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occurs with standard integrated circuits. Illegalpying,

Abstract — Design and reuse has become a very common praetic cloning and theft are long known threats to desigta.

in the electronics design industry. IP cores are sdy sold by
designers to system integrators. However, severalages of
counterfeiting and illegal copying have been repoad and design
protection techniques have been developed in respgs Among
these techniques, we focus on modifications at lagievel aimed at
active design protection. This is the first paper d provide a
formal description and definition of the following techniques
used to protect integrated circuits and IP cores agjnst theft,
counterfeiting, cloning and illegal copy: logic engption, logic
obfuscation, logic masking, and logic locking. Intte second part
of the paper, we present a new technique to insegates in the
data path of a logic circuit in order to lock it. Based on graph
analysis, this method involves low overhead impleméation and
is more than ten thousand times faster than formefault analysis-
based logic masking techniques when it comes to eging the
nodes to modify. Finally, we discuss the design ragements of a
strong design protection scheme.

Index Terms—Intellectual property protection,
encryption, logic obfuscation, logic functional loking.
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|I. INTRODUCTION

ROTECTIONOf the intellectual property of IP core designer
is a hot topic and remains an open question. Becafis

the ever increasing complexity of electronic systefull
in-house design is no longer the norm. IP core giess
provide system integrators with a wide IP portfdalowhich
they can select the functional block best suiteth&ir needs.
EDA companies offer IP cores that are accessiblectly
from their design software.
expanding, and system integrators can use therortpare a

whole range of different IP cores, and choose thestm

appropriate for their system. This paradigm hegukice time-
to-market because the IP cores have been thorougblgd,
are “silicon-proven” and can be integrated all thge in a
more complex system. From the integrator's pointviefw,

this is a great help. The IP core designer, howeasgefaced
with a problem: since the IP core is made availa@sie data
file, how can the designer control how many tintes P core
is actually instantiated? To cut a long story shbdw can
overusing be prevented? In addition, another prbis

counterfeiting, which is not specific to IP cordsjt also

S
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Logic protection schemes have been developed tamteou
these risks. They can be classified @&ssive and active
protection schemes. Passive protection detectsdbes not
prevent an illegal action, whereas active protectachniques
make the illegal action much harder to carry outesen
pointless. Both types of protection schemes camtadifferent
design levels. Here, we focus on logic protectichesnes.
They consist in modifying the RTL description oktHesign,
and adding extra elements to protect it. Howeveerd is
currently a lack of formal classification of logmrotection
schemes.

Once a protection scheme is selected by the desigine
second point to be addressed is the method usexbléct
which parts of the design should be modified. Here
propose a new method, based on graph analysigjdot she
nodes of a netlist to modify to achieve logic loaki We
compare our method with the state-of-the-art silect
technique used for logic masking proposed in [1jjol uses
fault-analysis techniques.

The remainder of this article is organized as fe#o In
section Il, we provide a formal framework for logimotection
schemes by defininpgic encryptionlogic obfuscationlogic
maskingandlogic lockingand give examples of techniques for
each. In section Ill, we present a new graph-badgdrithm
that selects the optimal nodes to be modified tiea® logic
locking of a combinational netlist. In section IWe present

rté‘le results of implementation, specifically theitogesources

overhead and analysis time. In section V, we evaldhe
proposed method and develop associated metricsedtion
VI we describe a threat model and perform a secantlysis
of the protection schemes considered. In sectioh Wk

discuss design considerations. In particular, wphamsize the
need to introduce a cryptographic primitive to eessecurity,
and to not rely on the logic/masking module to iflulthis

objective.

Il. A FORMAL FOUNDATION FORLOGIC PROTECTION
SCHEMES

An increasing number of works are trying to findvay to
protect the intellectual property of IP designerd &bless IC
designers by acting on logic. Unfortunately, mosttlese
works make incorrect use of the terminology, ilegic



encryption logic obfuscationlogic maskingandlogic locking of odd order leads to the same result. In boths;abe mean
are used without a formal definition. This papeketa the of the Hamming distance as described in (6) is letu&0%
opportunity to propose a formal foundation for Iogi but the correlation defined in (4) is not zero. S&evorks are
protection schemes. In this section, we providemfdr presented as “logic encryption”, even though thiakisolutely
descriptions and definitions of the logic protestechemes in not the case. The authors of these works definedic
order to strictly evaluate their different contriimms to the encryption” as: fogic encryption hides the functionality and
literature. the implementation of a design by inserting somditiaahal
In all the following sub-sections, the original {mwotected) gates called key-gates into original desigiz]. With this
n-input, I-output logic function is formalized by a Booleandefinition, logic encryption does not respect thgressions
function {0, 1}" - {0, 1}1_ (1) to (7). Consequently, we claim that all workegented as
) . “logic encryption” are inaccurate because in fahgy only
A. Logic encryption propose tamaskthe logic functionality. The security level of
The term *“logic encryption” is used when a specifisuch masking functions is very low compared witloper

symmetric encryption functiod; of GF(2) is applied tof.
Formally, it's notlogic encryption The term is not specific.

Encryption of the Boolean functidrs the correct expression.

