

1

Abstract — Design and reuse has become a very common practice
in the electronics design industry. IP cores are easily sold by
designers to system integrators. However, several cases of
counterfeiting and illegal copying have been reported and design
protection techniques have been developed in response. Among
these techniques, we focus on modifications at logic level aimed at
active design protection. This is the first paper to provide a
formal description and definition of the following techniques
used to protect integrated circuits and IP cores against theft,
counterfeiting, cloning and illegal copy: logic encryption, logic
obfuscation, logic masking, and logic locking. In the second part
of the paper, we present a new technique to insert gates in the
data path of a logic circuit in order to lock it. Based on graph
analysis, this method involves low overhead implementation and
is more than ten thousand times faster than former fault analysis-
based logic masking techniques when it comes to selecting the
nodes to modify. Finally, we discuss the design requirements of a
strong design protection scheme.

Index Terms—Intellectual property protection, logic
encryption, logic obfuscation, logic functional locking.

I. INTRODUCTION

ROTECTION of the intellectual property of IP core designers
is a hot topic and remains an open question. Because of
the ever increasing complexity of electronic systems, full

in-house design is no longer the norm. IP core designers
provide system integrators with a wide IP portfolio in which
they can select the functional block best suited to their needs.
EDA companies offer IP cores that are accessible directly
from their design software. Online marketplaces are
expanding, and system integrators can use them to compare a
whole range of different IP cores, and choose the most
appropriate for their system. This paradigm helps reduce time-
to-market because the IP cores have been thoroughly tested,
are “silicon-proven” and can be integrated all together in a
more complex system. From the integrator’s point of view,
this is a great help. The IP core designer, however, is faced
with a problem: since the IP core is made available as a data
file, how can the designer control how many times the IP core
is actually instantiated? To cut a long story short, how can
overusing be prevented? In addition, another problem is
counterfeiting, which is not specific to IP cores, but also

occurs with standard integrated circuits. Illegal copying,
cloning and theft are long known threats to design data.
Logic protection schemes have been developed to counter
these risks. They can be classified as passive and active
protection schemes. Passive protection detects but does not
prevent an illegal action, whereas active protection techniques
make the illegal action much harder to carry out or even
pointless. Both types of protection schemes can act at different
design levels. Here, we focus on logic protection schemes.
They consist in modifying the RTL description of the design,
and adding extra elements to protect it. However, there is
currently a lack of formal classification of logic protection
schemes.
Once a protection scheme is selected by the designer, the
second point to be addressed is the method used to select
which parts of the design should be modified. Here we
propose a new method, based on graph analysis, to select the
nodes of a netlist to modify to achieve logic locking. We
compare our method with the state-of-the-art selection
technique used for logic masking proposed in [1], which uses
fault-analysis techniques.
The remainder of this article is organized as follows. In
section II, we provide a formal framework for logic protection
schemes by defining logic encryption, logic obfuscation, logic
masking and logic locking and give examples of techniques for
each. In section III, we present a new graph-based algorithm
that selects the optimal nodes to be modified to achieve logic
locking of a combinational netlist. In section IV, we present
the results of implementation, specifically the logic resources
overhead and analysis time. In section V, we evaluate the
proposed method and develop associated metrics. In section
VI we describe a threat model and perform a security analysis
of the protection schemes considered. In section VII, we
discuss design considerations. In particular, we emphasize the
need to introduce a cryptographic primitive to ensure security,
and to not rely on the logic/masking module to fulfill this
objective.

II. A FORMAL FOUNDATION FOR LOGIC PROTECTION

SCHEMES

An increasing number of works are trying to find a way to
protect the intellectual property of IP designers and fabless IC
designers by acting on logic. Unfortunately, most of these
works make incorrect use of the terminology, i.e., logic

From Secured Logic to IP Protection

Brice Colombier*, Lilian Bossuet, David Hély

Laboratoire Hubert Curien, University of Lyon, 42000, Saint-Etienne, France
LCIS Grenoble Institute of Technology, 26000, Valence, France

*corresponding author contact: b.colombier@univ-st-etienne.fr +334 77 91 57 92

P

2

encryption, logic obfuscation, logic masking and logic locking
are used without a formal definition. This paper takes the
opportunity to propose a formal foundation for logic
protection schemes. In this section, we provide formal
descriptions and definitions of the logic protection schemes in
order to strictly evaluate their different contributions to the
literature.

In all the following sub-sections, the original (not protected)
n-input, l-output logic function is formalized by a Boolean

function	��0, 1�� → �0, 1�
.
A. Logic encryption

The term “logic encryption” is used when a specific
symmetric encryption function ξf of GF(2l) is applied to f.
Formally, it’s not logic encryption. The term is not specific.
Encryption of the Boolean function f is the correct expression.
The result of this encryption is the Boolean

function	�′�0, 1�� → �0, 1�
. �′ is given by the following
expression, where k is the secret key:

�� = ����, ��
ξf is a symmetric encryption function if and only if an

inverse function ψf exists that uses the same secret key k for
decryption, and is defined as follows:

������ = �������, ��, �� = � (1)

Functions ξf and ψf must meet the following requirements:

∀��� , ��� ∈ ��0, 1��, �0, 1���, �� ≠ �� 			
 ����, ��� ≠ 	 ����, ��� (2)

�������, ���, ��� ≠ 	 �����, ���, ��� (3)

Functions ξf and ψf also have to satisfy the following
requirements, where Corr is the function that computes
Pearson’s correlation coefficient:

∀	� ∈ �0, 1��											���������, ��, �� ≅ 0 (4)

∀	� ∈ �0, 1��			���� �������, ��, ��, ����, ��! ≅ 0 (5)

One of the consequences of the last expression is that the
mean of the Hamming distance between the input and the
output of the encryption/decryption functions is close to 50%
(ideally exactly 50%) as described by the following
expressions when the mean of the Hamming distance is
computed for all the inputs of the Boolean function f:

∀	� ∈ �0, 1�� 									∑#$������0,1�%,��,��0,1�%�2%−1 ≅ 50% (6)

∀	� ∈ �0, 1�� 				∑#$*+, -,���0,1�%,��!,-,���0,1�%,��.2%−1 ≅ 50% (7)

Some works [1,2,3] consider this last property as proof of
security. This is a mistake, since it is possible to obtain the
same result with a function that does not achieve encryption.
For instance, inverting the first n/2 bits of the output of f leads
to a 50% Hamming distance. Similarly, inverting every input

of odd order leads to the same result. In both cases, the mean
of the Hamming distance as described in (6) is equal to 50%
but the correlation defined in (4) is not zero. These works are
presented as “logic encryption”, even though this is absolutely
not the case. The authors of these works defined “logic
encryption” as: “logic encryption hides the functionality and
the implementation of a design by inserting some additional
gates called key-gates into original design” [2]. With this
definition, logic encryption does not respect the expressions
(1) to (7). Consequently, we claim that all works presented as
“logic encryption” are inaccurate because in fact, they only
propose to mask the logic functionality. The security level of
such masking functions is very low compared with proper
encryption.

