances and their associated key. 
This identifier could also be used to derive the unlocking key. 
In this way, it helps fulfill the following requirement: owning 
the key for one instance of the design should not help in 

unlocking another instance. One possible implementation of a 
unique identifier is a PUF [20]. It could also be achieved in the 
form of a secret word stored in non-volatile memory. 
PUFs have already been used in previous works, known as 
metering [21]. However, those works make the assumption 
that PUF responses are perfectly stable, and use the PUF 
response directly to mask internal nodes. Unfortunately, 
several experimental studies show that it is hard to obtain 
perfectly stable PUF responses which could be used as a key 
directly without an expensive error correction. Conversely, we 
take the instability of PUF responses into account and use the 
PUF for identification only. 
The final block is the locking module. Its role is to make the 
circuit unusable if the wrong key is sent to the cryptographic 
primitive. 
 

 
 

Fig. 19. Architecture of the proposed design protection module 

VIII.   CONCLUSION 

In the first part of this paper, we provided precise definitions 
of design protection schemes involving modifications of the 
logic. This is necessary when developing new protection 
schemes, since all have several pros and cons. Next, we 
proposed a new method to select the nodes to be modified for 
logic locking. Based on graph analysis, this method was 
shown to be effective, in terms of both induced area overhead 
and computational complexity. A comparison with state-of-
the-art fault analysis-based logic masking techniques was then 
performed to emphasize these advantages. The last two 
sections provided insight into the security level of both 
protection schemes. We highlighted the fact that existing 
logic-based protection techniques cannot be considered as 
secure since they are subject to very simple attacks. Finally, 
we proposed an overall architecture for a robust complete 
protection scheme, embedding a locking module to disable the 
functionality, a cryptographic primitive to provide provable 
security and a unique identifier that allows precise metering. 
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