The result of this encryption is the
functionf’{0,1}" - {0, 1} f' is given by the following
expression, wherkis the secret key:

fr=8&f k)

& is a symmetric encryption function if and only ah
inverse functiony; exists that uses the same secret lkégr
decryption, and is defined as follows:

¢f(f’) zll’f(ff(f,k),k) =f 1)
Functions; andy; must meet the following requirements:

v(ki k) € ({0,13™,{0,13™), ki #k;

& k) # &(f k) 2)
lpf(gf(f' ki)! kl) * (ff (f! ki)' k}) (3)

Functions & and y; also haveto satisfy the following

requirements, whereCorr is the function that computes

Pearson’s correlation coefficient:

vke{01}" Corr(&(f, k), f)=0  (4)

vk e{0,1)" Corr (w(&:(f. k))& (f, k) =0 (5)

One of the consequences of the last expressidmatstihe
mean of the Hamming distance between the input thed
output of the encryption/decryption functions issg to 50%

encryption.
A didactic example of true “logic encryption” isvgin by
considering the following 3-input Boolean function

Booleary o, 13" - (0, 13"

f(A,BC)=A-B-C

Figure 1 is a schematic diagram of the encryptegiclo
circuit. This includes the original logic circuitat computes
the Boolean functionf, the encryption functioné that
computes the encrypted Boolean functidh using an
embedded secret kdy and the decryption functiop; that
outputs the correct result of the Boolean funcfidinand only
if the correct ke is applied on the external key input.

Original logical circuit

k(stored)
D

Fig. 1. Example of logic encryption

This didactic example shows that the area overloé¢ddie
logic encryption is always prohibitive since it ueegs the
implementation of encryption and decryption funeioNote
that the security level of such a protection depem the key
size. Now, an efficient symmetric encryption hasuse at
least a 128-bit key. All protection schemes thatlude a
secret key that has only a few bits (3, 5, 10 é&il. Yo provide
the designer with any security because of the idigiof a
brute force attack.

(ideally exactly 50%) as described by the followings Logic obfuscation

expressions when the mean of the Hamming distaace i

computed for all the inputs of the Boolean function

T HD(EA(f(0,13" k).fF{0,1}")
It P ) = 50%

vke{o1}™

(6)

SHD(w, (£, (F0.174)) £ (F10.1)"))
o (7)

Some works [1,2,3] consider this last property esop of

security. This is a mistake, since it is possilleobtain the

same result with a function that does not achiewaygtion.

For instance, inverting the first2 bits of the output of leads

to a 50% Hamming distance. Similarly, inverting gvimput

vke{o1}™ = 50%

Logic obfuscation comes from the field of compigeience
in which developers wish to protect source codeainag
unauthorized reading and understanding. The fohlgwi
definition of code obfuscation is proposed by Haclj4]:
“Transform a program P into another program P’ harde
reverse engineer with the same observable behalfibrfails
to terminate or terminates with an error, then Rl to
terminate or terminates with an error. Otherwisé, Rust
terminate and produce the same output ds Rardware
obfuscation consists in applying this definitiorthe hardware



field, by changing the logic, FSM, or other partaflesign

A
without changing the system behavior. %f

When the logic part of a circuit is obfuscated, esign
modification y; is applied tof. The result of this design
modification is the Boolean functigfi'{0,1}" - {0, 1}. The
functiony ¢ must meet the following requirement for any input
x €{0,1}':

(a) Original Boolean function implementation

ve(F) =f"
vx € {0,1} ffe=fx) (8)

Some works present logic obfuscation but do ndiliftihe
requirement (8) [5,6]. Most of these works use eretekey
that changes the behavior of the original logic cfiom.
Although authors refer it as “functional obfuscatiothese
works are typical cases of logic masking.

It is possible to try to perform obfuscation at tbgic-gate
level but this usually implies a large overheaddekd,
obfuscation techniques aim to increase reversesergng
time. The time is at least linear with the area [ﬂbreaSing (b) Boolean function implementation after a first step of logical obfuscation
the area increases the time needed for reversee=rgig. As
a consequence, the main design modification rule fo
obfuscation is to not follow the usual design rutesefficient ]
implementation of a Boolean function. Usually, lawed :‘7€7
theorems of Boolean logic are applied to Boolearttions in
order to reduce the number of gates (i.e. the arket)e final )
hardware implementation. To obfuscate an implentiemtaf )
a Boolean function, these laws and theorems atewfetl in
the opposite way, i.e. they increase the size eftthrdware
implementation. -

Two strategies are used in the first step of olidtisn:
develop and obscure To develop a Boolean function, the
designer can use the canonical disjunctive normah f(also
calledmintermcanonical form) in which the Boolean function
is represented and implemented as a sumiaterms

As an example, let us consider the following 3-inpu

Boolean functiorf {0,1}* - {0, 1}":

\/

| o f”
) >

VAV,

VAVAVIVEVIAVIRVY

f(A,B,C)=A4-B-C

\/

The obfuscation strategy we use here is for didgmirpose )
only. We only give a simple example in order to destrate
the proportional increase of reverse-engineerimg tand area
overhead.

This Boolean function could be developed using th
following canonical disjunctive normal form (firsbfuscation
step).

(c) Boolean function implementation after a second step of logical obfuscation
complementary, common identities, etc.) and DeMagya
teheorem to increase the number of gates used indttvare

f"(AB,C)=A-B- . !
+ of obfuscation (b) anfl after two steps of obfuscation (c).

A-B-C+4A-
A-B-C +

E +A-B-C Fig. 2. Logic circuits to implement Boolean funcigf (a),f” after one step
+A-B- ‘B-C

+ B-
‘B- A
implementation. For example, by also using someinddnt

f andf” follow requirement (8). Figures 2-a and 2-b shoWegic operationsf” is described by the following Boolean
the logic schematics of the two functions with o@input €Xpression:
AND and OR gates and invertors (other types of gatauld
also be used).