A didactic example of true “logic encryption” is given by
considering the following 3-input Boolean function �	�0, 1�/ → �0, 1�0:

��1, 2, �� = 1 ⋅ 2 ⋅ �

Figure 1 is a schematic diagram of the encrypted logic
circuit. This includes the original logic circuit that computes
the Boolean function f, the encryption function ξf that
computes the encrypted Boolean function f’ using an
embedded secret key k, and the decryption function ψf that
outputs the correct result of the Boolean function f if and only
if the correct key k is applied on the external key input.

Fig. 1. Example of logic encryption

This didactic example shows that the area overhead of true
logic encryption is always prohibitive since it requires the
implementation of encryption and decryption functions. Note
that the security level of such a protection depends on the key
size. Now, an efficient symmetric encryption has to use at
least a 128-bit key. All protection schemes that include a
secret key that has only a few bits (3, 5, 10 etc.) fail to provide
the designer with any security because of the feasibility of a
brute force attack.

B. Logic obfuscation

Logic obfuscation comes from the field of computer science
in which developers wish to protect source codes against
unauthorized reading and understanding. The following
definition of code obfuscation is proposed by Hachez [4]:
“Transform a program P into another program P’ harder to
reverse engineer with the same observable behavior. If P fails
to terminate or terminates with an error, then P’ fails to
terminate or terminates with an error. Otherwise, P’ must
terminate and produce the same output as P”. Hardware
obfuscation consists in applying this definition to the hardware

3

field, by changing the logic, FSM, or other part of a design
without changing the system behavior.

When the logic part of a circuit is obfuscated, a design
modification 4f is applied to f. The result of this design

modification is the Boolean function	�′′�0, 1�� → �0, 1�
. The
function 4 f must meet the following requirement for any input 5 ∈ �0, 1�
	:

4���� = ���
∀5 ∈ �0, 1�																	�′′�5� = ��5� (8)

Some works present logic obfuscation but do not fulfill the

requirement (8) [5,6]. Most of these works use a secret key
that changes the behavior of the original logic function.
Although authors refer it as “functional obfuscation”, these
works are typical cases of logic masking.

It is possible to try to perform obfuscation at the logic-gate
level but this usually implies a large overhead. Indeed,
obfuscation techniques aim to increase reverse-engineering
time. The time is at least linear with the area [7]. Increasing
the area increases the time needed for reverse engineering. As
a consequence, the main design modification rule for
obfuscation is to not follow the usual design rules for efficient
implementation of a Boolean function. Usually, laws and
theorems of Boolean logic are applied to Boolean functions in
order to reduce the number of gates (i.e. the area) of the final
hardware implementation. To obfuscate an implementation of
a Boolean function, these laws and theorems are followed in
the opposite way, i.e. they increase the size of the hardware
implementation.

Two strategies are used in the first step of obfuscation:
develop and obscure. To develop a Boolean function, the
designer can use the canonical disjunctive normal form (also
called minterm canonical form) in which the Boolean function
is represented and implemented as a sum of minterms.

As an example, let us consider the following 3-input

Boolean function �	�0, 1�/ → �0, 1�0:

��1, 2, �� = 1 ⋅ 2 ⋅ �

The obfuscation strategy we use here is for didactic purpose
only. We only give a simple example in order to demonstrate
the proportional increase of reverse-engineering time and area
overhead.

This Boolean function could be developed using the
following canonical disjunctive normal form (first obfuscation
step).

�′′�1, 2, �� = 1 ⋅ 2 ⋅ � 	+	1 ⋅ 2 ⋅ � +	1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ �+ 1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ � + 1 ⋅ 2 ⋅ �

f and f’’ follow requirement (8). Figures 2-a and 2-b show
the logic schematics of the two functions with only 2-input
AND and OR gates and invertors (other types of gates could
also be used).

In order to obscure a Boolean function, the designer can
apply to f’’ some of the Boolean logic laws (absorption,

complementary, common identities, etc.) and DeMorgan’s
theorem to increase the number of gates used in the hardware

Fig. 2. Logic circuits to implement Boolean functions f (a), f ’’ after one step
of obfuscation (b) and f ’’ after two steps of obfuscation (c).

implementation. For example, by also using some redundant
logic operations, f’’ is described by the following Boolean
expression:

4

����1, 2, �� = 1 ⋅ 2 + 1 ⋅ 2 +	1 ⋅ 2 + 27 ⋅ �̅ + 1̅ ⋅ �̅ + 1 ⋅ �+ 27 ⋅ � + 1̅ ⋅ � + 2 ⋅ � + 1̅ + 27 + �+ 1 ⋅ 2	7777777 + 1⊕ � + 1⊕ 2 + 1 ⋅ �̅777777 + 2 ⋅ �̅777777

Again, f and f’’ meet requirement (5). Figure 1-c shows the
logic schematic of f’’ after this second step of obfuscation.
The designer can also insert dummy logic to further increase
the reverse engineering effort.

Table I shows the logic resources required for each logic
circuit in figure 2. For each circuit, the number of gates is
shown for each type (inverter, 2-input AND gate, 2-input OR
gate and 2-input XOR gate), along with the gate equivalent
metric. The area overhead is given for the two hardware
implementations of f’’ . As mentioned above, the increase in
reverse-engineering time for each obfuscated logic circuit (in
comparison with the original logic circuit) is supposed to be
equal to the area overhead. For example, the time required to
reverse engineer circuit 2-c is 14.58 times greater than the
time required to reverse engineer the original circuit.

