Key Reconciliation Protocols for Error Correction

of Silicon PUF Responses

Brice Colombier’, Lilian Bossuet?, David Hély®

CEA-Tech DPACA, Gardanne — France
2| aboratoire Hubert Curien, Saint-Etienne — France
3LCIS, Grenoble Institute of Technology, Valence — France

30 mai 2018

Journées Nationales 2018 Pré-GDR Sécurité Informatique

Context: need for identifiers 2/26

loT devices IP protection

© Mutual identification
© Authentication

090
ooe*

0®°°6

© ICs identification
© IP cores identification

Need for a hardware identifier as root of trust

Outline 3/26

0 Physical Unclonable Functions

9 The CASCADE key reconciliation protocol
© Attacks and countermeasures

0 Experimental results

© Hardware implementation

@ conclusion

Physical Unclonable Functions

PUFs as unique identifiers

PUF
description

Principle:

Extract entropy from
process variations.

Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.

PUFs as unique identifiers 4/26

Principle:

c Extract entropy from

| process variations.

Provide a unique,
per-device ID, thanks
to the inter-device
unigueness.

PUFs as unique identifiers 4/26

Principle:

Extract entropy from
o = I = 1, % ry process variations.

toff T
ree ¢

Different responses to the same challenge.

Provide a unique,
per-device ID, thanks
to the inter-device
unigueness.

PUF architectures 5/26

RO cell PUF architecture

odd number of inverters

“
ctrl n-bit

counter
sel Iog;(n) 5 L
7 > !
TERO cell 0y
n-bit
counter
ctrl

0SCyn-q

PUF architectures 6/26

SRAM PUF
WL
MS DC M6
e e
| TT .
BL O<} BL
HE EE B EEEEEEEENE EN ENE EENE B N u
EEE N EEE NN EE N EE _EN N [] [T
] A EEEE BN E N EE BN BN EE B E BN
HEE EEE E HEE H S HEEE N EN BN BEE N
EE EE N H N EEE EE N H EE BN EEN
H E NN EDEEN ENE N BN N BN BN B HE B
EEEEEEN HE E EEEEE BN N E NN BN

The instability problem 7/26

Problem:

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
© PUF architecture,
© Process node,
© Aging,
© Temperature,
© Environment...

=» The PUF response cannot be used as a reliable identifier.

Error correction for PUF responses

Apply a technique of error correction to the PUF response

Error correction for PUF responses

Apply a technique of error correction to the PUF response

—+
o
1
1
(@)
Ry
[ERRRNNNN]

tl-- —P(Cl, hl)—b

Error correction for PUF responses

Apply a technique of error correction to the PUF response

time
= (C1, r1)
1 Cl E | .
= 1
r1 — ‘Fl
T ; Ew T .
Q"

The CASCADE key reconciliation
protocol

Key reconciliation protocols 9/26

CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel -
m m
. @ -

Public discussion T
m
leakage
m m
l Privacy amplification ¢
key key

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410-423.

Key reconciliation protocols 9/26

CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel -
m r r
* o Enrolment o
. ro
* ; Error-correction
t !
_\—\ A

leakage leakage

m m I . fe
l Privacy amplification ¢ * % ID generation %
key key | |

This could be used to derive keys
from slightly different PUF responses.

Public discussion

SR

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410-423.

CASCADE protocol 10/26

One pass

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

CASCADE protocol 10/26

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

Parameters

r
\

© Initial block size, © Block size multiplier.
© Number of passes,

CASCADE protocol 10/26

© Perform parity checks on blocks of the PUF response,

© lIsolate the errors using binary search and correct them,

© Check current parity of blocks and backtrack,

© Increase the block size and shuffle the response randomly.

r
\

Parameters

© Initial block size, © Block size multiplier.
© Number of passes,

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
© Parity checks: n/k-bit leakage.
© Binary search: log, (k)-bit leakage.

