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IoT devices

	 Mutual identification
	 Authentication

IP protection

	 ICs identification
	 IP cores identification

Need for a hardware identifier as root of trust
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       --------------------------------
     Title      : Permutation
     Project    : Present
--------------------------------
-- File       : permutation.vhd
-- Created    : 2014-10-02
-- Last update: 2014-12-11
-- Standard   : VHDL'93/02
 
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
 
ENTITY permutation IS
 
  PORT (
    input  : IN  STD_LOGIC_VECTOR(63 DOWNTO 0);
    output : OUT STD_LOGIC_VECTOR(63 DOWNTO 0));
 
END ENTITY permutation;
 
ARCHITECTURE rtl OF permutation IS
 
BEGIN  -- ARCHITECTURE rtl
 
  output(0)  <= input(0);
  output(16) <= input(1);
  output(32) <= input(2);
  output(48) <= input(3);
  output(1)  <= input(4);
  output(17) <= input(5);
   output(15) <= input(60); 
END ARCHITECTURE rtl;                                                          

PUF
descrip�on

Different responses to the same challenge.

Principle:

Extract entropy from
process variations.

Aim:
Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.
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SRAM PUF
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Problem:

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
	 PUF architecture,
	 Process node,
	 Aging,
	 Temperature,
	 Environment...

à The PUF response cannot be used as a reliable identifier.
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Solution

Apply a technique of error correction to the PUF response
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CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel

Public discussion
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leakage

This could be used to derive keys
from slightly different PUF responses.

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410–423.
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One pass

	 Perform parity checks on blocks of the PUF response,
	 Isolate the errors using binary search and correct them,
	 Check current parity of blocks and backtrack,
	 Increase the block size and shuffle the response randomly.

Parameters

	 Initial block size,
	 Number of passes,

	 Block size multiplier.

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
	 Parity checks: n/k-bit leakage.
	 Binary search: log2(k)-bit leakage.
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Two ways of leaking information:
	 Relative parity computations,

	 1 bit.
	 CONFIRM executions on an n-bit block.

	 log2(n) bits.

Example:

128-bit response, ε = 0.05 → 7 errors.
	 1st pass: 8-bit blocks, 4 errors corrected.
	 2nd pass: 16-bit blocks, 3 errors corrected.

Leakage: 128
8 + 4× log2(8) + 128

16 + 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.
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What is the lower bound on the information leakage?

It is related to the conditional entropy [2] H(rt|r0) = nh(ε)
where ε is the error rate and n is the response length.

h(ε) = −ε.log2(ε) − (1− ε).log2(1− ε)

The best length we can expect for the final response is then:

n− nh(ε) = n(1− h(ε))

Examples:

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

[2] Jesus Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. . Quantum Information & Computation 15.5&6 (2015), pp. 453–477.
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How to set the CASCADE parameters?
	 Initial block size: depends on the error rate.
	 Number of passes: depends on the required correction success

rate.
	 Block size multiplier: x2/x4 at each pass.

Problem

The block size cannot exceed n/2.
The failure rate remains too high.

Solution

Add extra passes without increasing the block size.
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Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.
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Countermeasure:
Limit the number of modifiable bits on the server side.
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Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-
ciently determined system of equations.

r0 r0

rc

Enrolment

rc

Chosen indexes

Countermeasures:
	 Limit the number of parity values that can be sent out.
	 Regenerate a new response at every protocol execution.
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Several realistic PUF references:
	 RO PUF in FPGA ε = 0.9% [3].
	 TERO PUF in FPGA ε = 1.8% [4].
	 SRAM PUF in ASIC ε = 5.5% [5].

Keep 128 bits secret from a 256-bit response with failure rate < 10-6.

Simulation carried out on 2 500000 responses.

[3] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. “A large scale
characterization of RO-PUF”. . HOST. 2010, pp. 94–99.
[4] Cédric Marchand, Lilian Bossuet, and Abdelkarim Cherkaoui. “Enhanced TERO-PUF

Implementations and Characterization on FPGAs”. International Symposium on FPGAs. 2016,
p. 282.
[5] Mathias Claes, Vincent van der Leest, and An Braeken. “Comparison of SRAM and FF-PUF

in 65nm Technology”. Nordic Conference on Secure IT Systems. Vol. 7161. 2011, pp. 47–64.
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index
log2(n)

D Q
parity

r[0]
r[1]

r[n-2]
r[n-1]

Logic resources:
	 Spartan 3: 67 Slices
	 Spartan 6: 19 Slices
	 0 RAM bits

index log2(n)

D Q
parity

8

2:0
log2(n):3

8

n/8 data
out

addr.

RAM
Logic resources:
	 Spartan 3: 3 Slices
	 Spartan 6: 1 Slice
	 256 RAM bits
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Article Construction and code(s) Logic resources (Slices) Block
Spartan 3 Spartan 6 RAM bits

[6] Reed-Muller (4, 7) 179 0

[7] Reed-Muller (2, 6) 164 192

[8] Concatenated: Repetition and Reed Muller 168 0

[9] Differential Sequence Coding and Viterbi 75 27 10752

This work: CASCADE protocol logic only 67 19 0

with RAM 3 1 256

[6] Matthias Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143–148
[7] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. “Low-Overhead Implementation of a Soft

Decision Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332–347
[8] Christoph Bösch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008,

pp. 181–197
[9] Matthias Hiller, Meng-Day Yu, and Georg Sigl. “Cherry-Picking Reliable PUF Bits With

Differential Sequence Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016),
pp. 2065–2076
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Compared to existing methods:
± most lightweight error-correction solution of state-of-the-art,
± can reach very low failure rates (down to 10−8),
± leakage is limited and easy to estimate,
± parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

—Questions? —
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