TABLE I
LOGIC RESOURCE REQUIREMENTS AND TIMING OVERHEAD FOR REVERSE

ENGINEERING OF THE CIRCUITS DESCRIBED IN FIGURE 1

Boolean

function

Logic

circuit

Logic gate requirement

Gate

Equivalent

Area /

Reverse

engineering

time

overhead

INV AND OR XOR

f 1-a 1 2 4.01 -

f’ after the first

step of

obfuscation

1-b 3 14 6 35.41 + 883 %

f’ after the

second step of

obfuscation

1-c 6 12 17 2 58.47 + 1 458 %

Due to the high area overhead, such logic obfuscation is not
suitable for most applications. Moreover, the hardware design
of the obfuscated circuit has to be performed by hand to avoid
logic optimization by the synthesis tool. It is possible to mix a
light logic obfuscation with obfuscation at another level.
Indeed, hardware obfuscation is also possible at the level of
HDL [8,9] and at the level of the layout [10,11].

 The above description of logic encryption and logic
obfuscation allows us to affirm that none of the published
works that present “logic encryption” or “logic obfuscation”
meet the formal requirements of these two techniques. Most of
these works in fact describe “logic masking” or “logic
locking”. In the remainder of this section we present logic
masking and logic locking techniques.

C. Logic masking

Logic masking consists in inserting xor or xnor gates in the
data path of the logic circuit of a Boolean function in order to
change the logic behavior of the circuit if the wrong masking
key is applied. It was first proposed in [12]. Let us consider

that a Boolean function ��0, 1�� → �0, 1�
 could be
represented as a set of i Boolean sub-functions {f 0, f 1, …, f i-1}.
Logic masking of the Boolean function f by using the i-bit

masking key k={k0, k1, …, ki-1} is described by the following

expression, where f’’’ is a Boolean function �0, 1�� → �0, 1�

and ⊖ is the xor or xnor Boolean operator:

���′ = ��; ⊖; �;, �0 ⊖0 �0, … , ��=0 ⊖�=0 ��=0�
∀> ∈ �0, ? − 1�	@ ?�	∮� ≡ 5�� ⟹ �� = 1 ⇒ ��∮ �� = ��?�	∮� ≡ %5�� ⟹ �� = 0 ⇒ ��∮ �� = �� (9)

The correct masking key k is found by using the laws in (9),
and considering the type of inserted gate.

As a didactic example, let us consider the following 3-input

Boolean function �	�0, 1�/ → �0, 1�0:

��1, 2, �� = 1 ⋅ 2 ⋅ �

This Boolean function could also be described by the
following expression:

E��1, 2, �� = �0��;�1, 2�, ���;�F, G� = F ⋅ G�0�F, G� = F ⋅ G777777

A didactic example of logic masking of the Boolean
function f is given in figure 3, where ⊖; is an xnor gate and ⊖0 is a xor gate. According to the laws in (9), we can
determine the correct masking k={0,1} needed to obtain the
original logic behaviour. In figure 3, additional masking gates
are in grey.

Fig. 3. Example of logic masking

Efficient insertion of the masking scheme has to be
achieved without reducing performance (mainly by limiting
the insertion of gates on the critical path) or increasing area
overhead (by limiting the number of additional gates without
using too few bits for the masking key k). For example, works
presented in [13] and [1] propose to use heuristics to reduce
overhead.

D. Logic locking

Logic locking allows the designer to insert or or and gates
in the data path of the logic circuit of a Boolean function in
order to lock the output to a fixed logic level (0 or 1) if the
wrong unlocking key is applied. Let us consider that a

Boolean function ��0, 1�� → �0, 1�
 can be represented as a
set of i Boolean sub-functions {f 0, f 1,…, f i-1}. Logic locking of
the Boolean function f by using the i-bit unlocking key k = {k0,
k1, …, ki-1} is described by the following expression when f’’’’

is a Boolean function �0, 1�� → �0, 1�
 and ⊙ is the and or or
Boolean operator:

���′′ = ��; ⊙; �;, �0 ⊙0 �0, … , ��=0 ⊙�=0 ��=0�
∀> ∈ �0, ? − 1� I?�	 ⊙�≡ J%K ⟹ �� = 1 ⇒ �� ⊙�� = ��?�	 ⊙�≡ �� ⟹ �� = 0 ⇒ �� ⊙�� = �� (10)

5

The correct unlocking key k is found by using the laws in
(10), depending on the type of inserted gate.

As a didactic example, let us consider the following 3-input

Boolean function �	�0, 1�/ → �0, 1�0:

��1, 2, �� = 1 ⋅ 2 ⋅ �

This Boolean function could be expressed by the following
expression:

E��1, 2, �� = �0��;�1, 2�, ���;�F, G� = F ⋅ G�0�F, G� = F ⋅ G777777

A didactic example of logic locking of the Boolean f is
given in figure 4 where ⊙; is an and gate. In this very simple
example, only one gate is used to lock the logic behavior of
the circuit. By following the laws in (10), we can determine
the correct masking k=1 to obtain the correct behavior. In
figure 4, the additional locking gate is in grey.

Fig. 4. Example of logic locking

Like for logic masking, the insertion of the locking gates
has to be achieved without reducing performance and
increasing area overhead. In the following section, we present
a new method based on graph analysis of an RTL netlist,
which achieves efficient and secure logic locking.

Like in logic obfuscation and masking, it is possible to lock
a circuit by acting on parts/levels other than the logic level.
For example, recent works propose to lock the finite-state-
machine [14,15] or the input/output ports [16].

III. PROPOSED GRAPH ANALYSIS-BASED LOGIC LOCKING

SCHEME

As mentioned in section II-d), what we propose here is a new
technique to select the nodes to include in the logic locking
process. Indeed, since logic locking requires the insertion of
extra logic gates, it is necessary to find the optimal spots in the
combinational netlist on which these extra gates should be
inserted. According to the previously proposed definition,
logic locking can be the propagation of a fixed logic value
from an internal node to one or several output(s). To achieve
this, we need to identify sequences of gates that could
propagate such a logic value. To this end, we represent the
netlist as a graph. This representation is a convenient way of
analyzing relations between logic gates and finding the
optimal paths in a netlist that could propagate the logic
locking value.