In order to obscure a Boolean function, the desigraa
apply to f” some of the Boolean logic laws (absorption,



masking keyk={ko, ki, .. ki.i} is described by the following

expression, wher&” is a Boolean functiof0, 1}" — {0, 1}
and® is thexor or xnor Boolean operator:

f”’ = {fo ©o ko, f1 ©1 k1, o, fi-1 Oia ki'l}

Again, f andf” meet requirement (5). Figure 1-c shows the if 55]. =xor=ki=1= fi$k; = f
logic schematic of” after this second step of obfuscation. vj €1{0,i—1} if§ =nxor =k =0 fifk; =f 9)
The designer can also insert dummy logic to furinerease i / I
the reverse engineering effort. The correct masking keyis found by using the laws in (9),
Table | shows the logic resources required for dagic  and considering the type of inserted gate.
circuit in figure 2. For each circuit, the numbdr gates is As a didactic example, let us consider the follay@input
shown for each type (inverter, 2-input AND gatén@ut OR  Boolean functiorf {0, 1}® - {0, 1}":
gate and 2-input XOR gate), along with the gateivedent

f"(AB,C)=A-B+A-B+ A-B+B-C+A-C+A-C
+B.-C+A-C+B-C+A+B+¢C
+4-B+ADC+APB+A-C+B-C

metric. The area overhead is given for the two Wware f(AB,C)=A-B-C
implementations of”. As mentioned above, the increase in
reverse-engineering time for each obfuscated logauit (in This Boolean function could also be described bg th

comparison with the original logic circuit) is sused to be following expression:
equal to the area overhead. For example, therdéaeared to _
reverse engineer circuit 2-c is 14.58 times gretitan the f(4,B,C) = f(fo(4, B), C)

time required to reverse engineer the originaluiirc foX,Y)=X-Y
X Y)=X-Y
TABLE |
LOGIC RESOURCE REQUIREMENTS AND TIMING OVERHEAD FOREVERSE A didactic example of logic masking of the Boolean
ENGINEERING OF THE CIRCUITS DESCRIBED IN FIGURE functionf is given in figure 3, wher®, is anxnor gate and
Logic gate requirement Area / 91 is a xor gate. ACCOfding to the laws in (9), we can
Boolean Logic Gate m’;jn”efgj;g determine the correct masking{0,1} needed to obtain the
function cireut | INV | AND | OR | XOR | Equivalent wme | original logic behaviour. In figure 3, additionalbsking gates
overhead are in grey_
7 1a 1 2 401 - ko L
A ]LI
333
f after the first B C f
step of 1-b 3 14 6 35.41 +883%
"*/’f“jc‘”f‘:” Fig. 3. Example of logic masking
sfcﬂj;{,;of e . 12 . 5 ssar | +1458% E_fficient .insertion of. the masking scheme ha.s" to be
obfuscation achieved without reducing performance (mainly hyiting

the insertion of gates on the critical path) oréasing area
overhead (by limiting the number of additional gatethout

using too few bits for the masking kky For example, works
presented in [13] and [1] propose to use heurigtceeduce
overhead.

Due to the high area overhead, such logic obfustasi not
suitable for most applications. Moreover, the haarwdesign
of the obfuscated circuit has to be performed bydha avoid
logic optimization by the synthesis tool. It is pitde to mix a
light logic obfuscation with obfuscation at anothiewel.
Indeed, hardware obfuscation is also possible @tléliel of D. Logic locking
HDL [8,9] and at the level of the layout [10,11].

The above description of logic encryption and idog
obfuscation allows us to affirm that none of theblmhed
works that present “logic encryption” or “logic aisication”
meet the formal requirements of these two techrghost of
these works in fact describe “logic masking” or dio
locking”. In the remainder of this section we pmségic
masking and logic locking techniques.

Logic locking allows the designer to insert or and gates
in the data path of the logic circuit of a Booleamction in
order to lock the output to a fixed logic level ¢0 1) if the
wrong unlocking key is applied. Let us considerttla

Boolean functionf{0,1}" - {0, 1}l can be represented as a
set ofi Boolean sub-functionsf§, f1 . fi1}. Logic locking of

C. Logic masking is a Boolean functiof0, 1}" - {0, 1}' and® is the and oor
Logic maskingconsists in insertingor or xnor gates in the Boolean operator:

data path of the logic circuit of a Boolean funotia order to iy

change the logic behavior of the circuit if the mgomasking f = 1o Oo ko, f1 Or ks o fima Oia kia)

key is applied. It was first proposed in [12]. Let consider ] if Qi=and =ki=1=fOk; =f;

that a Boolean functionf{0,1}" - {0,1}' could be v Ei- 1}{ if QEor=k=0=>f0k =f; (10)

represented as a setiddoolean sub-functionsf§, f1, . fii}.

Logic masking of the Boolean functidnby using the i-bit



The correct unlocking kel is found by using the laws in
(10), depending on the type of inserted gate.
As a didactic example, let us consider the follay@iinput

Boolean functiorf {0,1}* - {0, 1}":
f(AB,C)=A-B-C

This Boolean function could be expressed by thiofiohg
expression:

f(4,B,C) = f,(f,(4,B),C)
foX V) =X-Y
XY =X T

A didactic example of logic locking of the Boole#ris
given in figure 4 wher&), is anand gate. In this very simple
example, only one gate is used to lock the logicab®r of
the circuit. By following the laws in (10), we catetermine
the correct masking=1 to obtain the correct behavior. In
figure 4, the additional locking gate is in grey.

ko

A

B f”»

o

Fig. 4. Example of logic locking

Like for logic masking, the insertion of the locgimates

summarizes the controlling values for the four Ruinnon-
linear logic gates.