The CASCADE protocol 1/26

OH : ANBBRE - ©HE:

Blocks of even relative

parity:
%]
Blocks of odd relative

parity:
%]

m—1
Relative parity: P;(Bo, Bt) = (@ro[Bo) &) (EBn[Bdﬂ])
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNBORE - ©HE:: 5

Correction
|0|1|2|3||4|5|6|7| Blocks of even relative
parity:
%)
Blocks of odd relative
parity:
%]

m—1
Relative parity: P;(Bo, Bt) = (@ro[Bo) &) (EBn[Bdﬂ])
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNBORE - ©HE:: 5

Correction

[o]1]2]3][4]5 6] 7] s Ny v][r2 YRRy 15] Blocks O:;:;;f; relative

lofs]2]s][4]s]e]7]

[8]9]10]11|[12[13]14]15]

Blocks of odd relative

parity:
%)

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNEEE - B 5

Correction

DARBRE0ENR - ~FE: «n Blocks of even relative
Shuffling parity:

149“13. 3[15[6]1] [ofs]2]3][4]s]e]7]

[8]9]10]11|[12[13]14]15]

Blocks of odd relative

parity:
%)

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNEEE - B 5

Correction

|0|1|2|3”4|5|6|7| P8 1: 140 Blocks of even relative
Shuffling parity:
000 > 0 0A DnEnonnEEE a0
Correction [8]9]10]11|[12[13]14]15]
o [:: Bl BEEMEIE Blocks of odd relative
parity:
1]

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

O[] 5 e) e Iz Biocks of even relative

Correction parity:

|0|1|2|3||4|5|6|h7121 [o[<[z[3][4]s]e]7]
Shuflling
B 06 ° 0 08 » DnEEan IR R RH BEmnD

Correction |2 10| 8[11]3[15]6] 1]
e [T RO B s]2 oo [[[1] [yafuafa] s [o]eals)
Blocks of odd relative

parity:
%)

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

O[] 5 e) e Iz Biocks of even relative

Correction parity:
|0|1|2|3||4|5|6|7|121 [o[<[z[3][4]s]e]7]
Shuffling
B 0H ° @ 388 » NEono oD EEDD
Correction |2]10/8]11]3[15]6]1]
a7 R B s (2 oo [ula (6]1] [l 2]+ o o wa[5]
Blocks of odd relative

parity:
%)

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNEEE - B 5

Blocks of even relative
Correction

|0|1|2|3||4|5|6|7|121 parity:
Shuffling lo]1]2[3][4]5]6][7]
R o B s e B e (s Lo e [z [so]e [a]3 [6]5]

Correction

Gl TR B s |2 ole[ulalwle]z] c2l4lrle]olusls]

Blocks of odd relative

parity:
| 8|9 [10]11][12]13]14]15]

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

OF : BNEEE - B 5

Blocks of even relative
Correction .
|0|1|2|3||4|5|6|7|121 parity:
Shuffling lo]1]2[3][4]5]6][7]
B 0H - 0 B - RGN OO RBEEN

Correction

e[RO s | 2[wols[a]a]wle]x] 2aelelrlolofuls]
Extra correction Blocks of odd relative
[12]14] 4] 7] oJo B 5][2]20[812 325 6 [1] parity:

| 8|9 [10]11][12]13]14]15]

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

|O|1|4|5|6|7| Blocks of even relative
Correction

|0|1|2|3||4|5|6|7|121 parity:
Shuffling lo]1]2[3][4]5]6][7]
R o B s e B e (s Lo e [z [so]e [a]3 [6]5]

Correction
e[RO s | 2[uols[a]a]wle]x] 2aelelrle]ofuls]
Extra correction Blocks of odd relative
[12]14] 4] 7] oJo B 5][2]20[812 325 6 [1] parity:

& o wol]

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

[o]1BA3][4]5]6]7][c JY][22 15] Blocks of even relative

Correction parity:

|o|1|z|s||4|s|e|7|121 [z [3][«[s[s]7]
Shuffling

H: 01 - 0 B8 » INBEO R JEECOC
Correction |2|1O|8|11|3|15|6|1|

N o &) 5[2[10]8]11[3 15[61| Blocks of odd relative

Extra correction parity:

[12]14] 4] 7] oJo B 5][2]20[812 325 6 [1]

[12[14] 4|7][9]0 [13] 5|

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

[o]1BA3][4]5]6]7][c JY][22 15] Blocks of even relative

Correction parity:

|0|1|2|3||4|5|6|7|121 [o]a]2[s][4]s]6]7]
S ing BODE
149“13. 3[15]6]1] (8]0 10]u]

