
Centrality Indicators For E�cient
And Scalable Logic Masking

Brice Colombier
—

Lilian Bossuet, David Hély

Univ Lyon, UJM-Saint-Etienne, CNRS
Laboratoire Hubert Curien UMR 5516
F-42023, SAINT-ETIENNE, France

June 19, 2017

Design data protection 2/15

Objective:

Fight against counterfeiting and illegal copying
of integrated circuits and IP cores.

Design data protection 2/15

Objective:

Fight against counterfeiting and illegal copying
of integrated circuits and IP cores.

Remotely
activable

circuitLightweight
block cipher

PUF

Logic
locking/
masking
module

key

AW

Interactive
error

correction

[AW]r

rr

Server

Design data protection 2/15

Objective:

Fight against counterfeiting and illegal copying
of integrated circuits and IP cores.

Remotely
activable

circuitLightweight
block cipher

PUF

Logic
locking/
masking
module

key

AW

Interactive
error

correction

[AW]r

rr

Server

Design data protection 3/15

Proposition:

Before it has been unlocked, the circuit must operate as
abnormally as possible, until the correct activation word
is fed.

Solutions:
We want to be able to controllably:

Force the outputs to a fixed logic value: locking1.
Alter the outputs as much as possible: masking2.

1B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by
Locking Gates Insertion for IP Cores Design Protection”. Cryptarchi. 2015.

2J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

Design data protection 3/15

Proposition:

Before it has been unlocked, the circuit must operate as
abnormally as possible, until the correct activation word
is fed.

Solutions:
We want to be able to controllably:

Force the outputs to a fixed logic value: locking1.
Alter the outputs as much as possible: masking2.

1B. Colombier, L. Bossuet, and D. Hély. “Reversible Denial-of-Service by
Locking Gates Insertion for IP Cores Design Protection”. Cryptarchi. 2015.

2J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

Combinational logic masking

Logic masking 5/15

Principle

Insert XOR/XNOR gates at specific locations in the netlist,
so that internal nodes can be controllably inverted to alter
the internal state if the wrong activation word is fed.

OUTIN

Original netlist

KEY

OUT

IN

Masked netlist

Done at design time

The process should be as fast as possible.

Logic masking 5/15

Principle

Insert XOR/XNOR gates at specific locations in the netlist,
so that internal nodes can be controllably inverted to alter
the internal state if the wrong activation word is fed.

OUTIN

Original netlist

KEY

OUT

IN

Masked netlist
Done at design time

The process should be as fast as possible.

Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:

Corruptibility: P(Smod = S|AW 6= AWref) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?

Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:
Corruptibility: P(Smod = S|AW 6= AWref) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?

Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:
Corruptibility: P(Smod = S|AW 6= AWref) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?

Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:
Corruptibility: P(Smod = S|AW 6= AWref) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?

Metrics to measure the masking e�ciency 6/15

Notation:
AW: n-bit activation input.

AWref : Reference activation word.
S: Correct outputs of the netlist.

Smod: Masked outputs of the netlist.

Metrics based on:
Corruptibility: P(Smod = S|AW 6= AWref) = 0

Hamming distance: 1
2n

2n−1∑
AW=0

HD(S,Smod) = 50%

Bitwise correlation:

√
1
n

#outputs−1∑
i=0

ρ2 (S[i],Smod[i]) = 0

How to optimise these metrics ?

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X
Fan-in/fan-out cones2 × X
Random + interf. graph3 × X
Random + interf. graph + corrup.4 × X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X

Fan-in/fan-out cones2

× X
Random + interf. graph3 × X
Random + interf. graph + corrup.4 × X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X

Fan-in/fan-out cones2

× X

Random + interf. graph3

× X
Random + interf. graph + corrup.4 × X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X

Fan-in/fan-out cones2

× X

Random + interf. graph3

× X

Random + interf. graph + corrup.4

× X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection

Masking Computational

heuristic

e�ciency complexity

Random1

× X

Fan-in/fan-out cones2

× X

Random + interf. graph3

× X

Random + interf. graph + corrup.4

× X

Fault analysis5

X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection Masking

Computational

heuristic e�ciency

complexity

Random1 ×

X

Fan-in/fan-out cones2 ×

X

Random + interf. graph3 ×

X

Random + interf. graph + corrup.4 ×

X

Fault analysis5 X

×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Nodes selection heuristics 7/15

Several heuristics exist to select the place of insertion:

Selection Masking Computational
heuristic e�ciency complexity

Random1 × X
Fan-in/fan-out cones2 × X
Random + interf. graph3 × X
Random + interf. graph + corrup.4 × X
Fault analysis5 X ×

1J. A. Roy, F. Koushanfar, and I. Markov. “EPIC: Ending Piracy of Integrated
Circuits”. DATE. 2008.

2R. S. Chakraborty and S. Bhunia. “HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection”. IEEE Trans. on CAD of IC and Syst. (2009).

3J. Rajendran et al. “Security analysis of logic obfuscation”. DAC. 2012.
4J. Rajendran et al. “Security analysis of integrated circuit camouflaging”. ACM

Conference on Computer & communications security. 2013.
5J. Rajendran et al. “Fault Analysis-Based Logic Encryption”. IEEE Transactions on

Computers (2015).

Towards a better trafe-o�
between masking e�ciency and

computational complexity

Centrality indicators 9/15

Centrality: Importance of a given vertex inside a graph.