A. Implementation of logic locking

Before building the graph, we must identify the characteristics
leading to the propagation of a locking value in a sequence of
logic gates. First, it is worth noting that a specific controlling
value exists for non-linear logic gates. If this controlling value
is applied to one of the logic gate’s inputs, then the output is
forced to a fixed, known value. For instance, setting one of the
inputs of an and gate to 0 will set the output to 0. Table II

summarizes the controlling values for the four 2-input non-
linear logic gates.

TABLE II
CONTROLLING VALUE AND THE ASSOCIATED OUTPUT VALUE FOR ALL 2-INPUT

NON-LINEAR LOGIC GATES

Logic

gate

Controlling

value

Output value1

AND 0 0

NAND 0 1

OR 1 1

NOR 1 0

1when the controlling value is applied to one of the inputs

Next, for every node in the netlist, we define two values: L
MNOP and L�MQNRS . L
MNOP is the controlling value of the gate
that comes after this node. For instance, if a node is the input
of an or gate, then L
MNOP = 1. L�MQNRS is the value to which the
node will be forced. For instance, if a node is the output of an
or gate, then L�MQNRS = 1. It should be noted that, sometimes, L
MNOP = �0, 1�, if the node has a fan-out higher than one and
spans gates with different controlling values.
A node is useful for logic locking if it is forced to the
controlling value of the following gate. Therefore, for
sequences of nodes that can propagate a locking value, all the
nodes meet the following criterion:

Criterion 1 : L�MQNRS ∈ L
MNOP

If criterion 1 is verified for all the nodes in a sequence of
nodes, then this sequence is able to propagate a locking value.
In this case, forcing the first node to its controlling value will
set all the nodes in the sequence at a fixed logic value. This is
illustrated in figure 5. Here, forcing one of the inputs of the
first or gate to a 1 logic value forces the output of the and gate
on the right to 0.

Fig. 5. Propagation of a locking value in a sequence of logic gates

With this in mind, one can see how an output can easily be
forced to a fixed logic value. By inserting logic gates at
specific locations in the netlist, the designer will be able to
force the outputs to a fixed value by controlling the value of
specific internal nodes. The aim here is to select the most
appropriate nodes, namely those at the beginning of sequences
of gates like the one presented in figure 6. To achieve this aim,
graph exploration techniques are used, and are presented in the
following sections.

B. Graph building

The original design file is an RTL description of the
combinational netlist. The first step is to convert it into a
directed acyclic graph. We chose to represent the netlist’s
nodes as vertices and the Boolean functions as edges. An
example of conversion from logic gates to graph elements is
shown in figure 6.

1
1 0

0
0

6

Fig. 6. Conversion from logic gates to graph elements

This is repeated for all logic gates of the netlist. A toy example
of a netlist converted into a graph is shown in figure 7:

Fig. 7. Conversion from netlist to graph

In order to identify which nodes satisfy criterion 1, L
MNOP and L�MQNRS are computed for all the nodes in the netlist (i.e. all the
vertices in the graph). This is done as follows: outgoing edges
are used to compute L
MNOP, while incoming edges are used to
compute L�MQNRS . By convention, for the sake of the following
computations, L
MNOP is set to �0, 1� for the outputs. Table III
shows L
MNOP and L�MQNRS values computed for all the vertices
of the graph shown in figure 7.

TABLE III L
MNOP AND L�MQNRS VALUES FOR ALL THE NODES OF THE NETLIST SHOWN IN

FIGURE 7

Node L�MQNRS L
MNOP Node L�MQNRS L
MNOP
G1 - 1 G9 1 0

G2 - 1 G10 0 0

G3 - 0 G11 1 1

G4 - 0 G12 1 0

G5 - 0 G13 - 0

G6 - 0 G14 0 0

G7 1 1 G15 1 {0, 1}

G8 - 1 G16 0 {0, 1}

The next step is to identify which nodes cannot propagate the
locking value. This means they do not fulfill criterion 1. If a
node does not meet this criterion, its incoming edges are
deleted. Thus in the previous example, incoming edges are
deleted for G9 and G12.
What is obtained at this stage is a highly disconnected graph,
because the vast majority of vertices do not fulfill criterion 1.

Since we want to achieve logic locking, connected
components that do not contain any output must be removed
from the graph. After applying this method to the graph in the
previous example, we obtain the one shown in figure 8. The
original netlist is disregarded, and a path that can propagate a
locking value is highlighted.

Fig. 8. Final graph and the original netlist showing a path that can propagate a
locking value

The final graph obtained at this stage comprises nodes that can
all propagate a locking value to the output if they are forced to
a specific logic value. Some of them, however, are better
candidates, because they span a larger number of outputs or
are more deeply integrated in the netlist. The selection
algorithm we used to identify the best nodes to act on is
described in the following section.

C. Graph analysis for selection of optimal locking nodes

At this stage, the graph is composed of several connected
components. They all include at least one output, and are
made up of vertices that represent nodes able to propagate a
locking value. These connected components can be classified
in the four different categories depicted in figure 9.

(a)

One source vertex

(b)

Multiple source vertices
One output

(c)

Multiple source vertices
Multiple outputs

One (or more) source vertex spans
all the outputs

(d)

Multiple source vertices
Multiple outputs

No vertex spans all the outputs

Fig. 9. Different types of connected components found in the final graph

A

B
C A B

A

B
C

A

C

B D

G1

G2

G3

G4

G5

G6

G8

G7
G11

G14

G9

G10

G12

G13

G15

G16

G1

G2

G3

G4

G5

G6

G8

G7
G11

G14

G9

G10

G12

G13

G15

G16

7

In the first situation, shown in figure 9.a, there is only one
source vertex. Therefore, since the graph is directed, it
necessarily spans all the outputs, and can lock them all. It is
consequently selected as the node to lock.
The second possibility, shown in figure 9.b, occurs when a
connected component comprises multiple source vertices but
only one output. In order to embed the locking node as deeply
as possible in the netlist, the distance between all source nodes
and the output is computed. The furthest node from the output
is selected as the node to lock.
In the case depicted in figure 9.c, there are multiple source
vertices too. Some source vertices, however, do not span all
the outputs. In order to lock as many outputs as possible with
the smallest number of nodes to be modified, only the nodes
spanning all the outputs are retained. If many nodes span all
the outputs, then, as previously, the one furthest from the
output is selected.
In the last situation, shown in figure 9.d, multiple source
vertices span multiple outputs, but none spans them all. The
way to proceed here is to sort the source vertices according to
the number of outputs they span. Next, they are greedily
selected and added to the list of nodes to lock. This process is
carried out until all the outputs are locked.
The node selection process is summarized in figure 10.