TABLE Il
CONTROLLING VALUE AND THE ASSOCIATED OUTPUT VALUE F® ALL 2-INPUT
NON-LINEAR LOGIC GATES

Logic Controlling | Output value!
gate value

AND 0 0

NAND | 0 1

OR 1 1

NOR 1 0

Iwhen the controlling value is applied to one of the inputs

Next, for every node in the netlist, we define twalues:
Viocks @NdVorcea- Viocks 1S the controlling value of the gate
that comes after this node. For instance, if a nedbe input
of anor gate, ther,,cs = 1. Vyorceq is the value to which the
node will be forced. For instance, if a node is dlgout of an
or gate, therVsy,c.q = 1. It should be noted that, sometimes,

Viocks = {0, 1}, if the node has a fan-out higher than one and

spans gates with different controlling values.
A node is useful for logic locking if it is forcetb the
controlling value of the following gate. Therefordor

has to be achieved without reducing performance af§duences of nodes that can propagate a locking,val the

increasing area overhead. In the following sectioa present
a new method based on graph analysis of an RTlspetl
which achieves efficient and secure logic locking.

Like in logic obfuscation and masking, it is possito lock
a circuit by acting on parts/levels other than libgic level.
For example, recent works propose to lock the disiate-
machine [14,15] or the input/output ports [16].

[ll. PROPOSED GRAPH ANALYSISBASED LOGIC LOCKING

SCHEME

As mentioned in section lI-d), what we propose hgsra new
technique to select the nodes to include in thécléarking

process. Indeed, since logic locking requires trewition of
extra logic gates, it is necessary to find theroptispots in the
combinational netlist on which these extra gatesukh be
inserted. According to the previously proposed rddin,

logic locking can be the propagation of a fixeditogalue

from an internal node to one or several outpui(s)achieve
this, we need to identify sequences of gates thatldc
propagate such a logic value. To this end, we sgpitethe
netlist as a graph. This representation is a caeménvay of
analyzing relations between logic gates and findihg

optimal paths in a netlist that could propagate tbgic

locking value.

A. Implementation of logic locking

Before building the graph, we must identify the refederistics
leading to the propagation of a locking value iseguence of
logic gates. First, it is worth noting that a sfiectontrolling
valueexists for non-linear logic gates. If this conlirg value
is applied to one of the logic gate’s inputs, thiee output is
forced to a fixed, known value. For instance, sgttine of the

nodes meet the following criterion:
Criterion 1: Veorcea € Viocks

If criterion 1 is verified for all the nodes in &gience of
nodes, then this sequence is able to propagatekidpvalue.
In this case, forcing the first node to its coring value will

set all the nodes in the sequence at a fixed hogjice. This is
illustrated in figure 5. Here, forcing one of thgputs of the
first or gate to a 1 logic value forces the output ofahd gate
on the right to 0.

1
LB ey
Fig. 5. Propagation of a locking value in a seqeesfdogic gates

With this in mind, one can see how an output casilyede

forced to a fixed logic value. By inserting logiatgs at
specific locations in the netlist, the designerl wi¢ able to
force the outputs to a fixed value by controllifg tvalue of
specific internal nodes. The aim here is to sethet most
appropriate nodes, namely those at the beginnisggfiences
of gates like the one presented in figure 6. Taeaehthis aim,
graph exploration techniques are used, and aremexin the
following sections.

B. Graph building

The original design file is an RTL description offiet
combinational netlist. The first step is to convérinto a
directed acyclic graph. We chose to represent tilistis
nodes as vertices and the Boolean functions assedye
example of conversion from logic gates to graphmelets is

inputs of anand gate to 0 will set the output to 0. Table llshown in figure 6.



NAND
H o () a—>—s
NAND

Fig. 6. Conversion from logic gates to graph eletsien

This is repeated for all logic gates of the netstoy example
of a netlist converted into a graph is shown infey7:

Fig. 7. Conversion from netlist to graph

In order to identify which nodes satisfy criteridnV;,.,s and
Vrorcea are computed for all the nodes in the netlist @lethe
vertices in the graph). This is done as followsgoing edges

Since we want to achieve logic locking, connected
components that do not contain any output mustebgved
from the graph. After applying this method to thagh in the
previous example, we obtain the one shown in fiir&he
original netlist is disregarded, and a path that peopagate a
locking value is highlighted.

G1

Fig. 8. Final graph and the original netlist shayvinpath that can propagate a
locking value

The final graph obtained at this stage comprise®sohat can
all propagate a locking value to the output if tlaeg forced to
a specific logic value. Some of them, however, better
candidates, because they span a larger numbertpfitsuor
are more deeply integrated in the netlist. The ciele
algorithm we used to identify the best nodes to @ttis
described in the following section.

C. Graph analysis for selection of optimal locking red

At this stage, the graph is composed of severaheced
components. They all include at least one outpod are
made up of vertices that represent nodes abledpapate a
locking value. These connected components candssified
in the four different categories depicted in figQre

are used to computg, .., while incoming edges are used to

computeVsy,c.q. By convention, for the sake of the following
computationsy;,.s 1S set to{0, 1} for the outputs. Table I
showsV;, s andVeorceq Values computed for all the vertices
of the graph shown in figure 7.

) Z&< ©) <ij T

o ‘©
7Ly T o

@ N

TABLE III
Viocks AND Vy5rceq VALUES FOR ALL THE NODES OF THE NETLIST SHOWN IN
FIGURE 7
Node Vforced Viocks Node Vforced Viocks
Gl - 1 G9 1 0
G2 - 1 G10 0 0
G3 - 0 Gl1 1 1
G4 - 0 G12 1 0
G5 - 0 G13 - 0
G6 - 0 G14 0 0
G7 1 1 G15 1 ,
G8 - 1 Gl6 0 ,

The next step is to identify which nodes cannoppgate the
locking value. This means they do not fulfill critsn 1. If a
node does not meet this criterion, its incoming esdgre
deleted. Thus in the previous example, incomingesdgre
deleted for G9 and G12.

