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loT devices IP protection

© Mutual identification
© Authentication
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© ICs identification
© IP cores identification

Need for a hardware identifier as root of trust
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PUFs as unique identifiers

PUF
description

Principle:

Extract entropy from
process variations.

Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.
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Principle:

Extract entropy from
o = I = 1, % ry process variations.
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Different responses to the same challenge.

Provide a unique,
per-device ID, thanks
to the inter-device
unigueness.
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RO cell PUF architecture
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Problem:

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
© PUF architecture,
© Process node,
© Aging,
© Temperature,
© Environment...

=» The PUF response cannot be used as a reliable identifier.
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Apply a technique of error correction to the PUF response




Error correction for PUF responses

Apply a technique of error correction to the PUF response
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Error correction for PUF responses

Apply a technique of error correction to the PUF response
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The CASCADE key reconciliation
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CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel -
m m
. @ -

Public discussion T
m
leakage
m m
l Privacy amplification ¢
key key

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410-423.
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CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel -
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leakage leakage
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key key | |

This could be used to derive keys
from slightly different PUF responses.

Public discussion

SR

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410-423.
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One pass

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.
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© Initial block size, © Block size multiplier.
© Number of passes,
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© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

r
\

Parameters

© Initial block size, © Block size multiplier.
© Number of passes,

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
© Parity checks: n/k-bit leakage.
© Binary search: log, (k)-bit leakage.
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Associated information leakage

Two ways of leaking information:
© Relative parity computations,
© 1bhit.
© CONFIRM executions on an n-bit block.
© log,(n) bits.

128-bit response, ¢ = 0.05 — 7 errors.
© 1% pass: 8-bit blocks, 4 errors corrected.
o 2 pass: 16-bit blocks, 3 errors corrected.
Leakage: % +4 x log,(8) + % + 3 x log,(16) = 48 bits.

. J

The final effective length of the response is 128 - 48 = 80 bits.
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What is the lower bound on the information leakage?

It is related to the conditional entropy [2] H(r¢|[rg) = nh(¢)
where ¢ is the error rate and n is the response length.

h(e) = —e¢.logs(e) — (1—¢).Jogs(1—¢)
The best length we can expect for the final response is then:

n—nh(e) = n(1—h(e))

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

[2] Jesus Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. . Quantum Information & Computation 15.5&6 (2015), pp. 453-477.
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How to set the CASCADE parameters?
© Initial block size: depends on the error rate.

© Number of passes: depends on the required correction success
rate.

© Block size multiplier: x2/x4 at each pass.
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How to set the CASCADE parameters?
© Initial block size: depends on the error rate.

© Number of passes: depends on the required correction success
rate.

© Block size multiplier: x2/x4 at each pass.

The block size cannot exceed n/2.
The failure rate remains too high.

Add extra passes without increasing the block size.




Attacks and countermeasures




Attack 1: Device impersonation 15/26

Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

* ro Enrolment fo .
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Chosen parities l
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Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

* o Enrolment ro‘.
x Chosen parities fo
re > l
rC
Countermeasure:
Limit the number of modifiable bits on the server side.
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Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-

ciently determined system of equations.
* o Enrolment r .
r

0;
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r. < ¢
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Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-
ciently determined system of equations.

* ro Enrolment ro .
* ; Chosen indexes x
c -
;

Countermeasures:

© Limit the number of parity values that can be sent out.

© Regenerate a new response at every protocol execution.
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Several realistic PUF references:
© ROPUFin FPGA ¢ = 0.9% [3].
© TERO PUF in FPGA ¢ = 1.8% [4].
© SRAM PUF in ASIC ¢ = 5.5% [5].

Keep 128 bits secret from a 256-bit response with failure rate < 107.

Simulation carried out on 2500 000 responses.

[3] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. “A large scale
characterization of RO-PUF”. . HOST. 2010, pp. 94-99.

[4] Cédric Marchand, Lilian Bossuet, and Abdelkarim Cherkaoui. “Enhanced TERO-PUF
Implementations and Characterization on FPGAs”. International Symposium on FPGAs. 2016,
p. 282.

[5] Mathias Claes, Vincent van der Leest, and An Braeken. “Comparison of SRAM and FF-PUF
in 65nm Technology”. Nordic Conference on Secure IT Systems. Vol. 7161. 2011, pp. 47-64.
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Leakage for ¢ = 5%, (SRAM-PUF)
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Failure rate for ¢ = 5%, (SRAM-PUF)
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Logic resources:

© Spartan 3: 67 Slices
R © Spartan 6: 19 Slices
© 0 RAM bits

parity

>
RAM .
parity Logic resources:
data D Q -
e out © Spartan 3: 3 Slices
: © Spartan 6: 1Slice
T © 256 RAM bits

index IOgZ/(n) +Iog2(n):3
7
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Logic resources (Slices) Block

Article  Construction and code(s) Spartan3  Spartan6  RAM bits

[6] Reed-Muller (4, 7) 0
[7] Reed-Muller (2, 6) 164 192
[8] Concatenated: Repetition and Reed Muller 0
[9] Differential Sequence Coding and Viterbi 75 27 10752
logic only 67 19 o

This work: CASCADE protocol

with RAM 3 1 256

[6] Matthias Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143-148

[7] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. “Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332-347

[8] Christoph Bosch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008,
pp. 181-197

[9] Matthias Hiller, Meng-Day Yu, and Georg Sigl. “Cherry-Picking Reliable PUF Bits With
Differential Sequence Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016),
pp. 2065-2076
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Compared to existing methods:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 1078),
« leakage is limited and easy to estimate,
« parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade
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Compared to existing methods:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 1078),
« leakage is limited and easy to estimate,
« parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

— Questions? —
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