Fig. 10. Flowchart of the node selection process

Note that the situations described above are sorted according
to their computational complexity. The last case, which is the
most computationally expensive, is also by far the least
frequent.
One we have a list of nodes to modify, the last step is to add
the extra locking gates that will be responsible for forcing
these nodes to a specific value if the wrong key is applied.

D. Netlist modification

Now that we know which nodes to act on, the extra logic gates
must be inserted. They will force these nodes to a specific
value. The value to which each node must be forced is given
by L
MNOP. If a node must be forced to 0, then an and gate is
used. If a node must be forced to 1, than an or gate is used.
The associated key-bit is the inverse of the controlling value
of the inserted logic gate. This is shown in figure 11.

 L
MNOP = 0 T = 1
L
MNOP = 1 T = 0

Fig. 11. Type of gate to insert according to L�MQNRS value

Coming back to the previous example, the nodes to be
modified are G1 and G13. For G1, L
MNOP = 1 and for G13, L
MNOP = 0. Then the associated unlocking key (T0T;) is 01.
An or gate is used to force G1 to 1 if the wrong key bit is
applied, in this case: 1. An and gate is used to force G13 to 0
if the wrong key bit is applied, in this case: 0. The final,
lockable netlist is shown in figure 12:

Fig. 12. Lockable netlist, locking gates are in dark grey.

The unlocking word is: T0T; = 01

IV. IMPLEMENTATION RESULTS

A. Logic resources overhead

The logic locking algorithm was implemented in Python, and
makes use of the igraph module to handle graphs. We
implemented the locking scheme on ITC’99 combinational
benchmarks [17]. The netlists are described in VHDL. These
benchmarks range from 1 k to 225 k gates. They are good
reference designs. The logic resources overhead is measured
as the percentage of logic gates that must be added to the
netlist in order to make it totally lockable. Results are shown
in figure 13. The average resources overhead is 2.9%. This is
acceptable, and almost twice less than the one authors
obtained in [1]. Another interesting feature here is that the
overhead remains approximately the same despite the increase
in the number of gates. Protecting large netlists is

G

K
Gmod

G

K
Gmod

G1mod

G2

G3

G4

G5

G6

G8

G7
G11

G14

G9

G10

G12

G13mod

G15

G16

K0

G13

G1

K1

8

consequently no more expensive than protecting smaller
designs.

Fig. 13. Logic resources overhead obtained for functional locking

B. Analysis time

Taking a step back, a major feature that will ensure the
protection schemes are widely adopted is usability. It
describes how easy it is for a designer to protect the IP core
once it has been designed. In order to increase usability, a key
point is the amount of time required to make the netlist
lockable. Since these protection techniques could be integrated
in EDA tools, the computation time should be reasonable. In
figure 13, we provide a comparison of the computation time
required to protect a netlist with both logic locking and logic
masking methods. These results were obtained by executing
the Python scripts on an Intel i5-4570 workstation, operating
at 3.2GHz and embedding 16Gb of RAM.

Fig. 14. Time required to analyze and modify the netlist

As can be seen in figure 14, the logic locking based method is
more than ten thousand times faster than the method based on
logic masking. For instance, analyzing a 3,500-gate netlist
requires four and a half hours with the method proposed in [1],
whereas with the method we propose, it takes less than one
second. We extended our study to very large netlists of up to
225 k gates. It turns out that the computation time increases
quadratically. However, even for very large netlists, the
computation time is reasonable. For the largest one that
includes 225 k gates, slightly more than hour is required to
make it lockable.
When it comes to the execution time, the main difference
between the two protection methods is that the method
proposed in [1] uses fault simulation to locate the nodes to
modify. It relies on external tools that employ computationally
heavy methods. Conversely, our protection technique is based
on graphs, which are an effective way of representing netlists.
In the context of EDA integration, our method is thus much
more suitable and computationally more effective.

C. Impact on the critical path delay

The impact of the locking gates insertion on the critical path is
minimal. First of all, non-linear logic gates have a lower
propagation time than xor gates for example. Moreover, the
sequences that can propagate a locking value might not be on
the critical path. Thus the critical path will not remain in the
final graph and no extra gate will be inserted in it. In case the
critical path can propagate a locking value, it will require at
most one extra gate to lock it. Thus the impact on the critical
path delay will be negligible.

V. EVALUATION

A. Correlation

In [1], the authors evaluate the efficiency of their locking
scheme using the Hamming distance between the output of the
original device and the output of the device when the wrong
key is applied on the key inputs (i.e. when logic masking is
activated). According to these authors, obtaining a 50%
Hamming distance on average is proof that the protection
scheme is efficient. However, we have shown in section II that
even simple circuits can exhibit such a characteristic, and that
50% Hamming distance is simply one consequence of a zero
correlation. We consequently use correlation to evaluate the
efficiency of the protection scheme. The correlation is
computed using Pearson’s coefficient. The results are shown
in Table IV. Since the standard deviation is zero when the
outputs are locked by logic locking, Pearson’s correlation
coefficient is not defined. It can be considered as zero because
when the output is locked, it provides no information about the
normal behavior. Two methods are compared for logic
masking: random and fault analysis-based node selection.
Random selection [12] rapidly becomes inefficient with an
increase in the size of the circuits. Randomly inserting 128
XOR gates in a 3,612-node netlist only reduces the correlation
to 0.761. Fault-analysis based logic masking is more efficient,
and reduces the correlation faster as the key size increases. For
large netlists, however, it fails to reduce it significantly. For
example, the correlation only goes from 0.254 to 0.217 when
the key size increases from 32 to 128 bits on C7552. For larger
designs such as the ones considered in section IV, the
performance will probably be even worse.