What is obtained at this stage is a highly discotet graph,
because the vast majority of vertices do not fulfiterion 1.

® &y
@ (b)
One source vertex Multiple source vertices
One output
(\@ @ @4§g PR
\ (ca )// R =) A&
AL (63) S\/». N
G5) g G6 ) N \(672
(gQ (%8) .
/ \ AN :
2 G12
\ @ < @
© ©

Multiple source vertices
Multiple outputs

One (or more) source vertex spans

all the output

\ (619
&

(d)
Multiple source vertices
Multiple outputs
No vertex spans all the outputs

Fig. 9. Different types of connected componentsitbin the final graph



In the first situation, shown in figure 9.a, thaseonly one
source vertex. Therefore, since the graph is dickctt

necessarily spans all the outputs, and can loak thie It is

consequently selected as the node to lock.

The second possibility, shown in figure 9.b, occutsen a
connected component comprises multiple sourcecesrtbut
only one output. In order to embed the locking nas@eeply
as possible in the netlist, the distance betwedespalce nodes
and the output is computed. The furthest node fittenoutput
is selected as the node to lock.

In the case depicted in figure 9.c, there are ppleltsource
vertices too. Some source vertices, however, dospah all

the outputs. In order to lock as many outputs asipée with

the smallest number of nodes to be modified, ohé/ todes
spanning all the outputs are retained. If many scgfgan all
the outputs, then, as previously, the one furtiesn the

output is selected.

In the last situation, shown in figure 9.d, mukipsource
vertices span multiple outputs, but none spans taknThe

way to proceed here is to sort the source verticesrding to
the number of outputs they span. Next, they aredihe

selected and added to the list of nodes to locks Ptocess is
carried out until all the outputs are locked.

The node selection process is summarized in fifjQre

How many
source vertices are
in the connected
component ?

Select this source
vertex as the node
to modify

Compute the distance
from the source vertices
to the output

!

Select the furthest
source vertex as the
node to modify

Is there more than
one output ?

Select this source
vertex as the node
to force

Does one source
vertex span all
the outputs ?

Compute the number
of outputs spanned by
each source vertex

!

Sort the source vertices
according to the number
of outputs spanned

!

Grredily select them
until all the outputs can
be locked

Fig. 10. Flowchart of the node selection process

Note that the situations described above are s@tedrding
to their computational complexity. The last cashijch is the
most computationally expensive, is also by far teast
frequent.

One we have a list of nodes to maodify, the lagb $¢eto add
the extra locking gates that will be responsible flarcing
these nodes to a specific value if the wrong kegpislied.

D. Netlist modification

Now that we know which nodes to act on, the exitad gates
must be inserted. They will force these nodes tpecific

value. The value to which each node must be foreegven

by Viyers- If @ node must be forced to 0, thenad gate is
used. If a node must be forced to 1, tharoamate is used.
The associated key-bit is the inverse of the cdirtgpvalue

of the inserted logic gate. This is shown in figlide

%D Gmod ED Gmod
Viocks = 0 Vioers =1
K=1 K=0

Fig. 11. Type of gate to insert according/}g, ., value

Coming back to the previous example, the nodes do
modified are G1 and G13. For Glf;,s = 1 and for G13,
Viocks = 0. Then the associated unlocking kek; K,) is 01.
An or gate is used to force G1 to 1 if the wrong keyidit
applied, in this case: 1. Aand gate is used to force G13 to O
if the wrong key bit is applied, in this case: theTfinal,
lockable netlist is shown in figure 12:

G1
G

G3— 9
e
G5

G6—

GT
K1

Fig. 12. Lockable netlist, locking gates are inkdgney.
The unlocking word isK; Ky = 01

IV. IMPLEMENTATION RESULTS

A. Logic resources overhead

The logic locking algorithm was implemented in Rythand
makes use of thegraph module to handle graphs. We
implemented the locking scheme on ITC'99 combinstlo
benchmarks [17]. The netlists are described in VHDhese
benchmarks range from 1 k to 225 k gates. Theygai
reference designs. The logic resources overheateasured
as the percentage of logic gates that must be atiede
netlist in order to make it totally lockable. Rdsuire shown
in figure 13. The average resources overhead B .2This is
acceptable, and almost twice less than the oneomuth
obtained in [1]. Another interesting feature hesethat the
overhead remains approximately the same despitithease
in the number of gates. Protecting large netlists

b
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designs.
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Fig. 13. Logic resources overhead obtained fortfanal locking

B. Analysis time

Taking a step back, a major feature that will easthe
protection schemes are widely adopted is usability.
describes how easy it is for a designer to prateet|P core
once it has been designed. In order to increadsligaa key
point is the amount of time required to make theliste
lockable. Since these protection techniques coelohtegrated
in EDA tools, the computation time should be reasbe. In
figure 13, we provide a comparison of the compatatime
required to protect a netlist with both logic loaffiand logic
masking methods. These results were obtained byuérg
the Python scripts on an Intel i5-4570 workstatioperating
at 3.2GHz and embedding 16Gb of RAM.

A
A

Graph analysis-based
logic locking
Quadratic curve fitting
(logic locking)

Fault analysis-based |
logic masking
[Rajendran2015]

U

10° 10* 10°
#logic gates

Fig. 14. Time required to analyze and modify th#iste
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As can be seen in figure 14, the logic locking bdasethod is
more than ten thousand times faster than the mdihsed on
logic masking. For instance, analyzing a 3,500-gadist
requires four and a half hours with the method psagl in [1],
whereas with the method we propose, it takes lleas bne
second. We extended our study to very large nettitup to
225 k gates. It turns out that the computation tinmeases
guadratically. However, even for very large netlisthe
computation time is reasonable. For the largest thred
includes 225 k gates, slightly more than hour uied to
make it lockable.

