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Objective:

Fight against counterfeiting and illegal copying
of integrated circuits and IP cores.
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Design data protection 3/15

Proposition:

Before it has been unlocked, the circuit must operate as
abnormally as possible, until the correct activation word
is fed.

Solutions:
We want to be able to controllably:

Force the outputs to a fixed logic value: locking1.
Alter the outputs as much as possible: masking2.

1B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by
Locking Gates Insertion for IP Cores Design Protection”. Cryptarchi. 2015.

2J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.
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Logic masking 5/15

Principle

Insert XOR/XNOR gates at specific locations in the netlist,
so that internal nodes can be controllably inverted to alter
the internal state if the wrong activation word is fed.

OUTIN

Original netlist

KEY

OUT

IN

Masked netlist

Done at design time

The process should be as fast as possible.
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Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:

Corruptibility: P(Smod = S|AW 6= AWref ) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?
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Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X
Fan-in/fan-out cones2 × X
Random + interf. graph3 × X
Random + interf. graph + corrup.4 × X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).
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Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,

Betweenness,
Current-flow
betweenness,
Current-flow closeness,

Definition:
Inverse of the sum of
distances to all the
other vertices.

C(v) = 1∑
y:y∈V

d(v,y)
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Ratio of shortest paths
going through
this vertex.
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∑
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Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,
Betweenness,
Current-flow
betweenness,
Current-flow closeness,

Definition:
Sum of e�ective
resistances to all other
vertices.

C(v) = 1∑
y:y∈V

p(v)−p(y) =
1∑

y:y∈V
Req(v,y)
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Indicators that only account for shortest paths

Closeness, betweenness.

Indicators that weigh paths according to their length

Current-flow betweenness and closeness centralities.

Increasing computational complexity

Closeness
↓

Betweenness
↓

Current-flow closeness centrality
↓

Approximated current-flow betweenness centrality
↓

Current-flow betweenness centrality
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Using centrality for logic masking 12/15

Convert the netlist into a graph

Nodes → vertices
Gates → edges
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XOR/XNOR gates are inserted on the vertices for which
the chosen centrality indicator is the highest.
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Conclusion 15/15

Centrality indicators, in particular current-flow closeness
centrality, as node selection heuristic for logic masking:

allow to disturb the outputs e�ciently,
have a manageable computational complexity,
o�er a better trade-o� than existing heuristics,
could be parallelized...

— Questions ? —
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