TABLE IV
PEARSON’S CORRELATION COEFFICIENT COMPUTED FOR DIFFERENT NODE

SELECTION METHODS AND KEY SIZES

 Logic masking
Logic

locking

Benchmark Key size
Random

[12]

Fault

analysis [1]

Graph

analysis

c432

7 outputs

189 nodes

32 bits 0.272 0.012 0

64 bits 0.153 0.019 0

128 bits 0.026 0.014 0

c5315

123 outputs

2362 nodes

32 bits 0.902 0.554 0

64 bits 0.873 0.357 0

128 bits 0.820 0.277 0

C7552

108 outputs

3612 nodes

32 bits 0.952 0.254 0

64 bits 0.920 0.235 0

128 bits 0.761 0.217 0

9

We can conclude from this observation that correlation should
not be used to evaluate a protection scheme. It is a
cryptographic property, which should be only used in the
appropriate frame. We give more details about security in
section VII below. Instead of a correlation, we developed a
metric to evaluate protection schemes based on the insertion of
extra logic gates, which is presented in the following
subsection.

B. Logic locking metric

The intrinsic feature of a protection scheme based on the
insertion of extra logic gates is altering the outputs using the
extra gates. Therefore, two characteristics can be used to
evaluate how effective these schemes are. The first one is:
how many inputs are spanned by each extra logic gate? This is
related to the amount of gates that have to be inserted to
ensure total functional locking. If one gate locks multiple
outputs, it is obviously more efficient than if multiple gates are
required. The locking ratio is defined as follows:
 U�V�?%W	�JX?� = #�ZX[ZX\#]�V�?%W	WJX^\

Since the locking gates should be inserted as deeply as
possible into the netlist, a second metric is: how far is the
inserted gate from the outputs? The number of logic levels
between the locking gate and the outputs is consequently also
computed. The average distance between the inserted gates
and the outputs is computed as the average number of logic
levels on the shortest path between the inserted gates and
every output that is reachable from them. The results we
obtained when applying our graph-based insertion method for
logic locking are presented in Table V.

TABLE V
EVALUATION OF THE PROPOSED NODE SELECTION TECHNIQUE BY LOCKING

RATIO AND MEAN DISTANCE TO OUTPUTS

Benchmark
#logic

gates

Locking

ratio

Average distance

to outputs

(logic levels)

c432 160 1.75 1.43

b10_C 172 1.13 1

b13_C 289 1.13 1.13

c880 383 1.63 3.39

b07_C 383 1.32 1.16

c1355 546 1.03 2

b04_C 652 1.02 1.11

b11_C 726 1.03 1.19

c1908 880 1.04 1

b05_C 927 1.82 1.52

b12_C 944 1.1 1.18

c2670 1193 1.68 2.38

c3540 1669 1.1 1.82

c5315 2307 1.68 2.07

c6288 2416 1.03 1

c7552 3512 1.16 1.5

b14_1_C 6569 1.15 1.48

b15_C 8367 1.12 1.69

b14_C 9767 1.16 1.42

b15_1_C 12543 1.12 2.06

b21_1_C 13898 1.14 1.33

b20_1_C 13899 1.14 1.32

b20_C 19682 1.15 1.36

b21_C 20027 1.14 1.29

b22_1_C 20983 1.14 1.35

b22_C 29162 1.15 1.36

b17_C 30777 1.11 1.76

b17_1_C 38116 1.11 1.97

b18_1_C 105102 1.12 1.74

b18_C 111241 1.12 1.74

 Average: 1.22 1.56

We can see that the number of outputs spanned by each
locking gates is very close to 1. This basically means that,
mostly, one logic locking gate is responsible for forcing one
output. This is discussed in the following section. We can also
see that the number of logic levels between the locking gates
and the locked outputs is low. This could be a problem if the
attacker has access to the RTL description of the design.
Indeed, if the locking gates are located very close to the
outputs, then the attacker can identify them easily and possibly
modify the netlist to bypass the locking circuitry. This is why
the locking gates need to be embedded as deeply as possible in
the netlist. To this end, dummy logic levels can be inserted
between the locking gate and the output, thereby achieving
logic obfuscation as described in section II. For instance, an or
gate can be replaced by the three gates depicted in figure 15. G
is the node to be forced and K is the locking/unlocking input.
Another node is picked randomly and used for the dummy
logic. As depicted, the output value is either 1 or G, which
means that locking is successful. Obviously, the increase in
reverse engineering effort comes at the price of an increased
area overhead. In order to add one logic level, three gates are
inserted instead of one. If the designer wants to add a second
dummy logic level, then the structure will have to be
duplicated. Then five gates are inserted. The logic resources
overhead is � ∗ �2% + 1�, where � is the number of locking
gates to be inserted and % is the number of dummy logic
levels. In order to limit the overhead, dummy logic levels can
be used only for the nodes that are too close to the outputs.

Fig. 15. OR locking gate replacement with an extra logic level

VI. SECURITY ANALYSIS

A. Threat model

To evaluate the security of logic locking, we must first
distinguish the threat model from the actual context. Since we
are trying to protect IP cores against illegal cloning, we must
assume that the attacker has access to the original design, and
can implement it. We make a stronger assumption by not
limiting the number of implementations. Our aim for logic
locking is only to make illegal copies non-functional. Thus we
first assume that the designer has access to the unlocking
inputs, i.e. the inputs to which the key must be applied to

G

K

A

0

1
G

1

G

1

0

A

10

unlock the circuit and to use it. In practical terms, the designer
is able to write in a specific memory inside the chip, which
will unlock the circuit if the correct value is provided.
Moreover, since the designer appears to be legitimate at first
sight, he also has access to test vectors.