When it comes to the execution time, the main diffiee
between the two protection methods is that the ateth
proposed in [1] uses fault simulation to locate tueles to
modify. It relies on external tools that employ qartationally
heavy methods. Conversely, our protection technigumsed
on graphs, which are an effective way of represgntietlists.
In the context of EDA integration, our method isighmuch
more suitable and computationally more effective.

no more expensive than protecting lsmalC. Impact on the critical path delay

The impact of the locking gates insertion on thtoad path is
minimal. First of all, non-linear logic gates haweelower
propagation time thamor gates for example. Moreover, the
sequences that can propagate a locking value mighibe on
the critical path. Thus the critical path will ne@main in the
final graph and no extra gate will be insertedtirin case the
critical path can propagate a locking value, itl wélquire at
most one extra gate to lock it. Thus the impacthancritical
path delay will be negligible.

V. EVALUATION

A. Correlation

In [1], the authors evaluate the efficiency of thkicking
scheme using the Hamming distance between the tooift e
original device and the output of the device whea Wwrong
key is applied on the key inputs (i.e. when logiasking is
activated). According to these authors, obtaining5Go
Hamming distance on average is proof that the pfiote
scheme is efficient. However, we have shown inigedt that
even simple circuits can exhibit such a charadteyiand that
50% Hamming distance is simply one consequencezafra
correlation. We consequently use correlation toluata the
efficiency of the protection scheme. The correlatis
computed using Pearson’s coefficient. The resukssaown
in Table IV. Since the standard deviation is zerdoew the
outputs are locked by logic locking, Pearson’s @ation
coefficient is not defined. It can be considerede® because
when the output is locked, it provides no informaatabout the
normal behavior. Two methods are compared for logic
masking: random and fault analysis-based node tgatec
Random selection [12] rapidly becomes inefficierithwan
increase in the size of the circuits. Randomly ritvsg 128
XOR gates in a 3,612-node netlist only reducesctreelation
to 0.761. Fault-analysis based logic masking isamedficient,
and reduces the correlation faster as the keyirsizeases. For
large netlists, however, it fails to reduce it sfgantly. For
example, the correlation only goes from 0.254 #1@.when
the key size increases from 32 to 128 bits on C7BbRlarger
designs such as the ones considered in sectionth¥,
performance will probably be even worse.

TABLE IV
PEARSON’S CORRELATION COEFFICIENT COMPUTED FOR DIFFERENT NODE
SELECTION METHODS AND KEY SIZES

Logic masking i)ocili;g
Benchmark Key size Random | Fault . Graph.
[12] analysis [1] analysis
c432 32 bits 0.272 0.012 0
7 outputs 64 bits 0.153 0.019 0
189 nodes 128 bits 0.026 0.014 0
c5315 32 bits 0.902 0.554 0
123 outputs | 64 bits 0.873 0.357 0
2362 nodes 128 bits 0.820 0.277 0
C7552 32 bits 0.952 0.254 0
108 outputs | 64 bits 0.920 0.235 0
3612 nodes 128 bits 0.761 0.217 0




We can conclude from this observation that cori@hashould
not be used to evaluate a protection scheme. Itais
cryptographic property, which should be only usedtle
appropriate frame. We give more details about sgcum
section VII below. Instead of a correlation, we eleped a
metric to evaluate protection schemes based oimslegtion of
extra logic gates, which is presented in the foltmv
subsection.

B. Logic locking metric

The intrinsic feature of a protection scheme basadthe
insertion of extra logic gates is altering the atigpusing the
extra gates. Therefore, two characteristics canubed to
evaluate how effective these schemes are. The dist is:

how many inputs are spanned by each extra log&?ghis is
related to the amount of gates that have to bertatbeo

ensure total functional locking. If one gate lockailtiple

outputs, it is obviously more efficient than if tiple gates are
required. The locking ratio is defined as follows:

Locki tio = #outputs
OCKINg TAt0 = Y locking gates

Since the locking gates should be inserted as yeagpl
possible into the netlist, a second metric is: hawis the
inserted gate from the outputs? The number of ldgiels
between the locking gate and the outputs is corsghyalso
computed. The average distance between the insgeta$
and the outputs is computed as the average nunidegio
levels on the shortest path between the insertees gand
every output that is reachable from them. The tesule
obtained when applying our graph-based insertiothatefor
logic locking are presented in Table V.

TABLE V
EVALUATION OF THE PROPOSED NODE SELECTION TECHNIQUEY LOCKING
RATIO AND MEAN DISTANCE TO OUTPUTS

. . Average distance

Benchmark Flogic Lo?kmg to outguts

gates ratio .