Correction |2|1O|8|11|3|15|6|1|
N o &) 5[2[10]8]11[3 15[61| Blocks of odd relative
Extra correction parity:

|12|14|4|7|9|0|2|1.0|8|11|3|15|6|1|

Extra correction
[12]14[4] 7] 9013 5][2]10] 8 |11] 3]15]6 1] [12[14[a[7]9]0[13[5]

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

[o]1BA3][4]5]6]7][c JY][22 15] Blocks of even relative

Correction parity:

|0|1|2|3||4|5|6|7|121 [o]a]2[s][4]s]6]7]
S ing BODE
149“13. 3[15]6]1] (8]0 10]u]

Correction |2|1O|8|11|3|15|6|1|
N o &) 5[2[10]8]11[3 15[61| Blocks of odd relative
Extra correction parity:

|12|14|4|7|9|0|2|1.0|8|11|3|15|6|1| IR

Extra correction
[12]14[4] 7] 9013 5][2]10] 8 |11] 3]15]6 1] [12[14[a[7]9]013]5]|

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

The CASCADE protocol 1/26

O[] 5 e) e Iz Biocks of even relative

Correction parity:

|0|1|2|3||4|5|6|h7121 [o[<[z[3][4]s]e]7]
Shuflling
B 06 ° 0 08 » DnEEan IR R RH BEmnD

Correction |2 10| 8[11]3[15]6] 1]

o[o B 5]z ho[e [E 516]1] [l [7 oo <]

Extra correction

[12[14] 4] 7] 9]0 | 2[10[8]11]3]15[6 1] Blocks of osid relative
Extra correction parity:
[12]14[4] 7] 9013 5][2]10] 8 |11] 3]15]6 1] &

m—1
Relative parity: P;(Bo, Bt) = (@ ro[Boli]) (@ "t[&['ﬂ)
i=0

Parity of Bg Parity of B¢

Associated information leakage 12/26

Two ways of leaking information:
© Relative parity computations,
© 1bhit.
© CONFIRM executions on an n-bit block.
© log,(n) bits.

Associated information leakage

Two ways of leaking information:
© Relative parity computations,
© 1bhit.
© CONFIRM executions on an n-bit block.
© log,(n) bits.

128-bit response, ¢ = 0.05 — 7 errors.
© 1% pass: 8-bit blocks, 4 errors corrected.
o 2 pass: 16-bit blocks, 3 errors corrected.
Leakage: % +4 x log,(8) + % + 3 x log,(16) = 48 bits.

. J

The final effective length of the response is 128 - 48 = 80 bits.

Information leakage 13/26

What is the lower bound on the information leakage?

It is related to the conditional entropy [2] H(r¢|[rg) = nh(¢)
where ¢ is the error rate and n is the response length.

h(e) = —e¢.logs(e) — (1—¢).Jogs(1—¢)
The best length we can expect for the final response is then:

n—nh(e) = n(1—h(e))

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

[2] Jesus Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. . Quantum Information & Computation 15.5&6 (2015), pp. 453-477.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
© Initial block size: depends on the error rate.

© Number of passes: depends on the required correction success
rate.

© Block size multiplier: x2/x4 at each pass.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
© Initial block size: depends on the error rate.

© Number of passes: depends on the required correction success
rate.

© Block size multiplier: x2/x4 at each pass.

Problem

The block size cannot exceed n/2.
The failure rate remains too high.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
© Initial block size: depends on the error rate.

© Number of passes: depends on the required correction success
rate.

© Block size multiplier: x2/x4 at each pass.

The block size cannot exceed n/2.
The failure rate remains too high.

Add extra passes without increasing the block size.

Attacks and countermeasures

Attack 1: Device impersonation 15/26

Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

* ro Enrolment fo .
.\ ro
Chosen parities l
rC

Attack 1: Device impersonation 15/26

Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

* o Enrolment ro‘.
x Chosen parities fo
re > l
rC
Countermeasure:
Limit the number of modifiable bits on the server side.

Attack 2: Server impersonation 16/26

Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-

ciently determined system of equations.
* o Enrolment r .
r

0;
Chosen indexes
r. < ¢
C

Attack 2: Server impersonation 16/26

Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-
ciently determined system of equations.