Copyright Marc Smith on Flickr under license CC BY 2.0

Centrality indicators 9/15

Centrality: Importance of a given vertex inside a graph.

Copyright Marc Smith on Flickr under license CC BY 2.0

Centrality indicators 10/15

Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,

Betweenness,
Current-flow
betweenness,
Current-flow closeness,

Definition:
Inverse of the sum of
distances to all the
other vertices.

C(v) = 1∑
y:y∈V

d(v,y)

Centrality indicators 10/15

Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,
Betweenness,

Current-flow
betweenness,
Current-flow closeness,

Definition:
Ratio of shortest paths
going through
this vertex.

C(v) =
∑

s 6=t 6=v:{s,t,v}∈V

σsvt
σst

Centrality indicators 10/15

Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,
Betweenness,
Current-flow
betweenness,

Current-flow closeness,

Definition:
Current flowing through
this vertex with others
as source and sink.

C(v) =
∑

s 6=t:{s,t}∈V
I(st)v

Centrality indicators 10/15

Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,
Betweenness,
Current-flow
betweenness,

Current-flow closeness,

Definition:
Current flowing through
this vertex with others
as source and sink.

C(v) =
∑

s 6=t:{s,t}∈V
I(st)v

Centrality indicators 10/15

Centrality: Importance of a given vertex inside a graph.

Centrality:
Closeness,
Betweenness,
Current-flow
betweenness,
Current-flow closeness,

Definition:
Sum of e�ective
resistances to all other
vertices.

C(v) = 1∑
y:y∈V

p(v)−p(y) =
1∑

y:y∈V
Req(v,y)

Comparison of centrality indicators 11/15

Indicators that only account for shortest paths

Closeness, betweenness.

Indicators that weigh paths according to their length

Current-flow betweenness and closeness centralities.

Increasing computational complexity

Closeness
↓

Betweenness
↓

Current-flow closeness centrality
↓

Approximated current-flow betweenness centrality
↓

Current-flow betweenness centrality

Comparison of centrality indicators 11/15

Indicators that only account for shortest paths

Closeness, betweenness.

Indicators that weigh paths according to their length

Current-flow betweenness and closeness centralities.

Increasing computational complexity

Closeness
↓

Betweenness
↓

Current-flow closeness centrality
↓

Approximated current-flow betweenness centrality
↓

Current-flow betweenness centrality

Comparison of centrality indicators 11/15

Indicators that only account for shortest paths

Closeness, betweenness.

Indicators that weigh paths according to their length

Current-flow betweenness and closeness centralities.

Increasing computational complexity

Closeness
↓

Betweenness
↓

Current-flow closeness centrality
↓

Approximated current-flow betweenness centrality
↓

Current-flow betweenness centrality

Using centrality for logic masking 12/15

Convert the netlist into a graph

Nodes → vertices
Gates → edges

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13
G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

OR

 OR

NAND

NAND

 AND

 AND

 NOR

 NOR

NAND

 NAND

G10
G12

G12
NOT

G7
G7

XOR/XNOR gates are inserted on the vertices for which
the chosen centrality indicator is the highest.

Using centrality for logic masking 12/15

Convert the netlist into a graph

Nodes → vertices
Gates → edges

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13
G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

OR

 OR

NAND

NAND

 AND

 AND

 NOR

 NOR

NAND

 NAND

G10
G12

G12
NOT

G7
G7

XOR/XNOR gates are inserted on the vertices for which
the chosen centrality indicator is the highest.

Computation time 13/15

1k 10k 100k
logic gates

Co
m

pu
ta

tio
n

tim
e

(s)

1s

1min

1h

Graph building
Closeness

Betweenness
Current-flow
betweenness

Approximated current-flow
betweenness
Current-flow
closeness

Trade-o� 14/15

0.0 0.2 0.4 0.6 0.8 1.0
Bitwise correlation

1

10

100

1k

10k

100k

Co
m

pu
ta

tio
n

tim
e

ra
tio

Centrality indicator

Closeness
Betweenness
Current-flow
betweenness

Approximated current-flow
betweenness
Current-flow closeness

Other heuristics
Random
Fan-in/Fan-out cones
Fault-analysis

Conclusion
Bitwise correlation is almost as low as for the fault

analysis-based heuristic, for a run-time 1000x shorter.

Trade-o� 14/15

0.0 0.2 0.4 0.6 0.8 1.0
Bitwise correlation

1

10

100

1k

10k

100k

Co
m

pu
ta

tio
n

tim
e

ra
tio

Centrality indicator

Closeness
Betweenness
Current-flow
betweenness

Approximated current-flow
betweenness
Current-flow closeness

Other heuristics
Random
Fan-in/Fan-out cones
Fault-analysis

Conclusion
Bitwise correlation is almost as low as for the fault

analysis-based heuristic, for a run-time 1000x shorter.

Conclusion 15/15

Centrality indicators, in particular current-flow closeness
centrality, as node selection heuristic for logic masking:

allow to disturb the outputs e�ciently,
have a manageable computational complexity,
o�er a better trade-o� than existing heuristics,
could be parallelized...

— Questions ? —

Conclusion 15/15

Centrality indicators, in particular current-flow closeness
centrality, as node selection heuristic for logic masking:

allow to disturb the outputs e�ciently,
have a manageable computational complexity,
o�er a better trade-o� than existing heuristics,
could be parallelized...

— Questions ? —

	Combinational logic masking
	Towards a better trafe-off between masking efficiency and computational complexity