(logic levels)

c432 160 1.75 1.43
b10_C 172 1.13 1
b13_C 289 1.13 1.13
c880 383 1.63 3.39
b07_C 383 1.32 1.16
c1355 546 1.03 2
b04_C 652 1.02 1.11
bll_C 726 1.03 1.19
c1908 880 1.04 1
b05_C 927 1.82 1.52
b12_C 944 1.1 1.18
2670 1193 1.68 2.38
3540 1669 1.1 1.82
c5315 2307 1.68 2.07
6288 2416 1.03 1
7552 3512 1.16 1.5
bl4 1 _C 6569 1.15 1.48
b15_C 8367 1.12 1.69
bl4_C 9767 1.16 1.42
b15_1 C 12543 1.12 2.06

b21_1_C 13898 1.14 133
b20_1_C 13899 1.14 1.32
b20_C 19682 1.15 1.36
b21_C 20027 1.14 1.29
b22_1_C 20983 1.14 135
b22_C 29162 1.15 1.36
b17_C 30777 111 176
b17_1_C 38116 1.11 1.97
b18_1_C 105102 1.12 1.74
b18_C 111241 1.12 1.74

Average: | 1.22 1.56

We can see that the number of outputs spanned bly ea
locking gates is very close to 1. This basicallyane that,
mostly, one logic locking gate is responsible forcing one
output. This is discussed in the following sectidrfe can also
see that the number of logic levels between thkihgcgates
and the locked outputs is low. This could be a |fewbif the
attacker has access to the RTL description of tésigd.
Indeed, if the locking gates are located very cltzsethe
outputs, then the attacker can identify them easily possibly
modify the netlist to bypass the locking circuitmhis is why
the locking gates need to be embedded as deeplysathle in
the netlist. To this end, dummy logic levels canifbserted
between the locking gate and the output, therelhyeaing
logic obfuscation as described in section Il. Fstéance, aor
gate can be replaced by the three gates depicfeglire 15. G
is the node to be forced and K is the locking/ukilog input.
Another node is picked randomly and used for thenrdy
logic. As depicted, the output value is either 1Grwhich
means that locking is successful. Obviously, therdéase in
reverse engineering effort comes at the price oinareased
area overhead. In order to add one logic levetelygates are
inserted instead of one. If the designer wantsdtb & second
dummy logic level, then the structure will have b
duplicated. Then five gates are inserted. The loggources
overhead isk * (2n + 1), wherek is the number of locking
gates to be inserted andis the number of dummy logic
levels. In order to limit the overhead, dummy lotggels can
be used only for the nodes that are too closedmtitputs.

Fig. 15. OR locking gate replacement with an ekigic level

VI. SECURITY ANALYSIS

A. Threat model

To evaluate the security of logic locking, we musst
distinguish the threat model from the actual cont8ince we
are trying to protect IP cores against illegal aignwe must
assume that the attacker has access to the ordgsan, and
can implement it. We make a stronger assumptionmndty
limiting the number of implementations. Our aim fogic
locking is only to make illegal copies non-funct&nThus we
first assume that the designer has access to thoekimg
inputs, i.e. the inputs to which the key must beliag to



unlock the circuit and to use it. In practical tefrithe designer
is able to write in a specific memory inside thépghwhich
will unlock the circuit if the correct value is pided.
Moreover, since the designer appears to be legitiraafirst
sight, he also has access to test vectors.

B. Hill-climbing attack

Considering the threat model described above, aomaj

concern expressed in [18] is the ease of a hitiMoing attack.
It was described as an attack against the logickimgs
technique presented in [12]. However, it turns ¢atbe
equally efficient against logic locking. This iselto the tight
link between the masking/locking inputs and thepatg. The
attack procedure for logic masking described in] [E3as
follows. First, pick a random key and apply it twe inlocking
inputs. Compute the Hamming distance between theahc
and the expected output, given by the test veckdisthe first
bit of the key. If the Hamming distance increaslesn flip this
bit again and repeat the action for all the bitstlué key.
Otherwise, if the Hamming distance decreases, rave the
next bit. The method is similar for logic lockingxcept that
instead of using the Hamming distance as the fanctd
minimize, the number of locked outputs is used. Tingn
concern here is that, since there is a gradientatdsvthe
correct key in the key space, it can be easily vee. In
other words, the Hamming distance between the hetua
expected output grows linearly with respect to nlaenber of
wrong key bits when logic masking is applied. Samy, the
number of outputs that are locked and the numbexrohg
key bits are correlated.

This is due to the fact that, as shown in Tablehé, ratio of
the number of inserted gates to the number of dsitisuclose
to one. In most cases, one gate is responsibledéiing one
output. This is a serious security concern. In ttase, the
security of the protection system is as low as ¢gheatest
number of key bits influencing one output. If theykoits and
the outputs are connected pairwise, then the dveealrity
level is 1 bit. In the following section, we dissus
countermeasures against hill-climbing attacks.

C. A countermeasure against hill-climbing attack

In order to avoid hill-climbing attacks, the coatbn between
the unlocking inputs and the outputs has to beaedluOne
unlocking input should have an impact on multiplgpats, in
order to hide the internal relation. Similarly, eweoutput
should be locked by several key inputs.

One possible countermeasure is to add some redcmdaz‘;

between the locking gates and the key inputs. This be
achieved by adding inputs to the locking gates.s€hiaputs
are connected to key inputs that have the samee\aduthe
first key input of the locking gate. For examphaptlocking

gates for which the key bit is 1 can be associasdjepicted
in figure 16. It follows that in order to obtainethcorrect
values for GOmod and G1mod, both KO and K1 mustlihe
correct value. It can be extended to add more tkpyts to the
locking gates, and more redundancy.

However, this countermeasure is only partially effes.