B. Hill-climbing attack

Considering the threat model described above, a major
concern expressed in [18] is the ease of a hill-climbing attack.
It was described as an attack against the logic masking
technique presented in [12]. However, it turns out to be
equally efficient against logic locking. This is due to the tight
link between the masking/locking inputs and the outputs. The
attack procedure for logic masking described in [18] is as
follows. First, pick a random key and apply it on the unlocking
inputs. Compute the Hamming distance between the actual
and the expected output, given by the test vectors. Flip the first
bit of the key. If the Hamming distance increases, then flip this
bit again and repeat the action for all the bits of the key.
Otherwise, if the Hamming distance decreases, move on to the
next bit. The method is similar for logic locking, except that
instead of using the Hamming distance as the function to
minimize, the number of locked outputs is used. The main
concern here is that, since there is a gradient towards the
correct key in the key space, it can be easily recovered. In
other words, the Hamming distance between the actual and
expected output grows linearly with respect to the number of
wrong key bits when logic masking is applied. Similarly, the
number of outputs that are locked and the number of wrong
key bits are correlated.
This is due to the fact that, as shown in Table V, the ratio of
the number of inserted gates to the number of outputs is close
to one. In most cases, one gate is responsible for locking one
output. This is a serious security concern. In this case, the
security of the protection system is as low as the greatest
number of key bits influencing one output. If the key bits and
the outputs are connected pairwise, then the overall security
level is 1 bit. In the following section, we discuss
countermeasures against hill-climbing attacks.

C. A countermeasure against hill-climbing attack

In order to avoid hill-climbing attacks, the correlation between
the unlocking inputs and the outputs has to be reduced. One
unlocking input should have an impact on multiple outputs, in
order to hide the internal relation. Similarly, every output
should be locked by several key inputs.
One possible countermeasure is to add some redundancy
between the locking gates and the key inputs. This can be
achieved by adding inputs to the locking gates. These inputs
are connected to key inputs that have the same value as the
first key input of the locking gate. For example, two locking
gates for which the key bit is 1 can be associated, as depicted
in figure 16. It follows that in order to obtain the correct
values for G0mod and G1mod, both K0 and K1 must have the
correct value. It can be extended to add more key inputs to the
locking gates, and more redundancy.
However, this countermeasure is only partially effective.
Indeed, it only increases the equivalent security level to the
number of inputs added to the locking gates. Making it secure

would require the locking gates to have a very large number of
inputs, which is not feasible.

Fig. 16. Partial countermeasure against hill-climbing attack

When we had another look at the previously described
characteristic we realized it is very similar to the diffusion
property of cryptographic functions. This led us to adopt
another design plan for the protection scheme. Thus the logic
locking module is only responsible for disturbing the original
behavior. Security is ensured by using a separate
cryptographic primitive. The overall architecture is described
in the following section

VII. ARCHITECTURE OF A COMPLETE DESIGN DATA

PROTECTION SCHEME

A. Area/locking strength tradeoff

In order to increase the security of the logic locking scheme,
multiple locking gates could be inserted to force only one
internal node. Such a redundant locking strategy strengthens
the security of the system. Before examining the whole
protection scheme architecture, let us focus on the
implementation of the logic locking module. After the graph
has been built and analyzed, the final graph contains nodes
that are all able to propagate a locking value. The method
presented in section III.C to select the best nodes to modify
selects as few nodes as possible in the connected components
to ensure total locking, but all the other nodes are also able to
lock the associated output. Therefore, some extra locking
gates can be added to increase the locking strength. This is
presented in figure 17.
Figure 17-a shows the original netlist and the modified one. In
the modified version, only one gate is inserted for minimal
overhead. The locking strength is low, wince the locking value
is set by one gate only.
In figure 17-b, the locking value is set by three gates.
Therefore, all three gates should be unlocked to unlock the
associated output. Thus the locking strength is higher, but so is
the area overhead.

(a) Original netlist and modified netlist with only one locking gate.

(a) Modified netlist with three gates forcing the locking value.

Fig. 17. Insertion of one or multiple locking gates to lock an output

G0

K0
G0mod

G1mod
G1

K1

G0

K0
G0mod

G1mod
G1

K1

11

If the locking signal is carried by only one wire, it could be
subject to side channel attacks such as optical injection [19]
and its logic value can be flipped. In fact all the nodes found
in the connected components of the final graph can be
modified to increase the locking strength. This comes at the
cost of increased logic resources overhead. This design trade-
off is illustrated in figure 18, where the logic resources related
to minimum overhead and maximum locking strength are
given for all ISCAS’85 benchmarks.
For b15_C for instance, the minimum overhead to achieve
total functional locking is 4.52%. However, up to 29% extra
resources can be added to further strengthen logic locking.
The designer can decide on the acceptable resources overhead
and increase the associated locking strength accordingly.

Fig. 18. Trade-off between locking strength and resources overhead

B. On the need for a cryptographic primitive

In [1], the authors claim to achieve security by reaching 50%
Hamming distance between the original and masked outputs.
Since in this case, security is not based on a cryptographic
primitive, it is easily broken and [18] showed how it was
possible to recover the key using a basic hill-climbing attack.
Only the system integrators allowed by the designer to unlock
the IP core should be able to do so. If provable security is
necessary, there is no other way than using a cryptographic
primitive to obtain it. Another advantage is that such
primitives, if chosen carefully, have been subject to a variety
of attacks. Therefore, their security has been tested. The
designer can then pick a strong cryptographic primitive that
has successfully resisted multiple attacks, and implement it
carefully. This will provide him/her with provable security of
access to the normal behavior of the IP core. For that reason,
using a cryptographic primitive is necessary.

C. Architecture

Owing to such considerations, we are now able to define the
general architecture of the design protection scheme. It is
composed of three main blocks, shown in figure 19.
The first block is the cryptographic primitive, which ensures
secure access and avoids simple attacks. Using a lightweight,
hardware-oriented algorithm is a good option here to limit the
area overhead.
The second block is a unique identifier, which is necessary in
the case of IP distribution to uniquely identify all the instances
of a particular design. It allows the designer to have a database
containing all the IP core instances and their associated key.
This identifier could also be used to derive the unlocking key.
In this way, it helps fulfill the following requirement: owning
the key for one instance of the design should not help in

unlocking another instance. One possible implementation of a
unique identifier is a PUF [20]. It could also be achieved in the
form of a secret word stored in non-volatile memory.
PUFs have already been used in previous works, known as
metering [21]. However, those works make the assumption
that PUF responses are perfectly stable, and use the PUF
response directly to mask internal nodes. Unfortunately,
several experimental studies show that it is hard to obtain
perfectly stable PUF responses which could be used as a key
directly without an expensive error correction. Conversely, we
take the instability of PUF responses into account and use the
PUF for identification only.
The final block is the locking module. Its role is to make the
circuit unusable if the wrong key is sent to the cryptographic
primitive.