* ro Enrolment ro .
* ; Chosen indexes x
c -
;

Countermeasures:

© Limit the number of parity values that can be sent out.

© Regenerate a new response at every protocol execution.

Experimental results

Experimental results 17/26

Several realistic PUF references:
© ROPUFin FPGA ¢ = 0.9% [3].
© TERO PUF in FPGA ¢ = 1.8% [4].
© SRAM PUF in ASIC ¢ = 5.5% [5].

Keep 128 bits secret from a 256-bit response with failure rate < 107.

Simulation carried out on 2500 000 responses.

[3] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. “A large scale
characterization of RO-PUF”. . HOST. 2010, pp. 94-99.

[4] Cédric Marchand, Lilian Bossuet, and Abdelkarim Cherkaoui. “Enhanced TERO-PUF
Implementations and Characterization on FPGAs”. International Symposium on FPGAs. 2016,
p. 282.

[5] Mathias Claes, Vincent van der Leest, and An Braeken. “Comparison of SRAM and FF-PUF
in 65nm Technology”. Nordic Conference on Secure IT Systems. Vol. 7161. 2011, pp. 47-64.

Leakage for ¢ = 1%, (RO-PUF)

256
235

128

Final response length (bits)
D
=

=
ooN

o L L [R i
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O—=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for

Failure rate

10—5 ;

<10-6L
0

102
103

1074;

¢ = 1%, (RO-PUF)

Passes

=@ (32/64/128)-bit blocks
=@ (16/64/128)-bit blocks

O=0 (8/32/128)-bit blocks
O O (4/32/128)-bit blocks

Leakage for ¢ = 2%, (TERO-PUF)

Final response length (bits)

128

| ST SUUUURUTRI N esvseee <

[L y, [R i

01 3 5 10 15 2
Passes

Shannon bound
=@ (32/64/128)-bit blocks O—=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for ¢ = 2%, (TERO-PUF)

Failure rate

Passes

=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Leakage for ¢ = 5%, (SRAM-PUF)

Final response length (bits)

182

128

L L 1 ----------------- I]
1 3 5 10 15 20
Passes

Shannon bound
=@ (32/64/128)-bit blocks O—=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Failure rate for ¢ = 5%, (SRAM-PUF)

Failure rate

10*1
w0}
10*3
i
w0

<10-6L
0

Passes

=@ (32/64/128)-bit blocks
=@ (16/64/128)-bit blocks

O=0 (8/32/128)-bit blocks
O O (4/32/128)-bit blocks

Hardware implementation

Hardware architectures for the parity computation module 24/26

Logic resources:

© Spartan 3: 67 Slices
R © Spartan 6: 19 Slices
© 0 RAM bits

parity

>
RAM .
parity Logic resources:
data D Q -
e out © Spartan 3: 3 Slices
: © Spartan 6: 1Slice
T © 256 RAM bits

index IOgZ/(n) +Iog2(n):3
7

Classical error-correcting codes for PUFs 25/26

Logic resources (Slices) Block

Article Construction and code(s) Spartan3 Spartan6 RAM bits

[6] Reed-Muller (4, 7) 0
[7] Reed-Muller (2, 6) 164 192
[8] Concatenated: Repetition and Reed Muller 0
[9] Differential Sequence Coding and Viterbi 75 27 10752
logic only 67 19 o

This work: CASCADE protocol

with RAM 3 1 256

[6] Matthias Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143-148

[7] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. “Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332-347

[8] Christoph Bosch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008,
pp. 181-197

[9] Matthias Hiller, Meng-Day Yu, and Georg Sigl. “Cherry-Picking Reliable PUF Bits With
Differential Sequence Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016),
pp. 2065-2076

Conclusion

Conclusion 26/26

Compared to existing methods:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 1078),
« leakage is limited and easy to estimate,
« parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

Conclusion 26/26

Compared to existing methods:
+ most lightweight error-correction solution of state-of-the-art,
« can reach very low failure rates (down to 1078),
« leakage is limited and easy to estimate,
« parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

— Questions? —

	Physical Unclonable Functions
	The CASCADE key reconciliation protocol
	Attacks and countermeasures
	Experimental results
	Hardware implementation
	Conclusion