Indeed, it only increases the equivalent secugtsel to the
number of inputs added to the locking gates. Makirsgcure
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would require the locking gates to have a verydargmber of

inputs, which is not feasible.
%8: P- GOmod %O— P- GOmod
G1
1

Gl )
Ki— Glmod K

Fig. 16. Partial countermeasure against hill-climgbattack

When we had another look at the previously desdribe
characteristic we realized it is very similar tce tHiffusion
property of cryptographic functions. This led us adopt
another design plan for the protection scheme. Thedogic
locking module is only responsible for disturbirigp toriginal
behavior. Security is ensured by using a separate
cryptographic primitive. The overall architectusedescribed
in the following section

VIl. ARCHITECTURE OF A COMPLETE DESIGN DATA

PROTECTION SCHEME

A. Area/locking strength tradeoff

In order to increase the security of the logic lagkscheme,
multiple locking gates could be inserted to foradyoone
internal node. Such a redundant locking strateggngthens
the security of the system. Before examining theoleh
protection scheme architecture, let us focus on
implementation of the logic locking module. Aftdret graph
has been built and analyzed, the final graph costaiodes
that are all able to propagate a locking value. Tethod
presented in section Ill.C to select the best nadesodify
selects as few nodes as possible in the conneotedanents
to ensure total locking, but all the other nodes aso able to
lock the associated output. Therefore, some exicking
gates can be added to increase the locking streigib is
presented in figure 17.

Figure 17-a shows the original netlist and the rfiedione. In
the modified version, only one gate is inserted rfanimal
overhead. The locking strength is low, wince thekiog value
is set by one gate only.

In figure 17-b, the locking value is set by threates.
Therefore, all three gates should be unlocked todknthe
associated output. Thus the locking strength ikdrigbut so is
the area overhead.

the

GO—
KO—

GOmod
G2

G4

G5

(a) Original netlist and modified netlist with ordye locking gate.

GOmod KZ G2mod

K4

(a) Modified netlist with three gates forcing tleeking value.
Fig. 17. Insertion of one or multiple locking gatedock an output




unlocking another instance. One possible implentiemtaf a
If the locking signal is carried by only one wiiie,could be unique identifier is a PUF [20]. It could also behi&ved in the
subject to side channel attacks such as opticattion [19] form of a secret word stored in non-volatile memory
and its logic value can be flipped. In fact all thedes found PUFs have already been used in previous works, knasv
in the connected components of the final graph ban metering [21]. However, those works make the assiomp
modified to increase the locking strength. This eenat the that PUF responses are perfectly stable, and usePthF
cost of increased logic resources overhead. Thigyddrade- response directly to mask internal nodes. Unfotiiga
off is illustrated in figure 18, where the logicsorirces related several experimental studies show that it is hardblbtain
to minimum overhead and maximum locking strength amperfectly stable PUF responses which could be ased key
given for all ISCAS’85 benchmarks. directly without an expensive error correction. Gensely, we
For bl5_C for instance, the minimum overhead toieeh take the instability of PUF responses into accant use the
total functional locking is 4.52%. However, up tB92 extra PUF for identification only.
resources can be added to further strengthen llogking. The final block is the locking module. Its roletes make the
The designer can decide on the acceptable resooveesead circuit unusable if the wrong key is sent to thgptographic

and increase the associated locking strength aiogbyd primitive.

50

3 Maximum

2 aximury s Locking
3" srength —_——n Design module \
%30' Security margin protection
3 module
§ 20
g 10

P R R RO P PR ION Eghitnelght

R A SN 07 S PN PN ST cryptographic Secret ID

primitive (PUF, NVM...)

Fig. 18. Trade-off between locking strength andueses overhead Designer's request
for unlocking

B. On the need for a cryptographic primitive

In [1], the authors claim to achieve security bgatgng 50%
Hamming distance between the original and maskeplutsi VIl
Since in this case, security is not based on ategypphic . o ) o
primitive, it is easily broken and [18] showed hatwwas [N the first part of this paper, we provided precefinitions
possible to recover the key using a basic hill-bling attack. ~ Of design protection schemes involving modificasiaof the
Only the system integrators allowed by the designemlock 10gic. This is necessary when developing new ptiiec
the IP core should be able to do so. If provabeusty is Schemes, since all have several pros and cons., Nest
necessary, there is no other way than using a agyaphic pro.posed anew method to select the nqdes tg béietbfbr
primitive to obtain it. Another advantage is thamcls logic locking. Based on graph analysis, this metivaas
primitives, if chosen carefully, have been subject variety Shown to be effective, in terms of both inducedaareerhead
of attacks. Therefore, their security has beenetesfThe @and computational complexity. A comparison withtestaf-
designer can then pick a strong cryptographic pimithat the-art fault anaIyS|s-ba_sed logic masking techesqwas then
has successfully resisted multiple attacks, andiément it Performed to emphasize these advantages. The \ast t
carefully. This will provide him/her with provabecurity of ~Sections provided insight into the security levél lmth
access to the normal behavior of the IP core. Far teason, Protection schemes. We highlighted the fact thaistieg

Fig. 19. Architecture of the proposed design pita@eanodule

CONCLUSION

_ secure since they are subject to very simple atakally,
C. Architecture we proposed an overall architecture for a robushpiete

Owing to such considerations, we are now able fméleéhe protection scheme, embedding a locking module galde the
general architecture of the design protection sehelnis functionality, a cryptographic primitive to providerovable

composed of three main blocks, shown in figure 19. security and a unique identifier that allows precisetering.
The first block is the cryptographic primitive, whi ensures
secure access and avoids simple attacks. Usirghawkight, ACKNOWLEDGEMENTS

hardware-oriented algorithm is a good option herknit the
area overhead.

The second block is a unique identifier, which és@ssary in
the case of IP distribution to uniquely identify thle instances
of a particular design. It allows the designer&wdna database
containing all the IP core instances and their céased key.
This identifier could also be used to derive théoaking key.
In this way, it helps fulfill the following requireent: owning
the key for one instance of the design should reip hn

The work presented in this paper was conducteteénfiame
of the SALWARE project number ANR-13-JS03-0003
supported by the Frenctihjence Nationale de la Recherthe
and by the French Fondation de Recherche pour
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