Fig. 19. Architecture of the proposed design protection module

VIII. CONCLUSION

In the first part of this paper, we provided precise definitions
of design protection schemes involving modifications of the
logic. This is necessary when developing new protection
schemes, since all have several pros and cons. Next, we
proposed a new method to select the nodes to be modified for
logic locking. Based on graph analysis, this method was
shown to be effective, in terms of both induced area overhead
and computational complexity. A comparison with state-of-
the-art fault analysis-based logic masking techniques was then
performed to emphasize these advantages. The last two
sections provided insight into the security level of both
protection schemes. We highlighted the fact that existing
logic-based protection techniques cannot be considered as
secure since they are subject to very simple attacks. Finally,
we proposed an overall architecture for a robust complete
protection scheme, embedding a locking module to disable the
functionality, a cryptographic primitive to provide provable
security and a unique identifier that allows precise metering.

ACKNOWLEDGEMENTS

The work presented in this paper was conducted in the frame
of the SALWARE project number ANR-13-JS03-0003
supported by the French “Agence Nationale de la Recherche”
and by the French “Fondation de Recherche pour
l’Aéronautique et l’Espace”, funding for this project was also
provided by a grant from la région Rhône-Alpes.

12

REFERENCES

[1] J. Rajendran, H. Zhang, C. Zhang, G.S. Rose, Y. Pino, O. Sinanoglu, R.
Karri, "Fault Analysis-Based Logic Encryption," IEEE Transactions on
Computers, vol.64, no.2, pp.410,424, Feb. 2015

 [2] J Rajendran, Y. Pino, O. Sinanoglu, R. Karri, "Logic encryption: A
fault analysis perspective," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012 , pp.953,958, 12-16 March
2012

[3] S. Dupuis, P.S. Ba, G. Di Natale, M.L. Flottes, B. Rouzeyre, "A Novel
Hardware Logic Encryption Technique for thwarting Illegal
Overproduction and Hardware Trojans", 20th IEEE International On-
Line Testing Symposium, IOLTS'14, pp.49-54, Jul 2014

[4] G. Hachez, "A comparative study of software protection tools suited for
e-commerce with contributions to software watermarking and smart
cards," PhD Thesis, Université Catholique de Louvain, 2003

[5] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, "Security analysis of
logic obfuscation" in Proc. Des. Autom. Conf. DATE, pp. 83–89, 2012

[6] R.S Chakraborty, S. Bhunia, "HARPOON: An Obfuscation-Based SoC
Design Methodology for Hardware Protection," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.28,
no.10, pp.1493,1502, Oct. 2009

[7] R. Torrance, D. James, "The state-of-the-art in semiconductor reverse
engineering," Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE , pp.333,338, 5-9 June 2011

[8] M. Brzozowski, V.N. Yarmolik, "Obfuscation as Intellectual Rights
Protection in VHDL Language," Computer Information Systems and
Industrial Management Applications, 2007. CISIM '07. 6th
International Conference on , vol., no., pp.337,340, 28-30 June 2007

[9] U. Meyer-Baese, E. Castillo, G. Botella, L. Parrilla, and A. Garcia,
"Intellectual Property Protection (IPP) using Obfuscation in C, VHDL
and Verilog Coding, "In proceedings of Independent Component
Analyses, Wavelets, neural Networks, Biosystems and Nanoengineering
IX, SPIE, 2011

[10] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, "Security Analysis
of Integrated Circuit Camouflaging, " in proceedings of ACM
Conference on Computer and Communications Security, ACM, 2013

[11] SypherMedia, "Syphermedia library circuit camouflage technology,"
http://www.smi.tv/syphermedia_library_circuit_camouflage_technolog
y.html

[12] J. A. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending piracy of
integrated circuits,” in Design, Automation and Test in Europe, 2008,
pp. 1069–1074.

[13] A. Baumgarten, A. Tyagi and J. Zambreno, "Preventing IC Piracy
Using Reconfigurable Barriers" Design & Test of Computers, IEEE,
vol.27, no.1, pp.66,75, Jan.-Feb. 2010

[14] E. Jung, C. Hung, M. Yang, and S. Choi, "An Locking and Unlocking
Primitive Function of FSM-modeled Sequential Systems Based on
Extracting Logic Property,” Int. Journal of Information
(INFORMATION), Vol. 16, No. 8(B), pp. 6279-6290, August 2013.

[15] M.T. Rahman, D. Forte, Q. Shi; G.K. Contreras, M. Tehranipoor,
"CSST: Preventing distribution of unlicensed and rejected ICs by
untrusted foundry and assembly," IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), 2014, pp.46,51, 1-3 Oct. 2014

[16] A. Basak, Y. Zheng, S. Bhunia, "Active defense against counterfeiting
attacks through robust antifuse-based on-chip locks," VLSI Test
Symposium (VTS), 2014 IEEE 32nd , vol., no., pp.1,6, 13-17 April 2014

[17] S. Davidson, “ITC’99 benchmark circuits - preliminary results,” in
IEEE International Test Conference, Atlantic City, NJ, USA,
September 1999, p. 1125.

[18] S. M. Plaza and I. Markov, “Solving the third-shift problem in IC
piracy with test-aware logic locking,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2015.

[19] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction
attacks,” in International Workshop on Cryptographic Hardware and
Embedded Systems, San Fransisco CA, USA, August 2002.

[20] L. Bossuet and D. Hely, “SALWARE: Salutary hardware to design
trusted IC,” in Workshop on Trustworthy Manufacturing and
Utilization of Secure Devices, TRUDEVICE, 2013.

[21] F. Koushanfar, “Provably Secure Active IC Metering Techniques for
Piracy Avoidance and Digital Rights Management”, IEEE Transactions
on Information Forensics and Security, vol.7, no.1, pp.51-63.

